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Abstract: Background/Objectives: Alzheimer’s disease (AD), a progressive neurodegener-
ative disorder, demands precise early diagnosis to enable timely interventions. Traditional
convolutional neural networks (CNNs) and deep learning models often fail to effectively
integrate localized brain changes with global connectivity patterns, limiting their effi-
cacy in Alzheimer’s disease (AD) classification. Methods: This research proposes a novel
deep learning framework for multi-stage Alzheimer’s disease (AD) classification using
T1-weighted MRI scans. The adaptive feature fusion layer, a pivotal advancement, facil-
itates the dynamic integration of features extracted from a ResNet50-based CNN and a
vision transformer (ViT). Unlike static fusion methods, our adaptive feature fusion layer
employs an attention mechanism to dynamically integrate ResNet50’s localized structural
features and vision transformer (ViT) global connectivity patterns, significantly enhanc-
ing stage-specific Alzheimer’s disease classification accuracy. Results: Evaluated on the
Alzheimer’s 5-Class (AD5C) dataset comprising 2380 MRI scans, the framework achieves
an accuracy of 99.42% (precision: 99.55%; recall: 99.46%; F1-score: 99.50%), surpassing
the prior benchmark of 98.24% by 1.18%. Ablation studies underscore the essential role
of adaptive feature fusion in minimizing misclassifications, while external validation
on a four-class dataset confirms robust generalizability. Conclusions: This framework
enables precise early Alzheimer’s disease (AD) diagnosis by integrating multi-scale neu-
roimaging features, empowering clinicians to optimize patient care through timely and
targeted interventions.

Keywords: Alzheimer’s disease; deep learning; convolutional neural networks; vision
transformers; adaptive feature fusion; MRI classification; neuroimaging

1. Introduction
Alzheimer’s disease (AD), a progressive neurodegenerative disorder, profoundly im-

pacts cognitive functions, memory, and behavior, imposing a substantial burden on global
healthcare systems [1,2]. Its complex pathology manifests through localized structural
alterations, such as hippocampal atrophy and cortical thinning, coupled with disruptions
in long-range neural connectivity, which collectively drive cognitive decline [3]. Early
and accurate diagnosis is critical for initiating timely interventions to mitigate disease
progression; however, conventional neuroimaging techniques often fail to capture the
subtle, multifaceted pathological signatures of Alzheimer’s disease (AD) [4]. T1-weighted
magnetic resonance imaging (MRI) remains a cornerstone for non-invasive AD diagnosis,
revealing structural abnormalities critical for staging [4]. Yet, manual interpretation of MRI
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scans is inherently subjective and prone to overlooking nuanced changes, necessitating
advanced computational approaches to enhance diagnostic precision [5].

Deep learning has revolutionized Alzheimer’s disease (AD) diagnostics by extracting
high-dimensional feature embeddings from MRI data, enabling the identification of disease-
specific patterns with unprecedented accuracy [5]. Despite these advancements, many
models are limited by their focus on either localized features, such as textural anomalies or
regional atrophy [6], or global brain alterations, like ventricular enlargement [7], without
effectively integrating these complementary perspectives [8]. This fragmented approach
hampers generalization across diverse datasets and diminishes interpretability, which is
critical for clinical adoption. Additional challenges to hyperparameters, including imaging
artifacts, computational complexity, and sensitivity, further impede the translation of these
models into practical diagnostic tools [8].

To address these limitations, we propose a sophisticated hybrid deep learning frame-
work for multi-stage Alzheimer’s disease (AD) classification, leveraging T1-weighted MRI
scans to achieve precise and clinically actionable diagnostics. Although ResNet50 and vision
transformer (ViT) are established models in image classification, our framework introduces
a novel adaptive feature fusion layer that leverages an attention mechanism to dynamically
integrate localized (ResNet50) and global (ViT) features, improving Alzheimer’s disease
(AD) stage classification (Section 3.3.3). Static fusion methods often use fixed weights,
which may not adapt to the unique feature importance in each scan, unlike our context-
sensitive attention mechanism. In contrast to static fusion approaches (e.g., Pradhan et al.,
2021 [9]), our framework employs a ResNet50-based CNN for localized feature extraction,
a vision transformer for global connectivity modeling, and an adaptive feature fusion
layer that dynamically integrates these features using an attention mechanism tailored to
each MRI scan’s context [10–12]. Evaluated on the Alzheimer’s 5-Class (AD5C) dataset,
comprising 2380 scans, the framework achieves an exceptional classification accuracy of
99.42% (precision: 99.55%; recall: 99.46%; F1-score: 99.50%), surpassing the previous state-
of-the-art benchmark of 98.24% [13]. External validation on a four-class dataset confirms
its robust generalizability, establishing it as a transformative tool for early and accurate
Alzheimer’s disease (AD) diagnosis.

