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ABSTRACT

Aberrant regulation of miRNA genes contributes to
pathogenesis of a wide range of human diseases,
including cancer. The TAR DNA binding protein 43 (TDP-
43), a RNA/DNA binding protein associated with neu-
rodegeneration, is involved in miRNA biogenesis. Here,
we systematically examined miRNAs regulated by TDP-
43 using RNA-Seq coupled with an siRNA-mediated
knockdown approach. TDP-43 knockdown affected the
expression of a number of miRNAs. In addition, TDP-43
down-regulation led to alterations in the patterns of dif-
ferent isoforms of miRNAs (isomiRs) and miRNA arm
selection, suggesting a previously unknown role of TDP-
43 in miRNA processing. A number of TDP-43 associ-
ated miRNAs, and their candidate target genes, are
associated with human cancers. Our data reveal highly
complex roles of TDP-43 in regulating different miRNAs
and their target genes. Our results suggest that TDP-43
may promote migration of lung cancer cells by regulat-
ing miR-423-3p. In contrast, TDP-43 increases miR-500a-
3p expression and binds to the mature miR-500a-3p
sequence. Reduced expression of miR-500a-3p is
associated with poor survival of lung cancer patients,

suggesting that TDP-43 may have a suppressive role in
cancer by regulating miR-500a-3p. Cancer-associated
genes LIF and PAPPA are possible targets of miR-500a-
3p. Our work suggests that TDP-43-regulated miRNAs
may play multifaceted roles in the pathogenesis of
cancer.

KEYWORDS TDP-43, miRNA, cancer, migration,
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INTRODUCTION

MicroRNAs (miRNAs) are small non-protein-coding RNAs
(ncRNAs) with important regulatory function in biological and
pathogenic processes by modulating mRNA decay or
translational control (Ambros, 2004). Since their discovery
two decades ago, miRNAs have been identified in nearly
every eukaryotic organism examined (Ambros, 2011; Bartel,
2009). Extensive studies have begun to reveal the complex
roles that miRNAs play in various diseases, including neu-
rodegenerative disorders and cancer (Esquela-Kerscher and
Slack, 2006; Gascon and Gao, 2014). Specifically, aberrant
expression of miRNA is found in different types of cancer,
and multiple miRNAs have been shown to contribute to
cancer development and progression (Kong et al., 2012;
Parpart and Wang, 2013).

Production of miRNAs is a highly regulated, multi-step
process (Czech and Hannon, 2011). Briefly, the full-length
primary transcript of a miRNA gene (pri-miRNA) forms a
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hairpin structure that is trimmed by the Drosha complex. The
resulting pre-miRNA contains a 5p-arm, a 3p-arm, and a
hairpin loop connecting them; this loop is removed by the
Dicer complex to release a miRNA/miRNA* complex. One
arm is then selected by RNA-induced silencing complexes
(RISCs) as the mature miRNA. Furthermore, recent high-
throughput sequencing data have shown that many mature
miRNAs have a number of isoforms referred to as isomiRs,
which may have different function (Cummins et al., 2006;
Landgraf et al., 2007; Morin et al., 2008; Ruby et al., 2006).
Thus, arm selection and isomiRs are important aspects in
the formation of mature miRNAs.

The TAR DNA-binding protein 43 (TDP-43) contains two
RNA recognition motifs (RRMs) and a carboxyl-terminal
glycine-rich domain (Lee et al., 2012). In addition to tran-
scriptional regulation, TDP-43 plays multiple roles in post-
transcriptional gene regulation, including pre-mRNA splicing,
mRNA transport and translation (Ayala et al., 2011; Baralle
et al., 2013; Lagier-Tourenne et al., 2010; Ratti and Buratti,
2016). As a component of the Drosha and Dicer complexes,
TDP-43 promotes miRNA biogenesis (Buratti et al., 2010;
Freischmidt et al., 2013; Gregory et al., 2004; Kawahara and
Mieda-Sato, 2012; Kocerha et al., 2011; Zhang et al., 2013).
TDP-43 binds to UG repeat sequences in various RNAs
(Kuo et al., 2009; Buratti et al., 2010), including the terminal
loops of pre-miRNAs (Kawahara and Mieda-Sato, 2012).
Long noncoding and coding RNA targets of TDP-43 in
human and mouse have been reported (Tollervey et al.,
2011; Polymenidou et al., 2011; Sephton et al., 2011).
However, though there were early studies of microRNA tar-
gets of TDP-43 using microarrays, RNA-Seq has not been
used to systematically examine the role of TDP-43 in
microRNA regulation. In addition, though previous studies
have documented association of TDP-43 expression with
cancer, the underlying mechanisms of this association
remain to be elucidated (Fang et al., 2011; Postel-Vinay
et al., 2012; Teittinen et al., 2012;Campos-Melo et al., 2014;
Park et al, 2013).

Here, we report a systematic search of miRNAs that are
regulated by TDP-43 using a knockdown-coupled RNA
sequencing approach. A number of microRNAs regulated by
TDP-43 have been identified. In addition, TDP-43 down-
regulation altered the isomiR patterns and arm selection of a
subset of miRNAs. Biochemical experiments showed that
TDP-43 directly binds the mature sequences of a subset of
the TDP-43 regulated miRNAs, including miR-423-3p and
miR-500a-3p. We identified several putative TDP-43-regu-
lated miRNAs that are closely associated with cancers,
especially lung cancer. A functional annotation pipeline
designed for this study identified TDP-43-regulated miRNAs
that may play a role in non-small cell lung cancer (NSCLC).
Remarkably, miR-423-3p promoted migration of lung cancer
cells in vitro. In contrast, miR-500a-3p was significantly
associated with longer survival of lung cancer patients and
targeted two cancer-associated genes, LIF (leukemia inhi-
bitory factor) and PAPPA (pregnancy-associated plasma

protein A, pappalysin 1). Taken together, our study has
revealed complex gene networks that may be regulated by
TDP-43 in human cancers and suggests that TDP-43 may
modulate the expression of a subset of miRNAs associated
with human cancers.

RESULTS

TDP-43 regulates the expression of a variety
of microRNAs

To systematically search for miRNAs that are modulated by
TDP-43, we performed RNA interference (siRNA) mediated
TDP-43 knockdown in both human and mouse cells,
specifically two human cell lines (neuroblastoma SH-SY5Y
and glioblastoma SNB-19) and a mouse cell line with neu-
ronal features, HT22 (see Fig. S1). Neuron-like cell lines
were chosen because of the known role of TDP-43 in neu-
rodegenerative diseases. Small RNAs were extracted from
TDP-43 knockdown- and control cells and subjected to deep
sequencing using an Illumina Genome Analyzer IIx system.
From six sequenced libraries (one sample in each condition),
we obtained 13.8–19.3 million reads for each sample of
86-nucleotides (nt) in length (Table S1). Most sequenced
reads contained the adapter sequences at their 3′ ends.
After trimming adapters and removing reads containing
ambiguous bases, more than 95% of the total reads were
useful and grouped into unique reads. The unique reads
were analyzed and mapped to the human and mouse gen-
omes (reference genomes hg19 and mm9, respectively).
Approximately 55.6% of the total sequence reads could be
mapped to the genomes without any sequence mismatch,
and more than 27 million reads were usable for assessing
RNA expression levels. The distributions of reads that could
be aligned to tRNAs, rRNAs, snoRNAs, snRNAs, piRNAs,
repeated sequences, and intron and exon sequences are
shown in Table S1. The annotations of reads from TDP-43
knockdown and control SH-SY5Y cell lines are shown in
Fig. 1A.

MicroRNAs whose expression was affected by TDP-43
knock-down were carefully analyzed. The reads counts were
used to estimate the expression levels of miRNAs, as well as
the expression levels of the isomiRs and 3′ single-nucleotide
modified variants in the six libraries. Similar to a previous
study (Morin et al., 2008), we used the most abundant
variant to assess the expression level of the corresponding
miRNA in the differential expression analysis.