Research Contributions

• Developed a hybrid deep learning framework that optimally integrates ResNet50-
based localized structural feature extraction with vision transformer (ViT)-based
global connectivity modeling, significantly enhancing diagnostic precision for multi-
stage Alzheimer’s disease (AD) classification.

• Introduced a pivotal adaptive feature fusion layer that employs an attention mech-
anism to achieve robust integration of multi-scale features, yielding stage-specific
representations and overcoming limitations of fragmented feature modeling.

• Achieved a classification accuracy of 99.42% (precision: 99.55%; recall: 99.46%; F1-
score: 99.50%) on the AD5C dataset, reducing the error rate to 0.58% and surpassing
the prior benchmark of 98.24%, establishing a new standard for Alzheimer’s disease
(AD) diagnostics.

• Demonstrated robust generalizability through external validation on a four-class
Alzheimer’s disease (AD) dataset, confirming the framework’s applicability across
diverse imaging conditions and its potential for clinical integration.

2. Literature Review
Alzheimer’s disease (AD), defined by complex local brain alterations and impaired

connectivity, calls for advanced deep learning approaches to enhance T1-weighted MRI
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classification. This review explores cutting-edge hybrid architectures and adaptive feature
integration, offering groundbreaking perspectives for accurate, early Alzheimer’s disease
(AD) diagnosis, as summarized in Table 1.

2.1. Conventional Methods

Conventional machine learning and single-model deep learning (DL) approaches
have demonstrated robust potential in extracting localized features from MRI scans for
Alzheimer’s disease (AD) classification, focusing on regional atrophy and textural anoma-
lies critical for early diagnosis. Arjaria et al. (2024) investigated the efficacy of traditional
machine learning algorithms, such as such as K-nearest neighbors (KNN) and support
vector machine (SVM), for diagnosing Alzheimer’s disease (AD) via MRI, revealing KNN’s
superiority in early-stage detection due to its adept handling of structural patterns [14].
However, their approach was limited to traditional machine learning algorithms, lack-
ing deep learning’s advanced feature extraction capabilities. Alshammari et al. (2022)
employed a modified convolutional neural network (CNN) to distinguish Alzheimer’s dis-
ease (AD) stages, achieving high classification rates by capturing localized morphological
changes like cortical thinning [15]. However, this approach relies solely on a single CNN
architecture, potentially overlooking global connectivity patterns essential for comprehen-
sive staging. Gurrala et al. (2024) developed a web-based CNN interface for Alzheimer’s
disease (AD) staging, delivering reliable classification by processing structural MRI data
with a focus on regional anomalies [16]. However, their approached was constrained
to CNN-based feature extraction, which may fail to model long-range dependencies.
Kumar et al. (2023) proposed a CNN-based model that achieved high accuracy by targeting
textural anomalies in MRI datasets, emphasizing localized pathological signatures [17].
But single-model CNN approaches may struggle with variability across diverse datasets.
Archana et al. (2023) utilized convolutional neural networks (CNNs) for neuroimaging
classification, achieving notable accuracy that underscores the need for timely interven-
tion [18]. However, their approach lacks the integration of multi-modal data, which could
enhance diagnostic precision. Prabha (2023) advanced early detection using optimized MRI
scanning with convolutional neural networks (CNNs), ensuring consistent classification
performance [19]. But their approach was limited to single-modality MRI, potentially
missing complementary neuroimaging biomarkers or biochemical markers, such as tau
protein levels. Das et al. (2022) emphasized MRI’s role in detecting structural abnormal-
ities, with hippocampal segmentation improving classification accuracy [20]. But their
focus on hippocampal segmentation restricts the generalizability of their results to other
brain regions. Kayalvizhi et al. (2023) achieved 96.75% accuracy using a VGG16 CNN,
demonstrating its applicability in neuroimaging analysis [21]. But single-model VGG16
approaches may encounter challenges with imbalanced datasets. Jansi et al. (2023) an-
alyzed DL models, with InceptionV3 attaining 87.69% accuracy by optimizing dataset
utilization [22]. This approach demonstrated lower accuracy compared to hybrid models,
limiting clinical reliability. Sushmitha et al. (2023) employed a genetic algorithm with
multi-instance learning for 3D MRI feature extraction, mitigating overfitting but requiring
complex preprocessing [23]. But note that complex preprocessing increases computational
demands, hindering clinical deployment.