Bayesian method (Audic and Claverie, 1997) was applied
to identify the miRNAs whose expression may have chan-
ged. This method was originally designed to analyze differ-
entially expressed genes through sequencing of their cDNA
clones and has also been used to analyze small RNA
sequencing data (Morin et al., 2008). In the SH-SY5Y cell
line, TDP-43 knockdown resulted in 98 differentially
expressed miRNAs (P-value < 0.001), of which 68 miRNAs
were down-regulated. Of these 98 miRNAs, 2 miRNAs were
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up-regulated and 14 down-regulated after TDP-43 knock-
down in the SNB-19 and HT22 cell lines. All of the differ-
entially expressed miRNAs across the three cell lines are
listed in Table S2. Of the 14 miRNAs down-regulated in all
three cell lines from the RNA-Seq data, 11 were down-reg-
ulated in at least two cell lines, as validated by quantitative
RT-PCR (Fig. 1B).

TDP-43 knockdown alters isomiR composition

The generation of isomiRs is probably caused by positional
variation when Drosha and/or Dicer cleave precursor miR-
NAs (Morin et al., 2008). To compare the isomiR patterns
between TDP-43 knockdown and control cell lines, we
grouped the isomiRs into four types (Fig. 2A): isomiR-5p
(5′ end addition or trimming), isomiR-3p (3′ end addition or
trimming), isomiR-53p (simultaneous addition and/or trim-
ming at both ends) and isomiR-3e (3′ end non-template
single-nucleotide extensions).

Applying the chi-square test to the expression levels of
the 4 types of isomiRs based on mature miRNA sequences
from miRBase version 18 (Kozomara and Griffiths-Jones,
2011), we identified 9, 9 and 26 miRNAsin the SH-SY5Y,

SNB19 and HT22 cells, respectively, that had significantly
changed isomiR patterns after TDP-43 knockdown, in com-
parison to the control cells (Table S3; see MATERIALS AND
METHODS). Changes in isomiR-3p were the most frequent
among the altered isomiR patterns. Reduced expression
levels of isomiR-3p after TDP-43 knockdown were frequently
accompanied by increased expression of isomiR-3e, as
observed for hsa-miR-199a-5p, hsa-miR-301a-3p, and
mmu-miR-199a-5p (Fig. 2B). In contrast, the expression
levels of isomiR-5p and isomiR-53p are less frequently
altered after TDP-43 knockdown. Of note, isomiR-5p of miR-
214-3p increased in both SH-SY-5Y and HT22 cells, and
isomiR-53p of miR-31-3p increased in HT22 cells after TDP-
43 knockdown (Fig. 2B).

TDP-43 knockdown also alters miRNA arm selection

In order to estimate the possible effect of TDP-43 on strand
selection from themiRNAduplex, weobtained reads counts of
miRNAs processed from each arm of all precursors. Most
precursors were processed into one dominant mature miRNA
(i.e., from one arm), and the dominant arm was the same in all
samples. Interestingly, we found several miRNAs where
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Figure 1. RNA-seq analyses of TDP-43 regulated miRNAs. Reads annotation and validation of small RNA sequencing in TDP-43

and control knockdown libraries. (A) Distribution of small RNA sequencing reads mapped to the human genome in SH-SY-5Y cells.

Components of TDP-43 knockdown small RNA library (upper) and control library (bottom) are shown. (B) qRT-PCR of miRNAs that

were differentially expressed following TDP-43 knockdown. The expression levels of mature miRNAs in SH-SY-5Y (upper panel),

SNB-19 (middle), and HT22 (bottom) cells transfected with either TDP-43 siRNA or control (n = 3). Statistical analyses were

performed using t-test. **P < 0.05; ***P < 0.01.
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miRBase version 21 (Kozomara and Griffiths-Jones, 2014)
annotates only one arm (either 5′ arm or 3′ arm) of their pre-
cursors could be processed into mature miRNA. However, we
found that reads could map to both arms of their precursors,
indicating a gap in its annotations (Table S4).

We calculated the 5′ arm/3′ arm reads count ratio for
these miRNA precursors. For a certain fraction of the pre-
cursors, 5′ arm/3′ arm reads count ratio changed more than
1.5-fold after TDP-43 knockdown. For example, in the SH-
SY5Ycell line, 12 precursors showed increased and 12
showed decreased 5′ arm/3′ arm reads count ratio after
TDP-43 knockdown. Similar results were obtained for the
other two cell lines (Tables S4 and S5). The most abundant
miRNA with a changed arm ratio is miR-152, a miRNA
known to be involved in various types of cancer (see dis-
cussion). In the SH-SY5Y control sample, the number of
reads deriving from the 3′ arm of pre-mir-152 was nearly
twice the number of reads deriving from the 5′ arm, whereas

after TDP-43 knockdown the number of reads from the
5′ arm was about 12% higher than from the 3′ arm. Reads
derived from the 5′ arm of pre-mir-152 after TDP-43 knock-
down were of 3 different isoforms (Fig. 3A and 3B). The
ratios of five pre-miRNAs (pre-let-7g, pre-let-7i, pre-mir-101,
pre-mir-125a, and pre-mir-185) increased in at least two cell
lines after TDP-43 knockdown, whereas the ratios of five
other pre-miRNAs (pre-mir-106b, pre-mir-188, pre-mir-18a,
pre-mir-33a, and pre-mir-93) decreased in at least two cell
lines after TDP-43 knockdown (Fig. 3C and 3D). Together,
these data clearly demonstrate that down-regulation of TDP-
43 alters miRNA arm selection.

Novel predicted miRNAs and miRNA arms

Among the more than 100 million reads from high-throughput
sequencing of the 6 libraries, there was also a large amount of
reads that mapped to un-annotated genomic regions. To identify
novel miRNA candidates among the unknown reads, we first
selected unique reads represented bymore than 3 reads counts
andmapped these to genomic regions with a perfect match.We
applied the updatedmiRanalyzer webserver (Hackenberg et al.,
2011) to identify novel miRNA candidates. By including only
unique reads with more than 50 reads counts, we predicted 8
novel candidate miRNAs in human cell lines and 2 in the mouse
cell line (Table S6). The flanking sequences of these novel
miRNA candidates’ genome loci can be folded into stem-loop
structures compatible with those of known pre-miRNAs. Most of
these novelmiRNAcandidateswere only detected after TDP-43
knockdown, suggesting that TDP-43 may inhibit the expression
of these novel miRNA candidates. These novel miRNA candi-
dates will be further investigated in future studies.

TDP-43 interacts with the mature sequences of miR-
423-3p and miR-500a-3p

To further study miRNAs regulated by TDP-43, we examined
which miRNAs interact with TDP-43. Cross-referencing raw
data from a recent study using individual-nucleotide resolu-
tion cross-linking immunoprecipitation (iCLIP) approach
(Tollervey et al., 2011), we found that TDP-43 might bind
directly to the mature sequences of five miRNAs that were
down-regulated after knockdown of TDP-43 in at least one of
our cell lines. Because four of these (all but miR-27a-3p)
were not included in the previous qRT-PCR (see Fig. 1B), we
assayed the expression of miR-27a-3p and four other miR-
NAs in SH-SY-5Y cells by qRT-PCR, and found that the
expression levels of all five miRNAs decreased significantly
after knockdown of TDP-43 (Fig. 4A). To corroborate the
interaction between TDP-43 and these miRNAs suggested
by the raw iCLIP data, we assessed their interaction with an
RNA immunoprecipitation (RIP) assay, which is similar to
iCLIP, but without a UV cross-linking step (Peritz et al, 2006).
Our RIP assay showed that three of the mature miRNAs
(miR-423-3p, miR-500a-3p, and miR-574-3p) might bind to
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TDP-43 in SH-SY-5Y cells (Fig. 4B). Their potential binding
sites, as indicated by the iCLIP data, are shown in Fig. 4C.
Because RIP cannot unambiguously determine direct RNA-
protein interactions (Ule et al, 2005; Moore and Silver, 2008),
we further examined the direct interaction between TDP-43
and mature miRNAs in an electrophoretic mobility shift assay
using purified TDP-43 protein (EMSA; Gangnon and Max-
well, 2011). Our data indicate that the TDP-43 protein binds
miR-423-3p and miR-500a-3p, but not miR-574-3p (Fig. 4D).
The data from all three methods (iCLIP, RIP, EMSA) cor-
roborate that TDP-43 directly interacts with miR-423-3p and
miR-500a-3p.

A number of miRNAs affected by TDP-43 knockdown
are involved in lung cancer

We identified several miRNAs whose expression levels, arm
selection or isomiR patterns were regulated by TDP-43 from
small RNA sequencing analyses. Interestingly, previous

studies reported that at least 64 putative TDP-43-regulated
miRNAs are associated with cancers as either oncogenic
factors or tumor suppressors (Table S7), suggesting an
association between TDP-43 and cancer via miRNAs.
Extracting annotations of these miRNAs from the miR2Di-
sease webserver (Jiang et al., 2009), 39 of them have pre-
viously been associated with lung cancer (Table S8), a
leading cause of cancer-related deaths. The role of TDP-43
associated miRNAs in lung cancer remains unclear. There-
fore, we decided to focus our efforts on the possible role of
TDP-43 in lung cancer.

In order to examine how TDP-43 might be involved in lung
cancer via the miRNAs that it regulates, we designed an
analysis pipeline that combined ProMISe (probabilistic
miRNA-mRNA interaction signature) (Li et al., 2014),
DESeq2 (Love et al., 2014), Fatiscan (Al-Shahrour et al.,
2007a), and FatiGO (Al-Shahrour et al., 2007b). See Fig-
ure S2 for a diagrammatic illustration of the analysis pipeline.
There are three inputs: the preprocessed counts provided by
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the TCGA data for miRNAs and mRNAs, as well as initial
preprocessed predictions from miRanda (Betel et al., 2010).
The pipeline includes 5 steps: 1) to use DESeq2 to deter-
mine which miRNAs and transcripts are differentially
expressed; 2) to generate predicted miRNA-mRNA interac-
tions for each sample using the initial miRanda predictions
and ProMISe; 3) to extract the interactions found in all
samples, then use Fatiscan to identify whether the set of
targets for a miRNA are enriched for differentially expressed
targets; 4) to filter the resulting list for miRNAs that are dif-
ferentially expressed by DESeq2 and that have evidence of
regulation by TDP-43; 5) finally, to identify which processes
the miRNAs are regulating by using FatiGO to look for
overrepresented gene ontology and pathway terms. In this
study, we focused on the two datasets studying NSCLC,

including lung squamous cell carcinoma (LUSC) and lung
adenocarcinoma (LUAD), because NSCLC accounts for the
majority of lung cancer cases. We included samples that had
paired miRNA-mRNA expression profiles available from The
Cancer Genome Atlas as of July 2014 (Collins and Barker,
2007).

First, the miRNAs were tested for differential expression
in LUAD or LUSC versus control samples using DESeq2.
Out of the 1,100 human miRNAs in the miRBase v21 data-
base (Kozomara and Griffiths-Jones, 2014) 417 and 563
miRNAs showed differential expression in LUAD and LUSC
samples, respectively, versus control samples. MiRNAs
putatively regulated by TDP-43 were over-represented in
these groups (hypergeometric test P-value for LUAD (57/417
vs. 83/1033) and LUSC (61/563 vs. 83/1037): 5.24 × 10−8

C
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and 1.48 × 10−4, respectively). Because TDP-43 may not
regulate all of these miRNAs, we examined the correlation
between each miRNA and TDP-43 expression in lung can-
cer samples. We performed Pearson correlation, and after
correcting for multiple hypothesis testing, identified 408 and
467 miRNAs significantly correlated with TDP-43 in LUAD
and LUSC samples, respectively (FDR < 0.1). MiRNAs
putatively regulated by TDP-43 had a trend for overrepre-
sentation in these groups as well (hypergeometric test
P-value for LUAD (39/408 vs. 83/1033) and LUSC (45/467
vs. 83/1037): 0.091 and 0.059, respectively).

To identify which miRNAs showed enrichment for differ-
entially expressed targets, we used the combination of
ProMISe and Fatiscan. From the ProMISe step, out of the
1033 and 1037 miRNAs that were expressed in LUAD and
LUSC samples respectively, there were 213 and 274 miR-
NAs that had at least 5 predicted targets in each LUAD or
LUSC sample, respectively; miRNAs regulated by TDP-43
were also over-represented in these groups (hypergeometric
test P-value for LUAD (67/213 vs. 83/1033) and LUSC
(74/274 vs. 83/1037): 3.36 × 10−35 and 1.89 × 10−36,
respectively). A ranked list of the transcripts (using P-values
of log fold change and log differential expression from
DESeq2) was submitted along with the predicted miRNA-
mRNA interactions from ProMISe as custom annotations to
Fatiscan (part of the Babelomics v4 suite; Medina et al.,
2010). This method uses a threshold-independent heuristic
to identify whether an annotation term is over-represented in
the bottom or top of a ranked list; and in this case, we were
searching for miRNAs that had an enrichment for either up-
regulated or down-regulated target transcripts.

In order to identify miRNAs that were both differentially
expressed and had enrichment for differentially expressed
targets, we combined the Fatiscan results with earlier
DESeq2 results for the miRNAs to get a joint P-value. We
applied three criteria to filter the list of miRNAs to the most
relevant one: (A) the miRNA had to have a DESeq2 dif-
ferential expression FDR < 0.1; (B) the targets of the
miRNA had to be changing in the opposite direction (if the
miRNA is up-regulated, the targets must be down-regu-
lated, and vice versa); (C) the miRNA expression profile
had to have a statistically significant correlation with TDP-
43 expression profile (FDR < 0.1). The results of this step
for LUAD and LUSC are shown in Tables S9 and S10,
respectively.

To determine what biological processes were related to
the identified targets, we extracted the unique transcripts
from the previous step and submitted them to FatiGO, also
part of the Babelomics v4 suite; this tool performs an over-
representation analysis for gene ontology and pathway
terms. Among the down-regulated transcripts, the most sig-
nificant hits included integrin cell surface interactions and
negative regulation of cell proliferation; among the up-regu-
lated transcripts, the most significant hits included nucleotide
synthesis, cell cycle checkpoints, and RNA processing. This
suggests that TDP-43-regulated miRNAs may play a role in

promoting carcinogenesis and metastasis. The full list of hits
can be found in Table S11.

From this analysis pipeline, we defined “predicted causal
interactions” as those miRNA-mRNA interactions between
putative TDP-43-regulated miRNAs and target mRNA tran-
scripts with annotations in the processes discovered by
FatiGO. See Figure S3A and S3B for the representative
network graph of up-regulated miRNAs and down-regulated
transcripts in LUAD (one network of 7 up-regulated miRNAs,
50 down-regulated transcripts, and 13 processes; another
network of 4 down-regulated miRNAs, 62 transcripts, and 17
processes), and Fig. S3C and S3D for the LUSC network,
which was much larger. See Table S12 for the full node and
edge lists.

In summary, our analysis pipeline identified a number of
putative TDP-43-regulated miRNAs which target several
transcripts that have roles in cancer biology, including the
two TDP-43 interacting miRNAs identified in this study, miR-
423-3p and miR-500a-3p. These were experimentally
examined further for their roles in lung cancer.

TDP-43 associated miR-423-3p promotes lung cancer
cell migration

From our analysis pipeline, miR-423-3p was one miRNA that
met all of our criteria in LUSC samples: it was differentially
expressed, significantly correlated with TDP-43, and had
targets with statistically overrepresented pathway annota-
tions. Of the four targets that were hits, three (CRK, LCP2,
and ITGA9) were related to the reactome pathway “Integrin
Cell Surface Interactions”; even when including the rest of
the differentially expressed targets of miR-423-3p, this was
the only significant pathway identified by FatiGO. Thus, we
hypothesized that TDP-43 might influence lung cancer cell
migration via miR-423-3p.