2.2. Hybrid Deep Learning Methods

Hybrid DL approaches, integrating multiple architectures, have significantly enhanced
Alzheimer’s disease (AD) classification by synthesizing local and global features, address-
ing the multifaceted nature of Alzheimer’s disease (AD) pathology. Qu et al. (2023)
introduced a univariate neurodegeneration digital marker approach using a graph con-
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volutional network (GCN), achieving high classification rates for cognitively impaired
versus non-impaired subjects on the ADNI dataset by modeling connectivity patterns [24].
However, their study lacks multimodal validation, potentially reducing robustness across
diverse datasets. Tushar et al. (2023) proposed a hybrid logistic regression and decision tree
model, improving prediction accuracy on the OASIS dataset by blending machine learning
techniques to capture complementary features [25]. But the hybrid machine learning ap-
proach may not fully exploit deep learning’s advanced feature extraction capabilities. Liu
(2023) enhanced classification by integrating hippocampal and whole-brain MRI using an
attention-enhanced DenseNet, focusing on critical regions for improved staging [26]. But
the limited feature diversity may compromise performance under varied imaging condi-
tions. Sanjeev Kumar et al. (2023) combined InceptionResNetV2 and ResNet50, achieving
96.84% and 90.27% accuracies on ADNI, leveraging complementary strengths for robust
classification accuracy specific to each stage [27]. However, this method requires high-
quality annotated data, limiting its applicability to less curated datasets. Lu et al. (2023)
developed a ConvNeXt-DMLP framework to reduce Alzheimer’s disease (AD)-MCI imag-
ing overlap, albeit achieving only 78.95% accuracy due to dataset-specific challenges [28].
There is limited generalizability to external datasets due to the specialized architecture
design. Neetha et al. (2023) proposed Borderline-DEMNET for multi-class Alzheimer’s
disease (AD) classification, delivering consistent accuracy across stages [29]. However,
computational complexity may impede real-time clinical deployment. Tripathy et al. (2023)
introduced a multilayer feature fusion-based deep CNN, attaining 95.16% accuracy with
multi-scale features [30]. High computational demands may restrict practical clinical utility.
Yin et al. (2022) developed SMIL-DeiT, a self-supervised vision transformer with multiple
instance learning, achieving 93.2% accuracy for Alzheimer’s disease (AD) staging [31].
But note that model interpretability challenges may undermine clinician confidence.
Bushra et al. (2023) utilized a feature-level fusion approach with two convolutional neu-
ral networks (CNNs), achieving 94.39% (MCI) and 97.90% (AD) accuracies, surpassing
standalone models [32]. But their approach was limited to specific CNN architectures,
potentially missing global connectivity features.