To test this hypothesis, we performed TDP-43 knock-
down on H1299 lung cancer cells and measured cell
migration using the transwell migration assay. Our data
showed a significant reduction in cell migration by TDP-43
knockdown (Fig. 5A–C). In order to address whether this
inhibition of cell migration was caused by TDP-43 regu-
lated miRNAs, we co-transfected H1299 cells with TDP-43
siRNAs and each of six miRNAs: miR-423-3p and five
others that were previously identified to be related to lung
cancer (see Table S8). After co-transfection with miR-423-
3p, the cell migration increased significantly (P-value <
0.05) as compared with cells transfected with TDP-43
siRNAs alone (Fig. 5B). Co-transfection with other miR-
NAs did not rescue the reduction in cell migration caused
by TDP-43 knockdown (Fig. 5A and 5B). Similar to results
from SH-SY5Y cells, examination of the interaction
between miR-423-3p and TDP-43 using RNA immuno-
precipitation (RIP) and RNA pull-down assay showed that
miR-423-3p interacts with TDP-43 in H1299 lung cancer
cells (Fig. 5D and 5E). Thus, these results suggest that
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TDP-43 may promote lung cancer cell migration through
regulation of miR-423-3p, corroborating the prediction
from the functional annotation pipeline that TDP-43 is a
tumor-promoting factor.

TDP-43 regulated miRNAs, including miR-500a-3p, may
serve as prognostic markers of cancers

Among the TDP-43 affected miRNAs that we identified, the
expression levels of 17 miRNAs have previously been
associated with NSCLC patient survival. Similarly, in
glioblastoma multiforme (GBM), the expression levels of 18
TDP-43 regulated miRNAs might have prognostic value for
GBM (Table S13).

In order to test the association between TDP-43 regulated
miRNAs and patient survival in cancer using samples inde-
pendent from these previous studies, we collected miRNA
expression profiles of 134 lung squamous cell carcinoma
(LUSC), 191 lung adenocarcinoma (LUAD) and 487 GBM,
and gene expression profiles of 133 LUSC, 231 LUAD and
538 GBM from The Cancer Genome of Atlas (TCGA),
together with information on the patient survival. We found
that 4 of the 17 TDP-43 regulated miRNAs in NSCLC were
also significantly associated with patient survival in the
independent cohort (let-7b-5p, miR-25-3p, miR-31-5p, and
miR-93-5p), and that 5 of the 18 miRNAs were confirmed to
be significantly associated with GBM patient survival in this
independent cohort (miR-148a-3p, miR-17-5p, miR-20a-5p,
miR-221-3p, and miR-31-5p) (Table S13). Low expression of
hsa-let-7b-5p and high expression of hsa-miR-31-5p were
associated with poor survival in lung cancer, which is con-
sistent with previous reports (Fig. S4; Tan et al., 2011;
Yanaihara et al., 2006), and hsa-let-7b was identified as a hit
from our pipeline. Low expression of miR-17-5p and miR-
20a-5p and high expression of miR-148a-3p, miR-221-3p,
and miR-31-5p were associated with poor prognostic out-
come in GBM independent cohort (Fig. S4). The associa-
tions of these 5 miRNAs with patient survival have all been
reported previously (Delfino et al., 2011; Srinivasan et al.,
2011).

One of the miRNAs associated with NSCLC survival is
miR-500a-3p. From our analysis pipeline, we identified miR-
500a-3p to be significantly correlated with TDP-43. To
examine the potential role of miR-500a-3p in lung cancer, we
examined miR-500a-3p and its predicted target genes in
H1299 cells. TDP-43 could bind to miR-500a-3p and regu-
late its expression level in H1299 cells (Fig. 6A, right panel
and left panel respectively). The survival analysis of 134
LUSC samples indicates that higher expression level of miR-
500a-3p is correlated with longer patient survival (Fig. 6B),
and suggests that miR-500a-3p may be a protective factor in
lung cancer patients. Potential target genes of miR-500a-3p
were predicted using updated calculated predictions from
three methods (see MATERIALS AND METHODS). Among
the miR-500a-3p target genes, lower expression levels of 29
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predicted target genes (of which 8 that were predicted by at
least two methods) were associated with better survival of
lung cancer patients (Table S14). In order to determine
whether some of these predicted genes are targets for miR-
500a-3p, we first overexpressed miR-500a-3p and examined
the expression levels of predicted target genes. LIF and
PAPPA, whose expression levels were associated with
worse survival of lung cancer patients (Fig. 6C and 6D), were
down-regulated in lung cancer H1299 cells after transfection
of miR-500a-3p compared to control miRNA mimetic by qRT-
PCR (Fig. 6E). Consistently, after knockdown of miR-500a-
3p, LIF and PAPPA mRNA levels were up-regulated in
H1299 cells (Fig. 6F). To determine whether miR-500a-3p
interacts with the 3′UTR regions of LIF and PAPPA mRNAs,
we co-transfected miR-500a-3p mimetic or control with
luciferase reporter constructs for LIF or PAPPA containing
the respective wild-type 3′UTR or the mutant 3′UTR con-
taining mutated binding site for miR-500a-3p into H1299
cells. Mutating the miR-500a-3p binding site in the LIF 3′UTR
reversed effect of miR-500a-3p (Figs. 6G and S5). Together
these results suggest that LIF and PAPPA may be biological
targets of miR-500a-3p in lung cancer cells.

DISCUSSION

MiRNAs are recognized as critical links in cellular pathways
and carcinogenesis, regulating expression of genes in a
wide range of pathways critical for cancer development and
progression. MiRNAs regulate the expression of their target
genes at the transcriptional and translational levels. They
can also modulate the production or turnover of mRNAs.
Dysregulation of miRNAs is associated with a variety of
human diseases, such as cancers and neurological disor-
ders (Calin and Croce, 2006; Maciotta et al., 2013; Nelson
et al., 2008;Abu-Elneel et al, 2008;Jonas and Izaurralde
2015; Bracken et al, 2016;Adams et al, 2017).

Although significant efforts have been made in studying
the role of TDP-43 in neurodegenerative diseases, its bio-
logical function is not fully understood. TDP-43 has been
shown to participate in various aspects of RNA metabolism
including transcription, pre-mRNA splicing, RNA transport
and translational regulation (Ayala et al., 2011; Baralle et al.,
2013; Lagier-Tourenne et al., 2010; Ratti and Buratti, 2016).
RNA targets of TDP-43 have been studied by CLIP-Seq,
showing that TDP-43 not only binds to mRNAs, long
ncRNAs, snoRNAs and rRNAs, but also miRNAs (Buratti
et al., 2013; Polymenidou et al., 2011; Tollervey et al., 2011;
Xiao et al., 2011; reviewed in Ratti and Buratti 2016). TDP-43
is a known component of two important miRNA processing
complexes (Drosha and Dicer) and associates with several
auxiliary factors (Kawahara and Mieda-Sato, 2012a).
Therefore, TDP-43 is critically involved in miRNA
biogenesis.

Relationships between TDP-43 and cancer have been
reported previously (Fang et al., 2011; Postel-Vinay et al.,
2012; Teittinen et al., 2012; Park et al., 2013). Broadly

speaking, TDP-43 may be involved in carcinogenesis
through participating in the processes of miRNA production
and turnover. In a recent example (Park et al., 2013), TDP-
43 was found to inhibit the miR-520 family in hepatocellular
carcinoma, which in turn disinhibited the platelet isoform of
phosphofructose kinase (PFKP). To take another example, it
was reported that in Drosophila, TDP-43 bound to pri-miR-9a
to maintain its stability and the expression level of the mature
sequence, and that TDP-43 conferred robustness to neu-
ronal specification through miR-9a (Li et al., 2012b). Con-
sistent with these results, our data show that both miR-9-5p
and miR-9-3p were significantly down-regulated after TDP-
43 knockdown (Table S2). Because hsa-miR-9-5p has been
shown to contribute to breast cancer pathogenesis
(Table S7; Ma et al., 2010), our data suggest that TDP-43
might play a role in promoting breast cancer through its
interaction with miR-9. Finally, another study showed TDP-
43 binds to both pre-let-7b and mature let-7b-5p (Buratti et al
2010); let-7b-5p was one of the hits in our computational
pipeline and one miRNA that had prognostic value in LUAD
patients.

Our study has systematically identified a subset of TDP-
43-regulated miRNAs in the small RNA transcriptome by
high-throughput sequencing. Our high-throughput sequenc-
ing data showed that the expression levels of a substantial
number of miRNAs were altered in at least one of the three
cell lines after TDP-43 knockdown. Many of the miRNAs
affected by TDP-43 knockdown were down-regulated, but
only 13 of the affected miRNAs have previously been
reported to be affected by TDP-43 expression level changes
(Buratti et al., 2010; Kawahara and Mieda-Sato, 2012,Li
et al., 2012b). This lack of overlap may be explained by the
published data being based on microarray-based studies.
Compared with microarray, high-throughput sequencing may
be a better choice in identifying differentially expressed
miRNAs at low expression levels (Malone and Oliver, 2011),
as miRNA expression profiles obtained from microarray may
have higher false positive rate due to experimental bias and
cross-hybridization (Hurd and Nelson, 2009). Among the 14
confidently predicted down-regulated miRNAs, the down-
regulation was confirmed by qRT-PCR for more than 85% of
the miRNAs. Because of the diverse spectrum of the miR-
NAs whose expression may be regulated by TDP-43, we
chose to focus on those miRNAs closely associated with
cancer in this study and will continue to perform in-depth
analyses on other TDP-43-regulated miRNAs in a separate
study.

IsomiRs are natural variants expressed from the same
miRNA locus (Lee et al., 2010), and have been detected in a
variety of species by high-throughput sequencing (Fernan-
dez-Valverde et al., 2010; Humphreys et al., 2012; Liu et al.,
2011; Luciano, 2004). Some specific isomiRs have also
been associated with diseases, including cancer (e.g., Guo
et al., 2011; Li et al., 2012a; Marti et al., 2010). The binding
properties of isomiRs to their mRNA targets may vary
(Baccarini et al., 2011). Marked differences in isomiR
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distributions were seen after TDP-43 knockdown. The
expression levels of most miRNAs with altered isomiRs
patterns were also significantly changed by TDP-43 knock-
down, indicating a role of TDP-43 in miRNA editing, modifi-
cation and/or turnover. These data suggest that TDP-43 may
play a role in cancer pathogenesis by altering isomiR
patterns.

The pre-miRNA contains three parts: the 5′ arm, the 3′
arm, and the terminal loop. Mature miRNAs are derived from
either the 5′ arm or the 3′ arm, with unequal probabilities. A
common view is that the arm preference is determined by the
hydrogen-bonding-based selection rule (Khvorova et al.,
2003; Schwarz et al., 2003). However, this view has been
challenged by some recent studies (e.g., Griffiths-Jones
et al., 2011). MiRNAs from the two opposite arms differ in
potential mRNA targets and functions. For example, arm
selection differences have been observed in gastric cancer
(Li et al., 2012a). Our data show that the arm preference is
altered by reduction of TDP-43 expression. In SH-SY-5Y
cells, the favored arm of pre-mir-152 switched from the
3′ arm to the 5′ arm following TDP-43 knockdown. MiR-152
has been reported to be associated with different types of
cancer, such as hepatocellular carcinoma (Huang et al.,
2010), endometrial cancer (Tsuruta et al., 2011), ovarian
cancer (Woo et al., 2012; Zhou et al., 2012), and gastroin-
testinal cancer (Chen et al., 2010). In addition, mir-152-3p
was identified as a significant hit in LUSC samples from our
computational analyses. TDP-43 may therefore act as a
regulator of miR-152 processing in these cancers.

Among the TDP-43-regulated miRNAs with previously
established connections with cancer, lung cancer was
identified as the one with the largest number of associated
miRNAs (38 from Table S7; 39 from Table S8). We set out to
design a pipeline that would predict the processes that TDP-
43 would affect their predicted target genes via its regulated
miRNAs. There are some limitations to the approach taken:
(1) if a target interaction was missing from even one sample,
it was excluded from the set of targets analyzed for a
miRNA; this made the analysis easier to interpret, but it
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excluded miRNA-mRNA interactions that are likely important
for a subset of lung cancer samples; (2) only the most dif-
ferentially expressed genes from the Fatiscan results were
included for the FatiGO analysis; thus, any subtle but bio-
logically important signals in the data were ignored; (3) we
did not examine whether there were miRNA-mRNA interac-
tions that were positively correlated, which can indicate
miRNAs either enhancing mRNA expression (Orang et al.,
2014) or acting in a “tuning” or noise-buffering capacity
(Bartel, 2009; Noorbakhsh et al., 2013; Osella et al., 2011);
(4) we cannot exclude the possibility of other miRNAs or
other genes being the true cause of the changes we observe
in the target gene. Despite these limitations, this pipeline
provides a clear set of hypotheses for future work to validate.

The resultant predicted causal interaction network pro-
vides a complex picture of the predicted impact of TDP-43
on the pathogenesis of lung cancer. One aspect that com-
plicates analysis has to do with the opposing roles of alter-
native isoforms. Several of the genes have only one
transcript predicted to be a target, and this leads to a con-
text-specific effect on cancer pathogenesis. For example,
our pipeline predicted miR-423-3p to have four important
targets in LUSC. Prima facie, the results seem mixed
because two genes were shown to inhibit cell migration
(LCP2 (Baker et al., 2009) and ADRB2 (Yu et al., 2007)), one
showed mixed results with respect to cell migration (ITGA9;
Mostovich et al., 2011), and another was reported to promote
cell migration (CRK (Sriram and Birge, 2010)). However,
when one looks more closely at the transcript level, the CRK
transcript that is targeted is CrkIII, the shortest isoform with a
predicted structure that has a truncated SH3 domain (Sriram
and Birge, 2010). Thus, it is reasonable to propose that,
given the established role of miR-423-3p in promoting cell
migration, CrkIII may act as a competitive inhibitor of Crk
signaling and that inhibition by miR-423-3p leads to
restoration of Crk signaling that promotes cell migration.
Future work is necessary to test this hypothesis and tease
out the other complexities of transcript-specific miRNA
targeting.

Another complicating aspect was how the miRNAs that
were identified as hits in our pipeline have mixed roles in
tumorigenesis. Of the 28 miRNAs reported as hits in either
LUSCor LUADsamples, 22 have previous literature exploring
their roles in cancer (12miRNAs are indicated as suppressors
and 10 are reported as oncomiRs; see Tables S7 and S8);
there was a trend toward tumor suppressor TDP-43-regulated
miRNAs being down-regulated (hypergeometric test P-value
for LUAD (4/4 vs. 40/85) and LUSC (7/9 vs. 40/85) respec-
tively: 0.045 and 0.054), which suggested that TDP-43 is a
tumor promoter. However, this trend was not seen with
oncomiRs overrepresented among up-regulated hits (P-val-
ues for LUAD and LUSC were 0.614 and 0.177 respectively).

Our data presented here suggest that TDP-43 may pro-
mote miRNA biogenesis and interact with miRNAs to regu-
late their function in cancers in a highly complex manner. On
one hand, TDP-43 may have a role in promoting cancer

development by regulating miR-423-3p. Increased expres-
sion of miR-423-3p has been reported in lung cancer patient
samples (Crawford et al., 2009). MiR-423-3p has been
shown to promote cell growth in human hepatocellular car-
cinoma cell lines (Lin et al., 2011). Our experiments show
that TDP-43 promotes migration of lung cancer cells by
binding to and regulating miR-423-3p. On the other hand,
TDP-43 may also play a role in suppressing cancer devel-
opment. More than 20 miRNAs were reported to be prog-
nostic markers of non-small cell lung cancer (NSCLC)
(Fanini et al., 2011; Skrzypski et al., 2011). Survival analyses
indicate that TDP-43-regulated miRNAs are correlated with
the survival of cancer patients and that they could potentially
be used as cancer prognostic markers. In the case of miR-
500a-3p, TDP-43 binds to the mature miR-500a-3p
sequence, and miR-500a-3p expression is significantly
down-regulated by TDP-43 knockdown. Though miR-500a-
3p was not differentially expressed in LUSC samples versus
control, it did have a significant positive correlation with TDP-
43. In contrast to the possible role of TDP-43 in promoting
lung cancer by regulating miR-423-3p, patients with low
expression level of miR-500a-3p have poor prognosis, sug-
gesting that TDP-43 may have a suppressive role in cancer
by regulating miR-500a-3p.