2.3. Emerging and Specialized Approaches

Emerging and specialized approaches have pioneered innovative methods to tackle
specific challenges in Alzheimer’s disease (AD) diagnosis, leveraging non-standard tech-
niques to enhance early detection and staging. Panda et al. (2024) engineered a digi-
tal platform integrating cognitive assessments and physiological monitoring, facilitating
Alzheimer’s disease (AD) progression tracking across multiple modalities [14]. But their
method relies on multi-modal data, which may not be universally accessible. Thatere et al.
(2023) conducted a comprehensive survey on machine learning strategies, highlighting
digital markers and data deficits critical for advancing Alzheimer’s disease (AD) diag-
nostics [33]. But this broad survey approach lacks specific model performance metrics.
Alatrany et al. (2023) compared machine learning algorithms for late-onset Alzheimer’s
disease (AD), emphasizing diagnostic efficiency but focusing on advanced stages [34]. This
focus on late-onset Alzheimer’s disease (AD) limits the method’s applicability to early-stage
detection. Bhargavi et al. (2022) explored DL for early Alzheimer’s disease (AD) detection
using MRI, underscoring machine learning’s potential to enhance diagnostic precision [35].
Broad focus on DL approaches lacks detailed model comparisons. Pallawi et al. (2023)
employed EfficientNetB0 with transfer learning for four-stage Alzheimer’s disease (AD)
classification, achieving 95.78% accuracy on a Kaggle dataset [36]. But the dataset imbal-
ance may skew performance across classes. Islam et al. (2023) utilized YOLO-based models
for automated hippocampal detection, achieving 95% accuracy for Alzheimer’s disease
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(AD) versus cognitively normal classification [37]. However, limited automation cover-
age may overlook non-hippocampal features. Zhou et al. (2024) designed a game-based
application with cognitive tests to detect Alzheimer’s disease (AD) patterns, offering a
novel non-imaging approach [38]. The non-MRI approach, however, may lack specificity
for neuroimaging-based diagnostics. Jiang et al. (2023) subdivided MCI into three sub-
classes using K-nearest neighbors (KNN) with enriched long short-term memory (LSTM),
enhancing prognostic accuracy [39]. But note that complex LSTM architecture increases
computational requirements. Subha R et al. (2022) proposed a hybrid machine learning
model with particle swarm optimization for early Alzheimer’s disease (AD) diagnosis
from handwriting data [40]. But dependence on handwriting data restricts applicability
to MRI-based settings. Peng et al. (2024) introduced the SF-GCL model for stage-specific
brain pattern analysis, leveraging graph-based techniques [41]. But this novel model re-
quires further validation for clinical reliability. Anjali et al. (2024) developed STCNN
with SMOTE-TOMEK for imbalanced Alzheimer’s disease (AD) classification, achieving
superior accuracy [42]. But note that the focus on imbalanced data may not generalize to
balanced datasets.

2.4. Handwriting Analysis for Alzheimer’s Disease (AD)

Detection handwriting analysis has emerged as a promising non-invasive method for
detecting Alzheimer’s disease (AD) by capturing early motor and cognitive impairments
through dynamic features, complementing MRI-based approaches. Impedovo et al. (2019)
developed a modular protocol using digitizing tablets to assess neurodegenerative demen-
tia, achieving high sensitivity in distinguishing Alzheimer’s disease (AD) patients from
healthy controls [43]. However, its reliance on specialized hardware limits scalability. Impe-
dovo and Pirlo (2019) reviewed dynamic handwriting analysis from a pattern recognition
perspective, noting its efficacy in detecting AD-related motor deficits through features like
stroke velocity [44]. But preprocessing complexities hinder real-time applications. Vessio
(2019) surveyed thirty years of research, emphasizing handwriting’s sensitivity to cognitive
decline [45]. The lack of standardized protocols remains a barrier to clinical adoption.
D’Alessandro et al. (2023) employed a Bayesian network to evaluate handwriting features,
achieving high accuracy in predicting AD-related impairments [46]. But this approach is
constrained by dataset size. D’Alessandro et al. (2024) compared classifier combination
methods, reporting 91% accuracy in Alzheimer’s disease (AD) prediction [47]. Howerr,
this method’s dependence on high-quality annotated data limits its generalizability. Col-
lectively, these studies highlight handwriting analysis as a cost-effective diagnostic tool,
though standardization and data quality challenges suggest its potential synergy with
MRI-based methods.

Table 1. Summary of the literature review.

Author(s) Model Used Methodology Accuracy Focus Area Limitations

Gurrala et al. (2024) [16] CNN Web-based CNN for AD
staging 94.50% Staging classification Limited to CNN feature

extraction

Arjaria et al. (2024) [14] Digital
platform

Cognitive, physiological
monitoring Not available Progression tracking Multi-modal data

dependency

Bhattarai et al. (2024) [48] Deep-SHAP
Explainable AI for
biomarker-cognition
mapping

Not available Neuroimaging
biomarkers

Requires robust
validation for clinical
use

Alatrany et al. (2024) [49] ML
algorithms

Explainable ML for AD
classification 89.20% AD classification Limited to explainable

models

Zhou et al. (2024) [38] Game app Cognitive tests via app Not available Cognitive decline
detection Non-MRI specificity

Peng et al. (2024) [41] SF-GCL Stage-specific brain pattern
analysis 92.10% Brain pattern analysis Requires further

validation

Anjali et al. (2024) [42] STCNN SMOTE-TOMEK for
imbalance 93.80% Imbalanced

classification
Limited to imbalanced
data
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Table 1. Cont.