Our data reveal LIF andPAPPA as potential targets of miR-
500a-3p in lung cancer cells. LIF has been identified as a
metastatic factor in rhabdomyosarcomas (Wysoczynski et al.,
2007). A new lung cancer susceptibility locus located down-
stream of LIF were found through genome-wide association
studies in Han Chinese (Hu et al., 2011). PAPPA has been
shown to promote lung cancer growth and progression (Pan
et al., 2012). Though miR-500a-3p overexpression and the
luciferase assay showed miR-500a-3p affecting LIF expres-
sion, PAPPA was only affected after miR-500a-3p overex-
pression; the possibility that miR-500a-3p regulates PAPPA
by interacting with binding sites outside its 3′UTR remains to
be resolved by future studies. Nevertheless, miR-500a-3p
may serve as a tumor suppressor through inhibiting LIF and
PAPPA, and TDP-43 might contribute to inhibiting cancer
progression by modulating miR-500a-3p target genes.

Taken together, these findings provide new insights into
the involvement of TDP-43 in miRNA biogenesis, and sug-
gest complex roles of TDP-43 in carcinogenesis. Our data
suggest a working model for TDP-43, in which TDP-43
regulates miRNA expression and function in five ways. First,
TDP-43 could interact with (1) Drosha and/or (2) Dicer to
affect miRNA biogenesis and (3) regulate isomiR patterns.
Then, (4) TDP-43 could regulate miRNA arm selection
through mechanisms that remain to be elucidated. Lastly, (5)
TDP-43 could bind to the mature miRNAs. MiRNA expres-
sion changes and binding of TDP-43 to miRNAs may affect
their functional activities. Dysregulation of these processes
may contribute to pathogenesis of various diseases. Our
work suggests the complexity and multifaceted roles of TDP-
43 in regulating microRNA processing and function. Clearly,
further studies are necessary to elucidate mechanisms by
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which TDP-43 act in the pathogenesis of various human
diseases, including cancer.

MATERIALS AND METHODS

Reagents, cell cultures, and transfection

The polyclonal anti-TDP-43 antibody (Abcam) and monoclonal anti-

beta-tubulin (BD Pharmingen) were obtained from corresponding

vendors.

Human neuroblastoma cells (SH-SY-5Y), human glioma cells

(SNB-19), human non-small cell lung cancer cells (H1299), and

mouse HT22 cells were cultured in DMEM supplemented with 10%

fetal bovine serum at 5% CO2 and 37°C. Human and mouse TDP-43

siGENOME SMARTpool oligos were purchased from Dharmacon.

The siRNAoligoswere transfected into the cells by lipofectamine2000

(Invitrogen) for 48 h followedby a second transfection for another 72 h.

SiGENOME Non-Targeting siRNA Pool #2 oligos (Dharmacon) were

used as a negative control. Mimetics and inhibitors of corresponding

miRNAs were purchased from Genepharma company, and trans-

fected into cells using lipofectamine2000 for 48 h.

Western blotting

Whole cell lysates from non-targeting siRNAs or TDP-43 siRNAs

transfected cells were obtained using lysis buffer (50 mmol/L Tris-

HCl (pH 6.8), 10% glycerol, 2.5% β-mercaptoethanol, 2% SDS,

0.1% Bromophenol Blue). Cell lysate was loaded onto 10% SDS-

PAGE and transferred onto Polyvinylidene Fluoride membranes.

Membranes were incubated with rabbit anti-TDP-43 antibody

(1:1000; Abcam). Mouse anti-β-tubulin (1:2500; BD Pharmingen)

was used as an internal control.

Total RNA extraction and small RNA sequencing

Following two rounds of transfection with the control or TDP-43 siR-

NAs, cellswere lysed in Trizol (Invitrogen) for total RNAextractionwith

DNA removed by treating samples using RNase-free DNase I

(Roche). The RNA yield was determined by UV absorbance spec-

troscopy (GE) andRNAquality was checked using 1% formaldehyde-

agarose gel electrophoresis. Small RNA libraries (16–52 nt) were

constructed using the TruSeq Small RNA Sample Prep Kit (Illumina)

and sequenced using an Illumina Genome Analyzer IIx platform (one

sample per lane), with one sample being sequenced from each con-

dition (TDP-43 siRNA or control) for each cell line.

Quantitative RT-PCR (qRT-PCR) analyses

Quantitative RT-PCR was performed using the Rotor-Q qRT-PCR

instrument (Qiagen). Total RNA treated with the Turbo DNA-free™

Kit (Ambion) was used. The levels of miRNAs were quantified using

the NCode™ VILO™ miRNA qRT-PCR kit (Invitrogen) and normal-

ized with the U6 small nuclear RNA (U6 snRNA). The expression of

corresponding miRNA target genes was measured using Trans-

Script II Green One-Step qRT-PCR SuperMix (Transgen) with beta-

actin and GAPDH as internal controls. All reactions, including

reverse transcriptions and PCRs, were run in triplicates in at least 3

independent experiments. Primers used are listed in Table S15.

RNA immunoprecipitation (RIP) assay

The RIP experiment protocol was described in our previously pub-

lished work (Fan et al., 2014). Briefly, 2 × 107 SH-SY5Y cells were

collected, resuspended in 2 mL RIP lysis buffer [50 mmol/L Tris-HCl

(pH 7.4), 1 mmol/L EDTA (pH 8.0), 250 mmol/L NaCl, 0.5% NP-40,

1 mmol/L PMSF, 1× Phosphatase Inhibitor Cocktail (sigma), 1×

Protease Inhibitor Cocktail (sigma), and 0.1 U/mL of RNasin (Pro-

mega)] on ice for 15 min, and centrifuged at 4°C, 13,300 rpm for

30 min (Eppendorf). An antibody against TDP-43 (Abcam, IP grade)

or rabbit IgG control (Millipore) was added to the lysate with gentle

rotation at 4°C for 1 h. Protein A beads were added and incubated

for an additional 3 h at 4°C with gentle rotation. Beads were col-

lected at 4°C and centrifuged at 2,000 rpm for 2 min. They were then

washed for three times in RIP buffer and resuspended in 1 mLTrizol.

RNA was subsequently isolated for qRT-PCR analysis.

Electrophoretic mobility shift assay (EMSA)

BiotinylatedmiRNAs were purchased from Takara. The coding region

of TDP-43 was amplified with the following primers: TDP-FATGTCT-

GAATATATTCGGGT, TDP-R CTACATTCCCCAGCCAGAAG. The

full-length TDP-43 taggedwith His at theC-terminus (His-TDP-43wild

type) was constructed using the pEASY-E2 expression kit (Transgen).

The wild-type His-TDP-43 was expressed in Escherichia coli stain

Transetta (DE3) (Transgen) by incubation for 18 h at 16°C with

1mmol/L IPTG.The resultingproteinwas thenpurifiedwithNi-NTAFast

Start Kit (Qiagen) in accordance with the manufacturer’s instructions.

The biotin-labeled miRNAs were incubated with His-TDP-43 and the

assays were carried out using LightShift Chemiluminescent RNA

EMSA Kit (Thermo) following the manufacturer’s instruction.