Author(s) Model Used Methodology Accuracy Focus Area Limitations

Talha et al. (2024) [50] DL models Performance evaluation of
DL models 90.50% AD detection Broad evaluation lacks

specificity

Bharath et al. (2024) [51] ML
algorithms Predicting AD progression 88.70% Disease progression Limited to ML

approaches

Givian et al. (2025) [52] ML
algorithms MRI analysis with ML 91.30% Early diagnosis Limited generalizability

Alahmed et al. (2025) [53] AlzONet Optimized DL framework 95.60% Multi-class diagnosis Requires high
computational resources

Tenchov et al. (2024) [8] Not specified Exploring cognitive decline Not available Cognitive decline Broad focus lacks
specific metrics

Bortty et al. (2025) [54] ViT-B16,
CNNs

Weighted ensemble with
GOA 97.31% Multi-class

classification Computational intensity

Fujita et al. (2024) [55] Not specified Brain volume changes
analysis Not available Normal cognition Limited to normal

cognition focus

3. Materials and Methods
This section delineates the materials and methodologies employed to develop and

evaluate a sophisticated deep learning framework for multi-stage Alzheimer’s disease
(AD) classification using T1-weighted MRI scans. The framework integrates localized
and global feature extraction with dynamic feature synthesis to achieve precise diagnostic
accuracy, addressing the complex interplay of regional atrophy and connectivity disruptions
characteristic of Alzheimer’s disease (AD). The methodology encompasses dataset selection,
preprocessing, augmentation, and a hybrid model architecture, ensuring robust feature
extraction and classification performance.

3.1. Dataset and Preprocessing

The Alzheimer’s 5-Class (AD5C) dataset is sourced from Zia-ur-Rehman et al. [13],
who originally obtained it from Kaggle. The dataset includes 2382 T1-weighted MRI scans
spanning five Alzheimer’s disease (AD) stages: Mild Demented, Moderate Demented,
Non-Demented, Severe Demented, and Very Mild Demented. While the original source
does not fully detail the collection process, it is a publicly accessible dataset widely utilized
in Alzheimer’s disease (AD) research. The use of T1-weighted MRI, a common imaging
modality in clinical Alzheimer’s disease (AD) diagnostics, suggests potential applicabil-
ity in medical settings for staging Alzheimer’s disease (AD). The dataset lacks detailed
demographic data (e.g., age, gender, ethnicity), potentially introducing biases that may
limit its generalizability. The dataset was partitioned into 2209 training images (compris-
ing 1989 training and 220 validation images) and 173 test images, totaling 2382 images
(Figure 1). Preprocessing involved resizing images to 224 × 224 pixels to standardize
input dimensions, applying a 3 × 3 sharpening filter to enhance structural details such as
cortical thinning and hippocampal atrophy [55], and employing contrast limited adaptive
histogram equalization (CLAHE) to normalize contrast across scans [56]. These steps
ensure robust feature extraction by mitigating imaging artifacts and enhancing pathological
signatures critical for accurate Alzheimer’s disease (AD) staging.

Figure 1. T1-weighted MRI samples of five Alzheimer’s disease (AD) classes with red borders (left)
and a single preprocessed image with a blue border, enhanced using sharpening and CLAHE (right).
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3.2. Augmentation and Summary

To bolster model generalization and prevent overfitting, the training set underwent
augmentation with random rotations (±10◦), horizontal and vertical flips, and color jitter
adjustments (brightness, contrast, saturation, hue) [57]. Images were normalized with
a mean of 0.485 and a standard deviation of 0.229 to ensure consistent feature scaling.
Figure 2 illustrates original and augmented scans, highlighting the diversity introduced.
Table 2 details the class distribution, with augmentation tripling the training data to
5967 images, while the test set remained unaugmented at 173 images to preserve
evaluation integrity.

Figure 2. Original T1-weighted MRI and its augmented transformations.

Table 2. Class distribution of the AD5C dataset. The dataset includes a total of 2382 T1-weighted
MRI scans.

Class Original Train Validation Augmented Test Total

Mild Demented 321 289 32 867 49 370
Moderate Demented 591 532 59 1596 42 633
Non-Demented 316 285 31 855 22 338
Severe Demented 640 576 64 1728 47 687
Very Mild Demented 341 307 34 921 13 354

Total 2209 1989 220 5967 173 2382

3.3. Model Architecture

The proposed framework synergistically combines a ResNet50-based CNN for fine-
grained local feature extraction, a vision transformer (ViT) for modeling long-range brain
connectivity, and an adaptive feature fusion layer for dynamic multi-scale feature syn-
thesis [12]. This architecture ensures precise Alzheimer’s disease (AD) classification by
capturing both localized pathological changes and global connectivity disruptions, as
depicted in Figure 3.

3.3.1. ResNet50 for Local Feature Extraction

ResNet50, a 50-layer deep CNN introduced by He et al. [10], excels in extracting fine-
grained local features from T1-weighted MRI scans, targeting AD-specific regional changes
such as hippocampal atrophy and cortical thinning [58]. These features are pivotal for
detecting subtle morphological alterations, particularly in early Alzheimer’s disease (AD)
stages, enabling precise stage-specific diagnosis. ResNet50’s residual learning architecture
mitigates the vanishing gradient problem, facilitating the training of deep networks with
enhanced accuracy and stability.
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Figure 3. Architecture of the proposed framework, showing the ResNet50-based CNN for local
feature extraction, the vision transformer for global connectivity modeling, and the adaptive feature
fusion layer for combining features dynamically (Equations (2)–(16)).

The residual block, central to ResNet50, incorporates shortcut connections that bypass
layers, enabling the learning of residual functions relative to the input, defined as follows

Fres = Frelu + X (1)

where X is the input feature map and Frelu is the output after a sequence of operations.
Convolutional operations extract spatial features:

Fconv = W ∗ X + b (2)

where W is the convolutional kernel, b is the bias, and ∗ denotes convolution. Batch
normalization stabilizes training:

Fbn = γ· Fconv − µ√
σ2 + ϵ

+ β (3)

where µ and σ2 are the batch mean and variance, γ and β are learnable parameters, and ϵ

prevents division by zero. Non-linearity is introduced via ReLU:

Frelu = max(0, Fbn) (4)

Max-pooling reduces spatial dimensions while preserving salient features:

Fpool = MaxPool(Fres, k, s) (5)

where k is the kernel size and s is the stride. ResNet50’s multi-stage architecture, with
increasing channel dimensions (64, 128, 256, 512), enables hierarchical feature extraction,
from low-level edges to high-level semantic patterns. Residual connections support identity
mappings, ensuring incremental refinements. In Alzheimer’s disease (AD) classification,
ResNet50 processes preprocessed MRI scans (224 × 224 pixels) to generate feature maps
encoding regional characteristics, which are passed to the adaptive feature fusion layer
(Figure 4).
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Figure 4. ResNet50 architecture for local feature extraction in the proposed framework, illustrating
the convolutional layers and residual blocks that process 224× 224 T1-weighted MRI scans to capture
AD-specific regional features, such as hippocampal atrophy and cortical thinning (Equations (2)–(5)).

3.3.2. Vision Transformer for Global Feature Extraction

The vision transformer (ViT), introduced by Dosovitskiy et al. [11], models long-range
brain connectivity, capturing AD-related disruptions in functional networks critical for
advanced-stage diagnosis [59]. The vision transformer (ViT) divides MRI images into
16 × 16 pixel patches, transforming each into patch embeddings:

Epatch = Wembed·Pi + Epos (6)

where Pi is the flattened patch, Wembed is a learnable matrix, and Epos encodes positional
information. Self-attention identifies inter-regional relationships:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (7)

where Q, K, and V are query, key, and value vectors, respectively, and dk scales attention
scores. Multi-head attention aggregates diverse patterns:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (8)

where headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
, and WO combines outputs. A feed-forward

network processes the output:

FFN(x) = ReLU(xW1 + b1)W2 + b2 (9)

Layer normalization stabilizes training:

Fln =
Fmh − µ√

σ2 + ϵ
·γ + β (10)

where Fmh is the multi-head attention output. Vision transformer (ViT) architecture
(Figure 5) complements ResNet50 by modeling global connectivity, enhancing Alzheimer’s
disease (AD) classification.