RNA pull-down assay

Cells were lysed with RIP lysis buffer (same as above) and then

centrifuged. The lysate was split into four parts: one 100 μL aliquot

for input, and three 300 μL aliquots for negative control, sense strand

and antisense strand RNA, respectively. Biotin-labeled RNA was

added to the lysate and incubated at 4°C for 3 h with gentle agitation.

Streptavidin-coated magnetic beads (Invitrogen) were blocked for

2 h at 4°C in lysis buffer containing 1 mg/mL yeast tRNA (Ambion)

and 1 mg/mL BSA (Ambion), and then washed twice with 1 mL lysis

buffer. Then, the beads were suspended in the lysate for at least 3 h,

and subsequently washed 5 times with 1 Ml wash buffer (10 mmol/L

Tris (pH 8.0), 1 mmol/L EDTA, 0.5 mol/L NaCl). The beads were then

boiled for 5 min in 0.1% SDS for dissociation and then subjected to

Western blotting as described above.

Transwell migration assay

For the in vitro cell migration assay, 5 × 104 cells were suspended in

0.5 mL DMEM without serum, and then plated into the transwell

inserts (BD Biosciences). To the bottom well, 0.75 mL DMEM with

serum was added. Cells were incubated for 12 h, fixed in 75%

ethanol for 10 min, and stained by crystal violet for 30 min. Cells that

migrated cross the membrane were counted under a microscope

from 6 randomly selected fields (at 200× magnification).
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Dual luciferase reporter assay

The 3′UTR sequences of LIF or PAPPA were inserted into the

p-sicheck2 (Promega) vector. Mutants of psicheck2-LIF-3′-UTR or

psicheck2-PAPPA-3′-UTR were obtained using the Fast Mutagene-

sis System (Transgen). H1299 cells were cotransfected with the

3′UTR reporter constructs and either control or miR-500a mimics in

24-well plates. After 24 h, luciferase activity was measured using the

dual luciferase reporter assay system (Promega) according to the

manufacturer’s instructions.

Small RNA sequencing data analyses

Trimming of adapters and mapping to genomes

First the 3′ end adapters of reads generated by Illumina Genome

Analyzer IIx were trimmed using The Flexible Barcode and Adapter

Remover (FLEXBAR, Dodt et al., 2012). The minimum overlap

between adapter and read was set to 6 bases. Two mismatches

were allowed. Reads with length less than 10 bases after trimming

adapters were removed from the data. If the adapter sequence was

not found at the 3′ end, the last 6 bases were trimmed. The trimmed

reads were then grouped into unique reads. Unique reads with read

counts of 3 or more were mapped to either the human (UCSC hg19)

or mouse (UCSC mm9) genomes using bowtie (Langmead et al.,

2009). Reads mapping to the respective genomes without mis-

matches were then used to obtain expression profiles for the miR-

NAs. When obtaining expression levels of isomiRs with non-

template additions at 3′ end, three mismatches were allowed.

Sequences of non-coding RNAs

The sequences of annotated pre-miRNAs and mature miRNAs were

obtained from miRBase Release 18 (Kozomara and Griffiths-Jones,

2011). Ribosomal RNA sequences were extracted from the Silva

database (http://www.arb-silva.de/; Quast et al., 2012), Ensembl

(GRCh37 and NCBIM37) and Functional RNA database (fRNAdb)

(archived at http://togodb.biosciencedbc.jp/togodb/view/frnadb_

summary#en; Mituyama et al., 2009); sequences of tRNA from the

Genomic tRNA Database (http://gtrnadb.ucsc.edu/; Chan and Lowe,

2009); snRNA sequences from Ensembl (GRCh37 and NCBIM37)

and the fRNAdb; human snoRNA sequences from the snoRNABase

(https://www-snorna.biotoul.fr; Lestrade and Weber, 2006) and

Ensembl GRCh37; mouse snoRNA sequences from Ensembl

NCBIM37 and the fRNAdb; piRNA sequences from the fRNAdb; and

repeated elements from the Repbase (http://www.girinst.org/

repbase/; Bao et al., 2015). We obtained the coordinates of exons

and introns from UCSC Table Browser (http://genome.ucsc.edu),

and subsequently extracted the sequences from the genomes using

a Python script.

miRNA and isomiR expression profiling

Genomic coordinates of mature miRNAs were extracted (in BED

format) from the annotation file in miRBase version 18. Genomic

coordinates of reads mapping to the genome without mismatch were

obtained (in BED format) using a Python script from mapping results.

Only reads with length from 17 to 26 bases were selected. BEDTools

(Version 2.9.0) (Quinlan and Hall, 2010) was used to compare the

genomic coordinates to find reads overlapping with mature miRNAs.

We considered reads overlapping with mature miRNAs if at least 17

bases are included in miRNAs and their isomiRs. Apart from miR-

NAs matching the miRBase sequences, we also counted reads

mapping to each type of isomiR. To obtain the expression of isomiRs

with non-template extension at 3′ end, we first mapped reads to the

respective miRNAs sequences with one mismatch, and then coun-

ted reads that were one nucleotide longer than the miRBase

sequence but else matched the miRBases sequence perfectly.

Differential expression analysis

The number of reads mapping to miRNAs and their isomiRs were

used to estimate their expression levels in the 3 pairs of libraries

(SNB-19_siCtrl VS SNB-19_siTDP, SY-5Y_siCtrl VS SY-5Y_siTDP

and HT22_siCtrl VS HT22_siTDP). We applied a Bayesian method

developed by Audic and Claverie (Audic and Claverie, 1997) to

identify differentially expressed miRNAs (P-value < 0.001). The fold

change in miRNA expression between the 3 pairs of libraries was

also calculated. The Chi-squared test was employed to calculate the

statistical significance of changes in isomiR expression patterns

after TDP-43 knockdown. We applied filter criteria to select miRNAs

with isomiR pattern changes with high confidence: (1) total expres-

sion of at least 1000 counts in at least one condition; (2) the ratio of

at least one isomiR variant to the total reads needed to change by at

least 5% between conditions. Finally, we calculated the ratio of reads

mapping to the 5p arm versus the 3p arm, and we selected miRNAs

with significantly changing ratios if the ratio changed by 1.5-fold in

either direction.

Prediction of novel miRNA candidates

From the collection of reads mapping to the genome without mis-

matches we removed reads mapping to pre-miRNAs, tRNAs,

rRNAs, snoRNAs, snRNAs, and piRNAs. The remaining reads were

used to predict novel miRNA candidates using the updated miR-

analyzer webserver (Hackenberg et al., 2011). miRanalyzer inte-

grates at least 8 features, such as the secondary structure, to train

five random forest models for the prediction of novel miRNA

candidates.

Functional annotation of differentially expressed TDP-43-regulated

miRNAs

miR2Disease annotation and literature search

For each miRNA predicted to be regulated by TDP-43, miRNA

associated diseases were collected from the miR2Disease database

(Jiang et al., 2009). These references were compiled with our own

literature search for these miRNAs.

Data collection for functional annotation analysis pipeline

See Figure S2 for a summary of the analysis pipeline. From The

Cancer Genome Atlas database for lung squamous cell carcinoma

and lung adenocarcinoma samples (Collins and Barker, 2007), we

extracted the data from all samples that had paired miRNA-Seq and

RNA-SeqV2 profiles available as of July 2014 (330 tumor, 37 control

for LUSC; 422 tumor, 19 control for LUAD). From the precalculated

RESEARCH ARTICLE Xiaowei Chen et al.

860 © The Author(s) 2017. This article is an open access publication

P
ro
te
in

&
C
e
ll

http://www.arb-silva.de/
http://togodb.biosciencedbc.jp/togodb/view/frnadb_summary#en
http://togodb.biosciencedbc.jp/togodb/view/frnadb_summary#en
http://gtrnadb.ucsc.edu/
https://www-snorna.biotoul.fr
http://www.girinst.org/repbase/
http://www.girinst.org/repbase/
http://genome.ucsc.edu


human target predictions from miRanda (Betel et al., 2010; http://

www.microrna.org/microrna/getDownloads.do), a matrix was gener-

ated using a python script reporting the number of binding sites for

each miRNA-mRNA interaction in humans. Only predicted sites with

a “good mirSVR” score were used, irrespective of conservation. A

perl script was then used to assign the TCGA raw miRNA counts

(*.isoform.quantification.txt files) to the mature miRNAs, as defined

by miRBase version 21 (Kozomara and Griffiths-Jones, 2014).

Another perl script was used to isolate the mRNA expression esti-

mates (*.isoforms.normalized_results files) for the next steps.

ProMISe analysis

ProMISe is a recently developed technique (Li et al., 2014) that

incorporates information about the number of binding sites a miRNA

has on a target gene as well as expression levels of both the miR-

NAs and the target genes. Unique to ProMISe, though, is the gen-

eration of a competition model of miRNAs competing for a particular

mRNA, and mRNAs competing to be inhibited by a particular

miRNA. The joint model of these two competition models outper-

forms all other available miRNA-mRNA interaction prediction tools,

and has the additional advantage of predicting these interactions

within a single sample. For our data, the matrix from the miRanda

predictions, the processed miRNA expression profiles, and the

normalized mRNA isoform expression profiles were used as input for

ProMISe, using the “joint model”, to generate for each sample a

“ProMISe signal” consisting of a probability matrix of any particular

miRNA targeting any particular gene. From the ProMISe signature

for each sample, all miRNA-mRNA interactions with non-zero

probability were counted as predicted miRNAs targets for that

sample. For each miRNA, only interactions seen in all samples were

included as a “predicted target” for downstream analyses.

Differential expression analysis and ranking transcripts

The isoform counts for miRNAs and mRNAs were submitted to

DESeq2 (Love et al., 2014) for differential expression analysis using

the standard settings. For miRNAs, the raw aggregated counts for

mature miRNAs were used. For mRNAs, the RSEM normalized

estimated counts were used; this is analogous to using salmon-

derived estimated transcript abundances, as described in a recent

paper (Soneson et al., 2016). In order to rank the transcripts for the

Fatiscan step, an “adjusted rank” was used to give the most weight

to transcripts that had the most expression, the most log-fold

change, and the most statistically significant change. If the transcript

had a base mean of 30 or less, then its rank was log10 of its base

mean plus the absolute value of its log2 fold change; otherwise, its

rank was those two items plus the absolute value of log10 of its

adjusted P-value. Then the rank was given the same sign as the

transcripts’ fold change (negative for down-regulated; positive for up-

regulated).

Fatiscan analysis

Fatiscan (Al-Shahrour et al., 2007a) is a tool that is threshold-inde-

pendent, using a heuristic to define a partition of a ranked list of

genes or transcripts to identify whether a set of them are overrep-

resented among the most up-regulated or most down-regulated. In

our case, we submitted a list of custom annotations based on the

ProMISe results, with each transcript annotated with the miRNAs

that target them, as well as the “adjusted rank” list generated in the

previous step. We then ran Fatiscan with the options “remove

duplicates”, “Fatiscan” model, “Two-tailed Fisher’s Exact Test”, and

our custom miRNA annotations as the database to test. The results

were downloaded and the adjusted P-values were extracted.

Selecting candidate miRNAs

From there, reminiscent of the technique used in SPIA (Tarca et al.,

2009) of combining two dimensions of data, we used their “normal

inversion” method to combine the DESeq2 adjusted P-value and the

Fatiscan adjusted P-value for each miRNA. This combined P-value

was then adjusted using the Benjamini-Hochberg method. We iden-

tified all miRNAs that had an adjusted combined P-valued < 0.05, and

then applied three criteria to select candidatemiRNAs: (A) themiRNA

had to have a DESeq2 differential expression FDR < 0.1; (B) the

targets of the miRNA had to be changing in the opposite direction (if

the miRNA is up-regulated, the targets must be down-regulated, and

vice versa); (C) the miRNA expression profile had to have a statisti-

cally significant correlation with the TDP-43 expression profile

(FDR < 0.1). To calculate the correlation, we extracted out the TDP-43

normalized gene counts from the TCGA data, and then performed a

Pearson correlation of the TDP-43 gene counts against each miR-

NA’s normalized counts (as calculated by DESeq2). We took the P-

value of that correlation, and adjusted it using the Benjamini-Hoch-

berg method. The resulting list of miRNAs for each combination of

miRNA-mRNA interactions (down-regulated miRNAs targeting up-

regulated mRNAs, and vice versa for LUAD and LUSC each) were

submitted for the FatiGO step.

FatiGO analysis

To generate a list of functional annotations, the transcripts identified

extracted from the targets of each candidate miRNA. Four functional

groups were tested separately: the down-regulated targets of up-

regulated miRNAs and the up-regulated targets of down-regulated

miRNAs for LUAD and LUSC each. The first step was to convert the

UCSC IDs to gene names. A Perl script with the June 2011 TCGA

human genome annotation (the annotation used at the time of data

generation; available at https://www.synapse.org/#!Synapse:

syn1356421), along with the current kgXref_table and the versions

5 and 6 from the UCSC database were used to construct a

table converting the UCSC transcript IDs to gene names, with some

manual updating of those names using the Ensembl and Unigene

databases. The resulting lists were submitted as gene lists to FatiGO

(Al-Shahrour et al., 2007b), as part of the Babelomics 4.3 suite (v4.

babelomics.org, Medina et al., 2010). Each gene list was compared

against the human genome; the gene ontology biological process,

gene ontology molecular function, BIOCARTA, KEGG, and Reac-

tome databases were tested using the default settings.

Construction of a predicted causal interaction network

From all of the above results, a network of predicted causal links,

from TDP-43 to lung cancer through TDP-43-regulated miRNAs and

their targets, was constructed based on the significant targets that
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had at least one annotation. The resulting interaction network gra-

phic was constructed using the HiveR R package (http://academic.

depauw.edu/∼hanson/HiveR/HiveR.html), based on the principles of

the Hive Plot (Krzywinski et al., 2012). A python script was used to

convert the various attributes (e.g., rank) to hive plot characteristics

(e.g. node color). Each item was treated as a node on one of three

axes: miRNAs, mRNAs, and pathway terms. The miRNA-mRNA

edges are significant interactions identified by our pipeline; the

mRNA-term edges are significant annotations identified by the

FatiGO step. The rank of the node was mapped to the radial dis-

tance; the signed log10 of the FDR was mapped to the color for the

miRNA and mRNA nodes; the signed log10 of the Fatiscan result

was mapped to the miRNA-mRNA edges; the database category

was mapped to the pathway term node color and to the mRNA-term

edges; finally, the number of connections was mapped to the size of

each node.

miRNA target genes prediction

Recomputed predictions from three methods were applied to predict

miRNA target genes after survival analysis: miRanda (Enright et al.,

2003), PITA (Kertesz et al., 2007) and TargetScan (Friedman et al.,

2009). The cutoff of miRanda predictions total score was −14. The
cutoff of PITA prediction score was −10. Predicted target genes of

TargetScan without conserved target sites were removed.

Patient survival analyses

Genes and miRNAs expression profiles of LUSC, LUAD, and GBM

were obtained from The Cancer Genome Atlas (TCGA) (Hammer-

man et al., 2012; Verhaak et al., 2010). Cox regression (Cox, 1972)

was applied to identify miRNAs and genes that are significantly

associated with patient survival. The risk-score was defined as: risk-

score = cox regression coefficient × expression level of miRNA/-

gene. Samples could be separated into two groups, high risk group

and low risk group, by each miRNA/gene according to its risk-score.

The log-rank test (Bland and Altman, 2004) was applied to test the

survival differences between these two groups.

Data availability

The small-RNA-Seq data is deposited in the Gene Expression

Omnibus database with accession GSE85065. The analysis scripts

for the small-RNA-Seq data and the survival analysis can be found

on github: https://github.com/bighanchen/miRNA-seq. The code and

steps needed to reproduce the functional annotation and predicted

causal network pipeline can also be found on github: https://github.

com/warrenmcg/TDP43_miRNA_Paper.
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