3.3.3. Adaptive Feature Fusion Layer

The adaptive feature fusion layer integrates local features from ResNet50 and global
features from the vision transformer (ViT), enhancing discriminability across Alzheimer’s



Brain Sci. 2025, 15, 612 10 of 23

disease (AD) stages through an attention mechanism [12]. It dynamically weights features
based on contextual relevance:

Fconcat = Concat(FResNet50, FViT) (11)

Figure 5. Vision transformer (ViT) architecture for global feature extraction in the proposed frame-
work, depicting the patch embedding and self-attention mechanisms that process 224 × 224 T1-
weighted MRI scans to model long-range brain connectivity patterns critical for Alzheimer’s disease
classification (Equations (6)–(10)).

Attention scores prioritize salient features:

Satt = Wa·Fconcat + ba (12)

Weights are normalized via softmax:

[αResNet50, αViT] = softmax(Satt) (13)

The fused representation is computed as follows:

Ffused = αResNet50·FResNet50 + αViT·FViT (14)

A linear transformation prepares the fused features for classification:

Fcls = W f ·Ffused + b f (15)

This is followed by softmax for class probabilities:

P = softmax(Fcls) (16)

This adaptive fusion mechanism, illustrated in Figure 6, ensures robust stage-specific
representations by dynamically balancing local and global features.

Figure 6. Adaptive feature fusion layer architecture in the proposed framework, illustrating the
attention mechanism that dynamically combines ResNet50’s local structural features and vision
transformer (ViT) global connectivity features from T1-weighted MRI scans to enhance Alzheimer’s
disease stage classification (Equations (11)–(16)).
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3.4. Proposed Algorithm for Alzheimer’s Disease (AD) Classification

Algorithm 1 delineates the framework’s training and testing procedures, integrating
ResNet50, ViT, and the adaptive feature fusion layer to achieve precise Alzheimer’s disease
(AD) classification by leveraging multi-scale pathological signatures.

Algorithm 1 Deep Learning Framework Training and Testing Steps

Require: Training data Dtrain = {(Ii, Yi)}s, Images Ii ∈ R224×224×C, ResNet50, ViT,
Preprocessing Π, Attention function fatt, Classifier fcls, Cross-Entropy Loss
(ϵ = 0.1), AdamW optimizer (lr = 5× 10−4), Batch size B = 64, Epochs E = 50,
Patience p = 5, Classes = 5

Ensure: Trained model with high Accuracy, Precision, Recall, F1-Score
1: bestvalmetric← −∞ ▷ Start with lowest metric
2: for epoch ∈ [1, . . . , E] do
3: for (Ibatch, Ybatch) ∈ Dtrain do
4: Ibatch ← Π(Ibatch) ▷ Preprocess images
5: Flocal ← ResNet50(Ibatch) ▷ Extract local features (Equations (2)–(5))
6: Fglobal ← ViT(Ibatch) ▷ Extract global features (Equations (6)–(10))

7: A← fatt

(
Flocal, Fglobal

)
▷ Compute attention scores (Equations (11)–(13))

8: Ffused ← A⊙ Flocal + (1− A)⊙ Fglobal ▷ Fuse features (Equation (14))
9: P← fcls(Ffused) ▷ Predict Alzheimer’s disease (AD) stage

(Equations (15) and (16))
10: ℓ← CrossEntropy(P, Ybatch; ϵ) ▷ Compute loss
11: Update model with AdamW ▷ Optimize parameters
12: end for
13: Check validation metric ▷ Evaluate on validation data
14: if no improvement for p epochs then
15: Stop training ▷ Early stopping
16: end if
17: if validation metric > bestvalmetric then
18: bestvalmetric← validation metric ▷ Save best model
19: end if
20: end for
21: Test model and compute Accuracy, Precision, Recall, F1-Score, Confusion Matrix

▷ Final results

4. Experimental Results
The framework was evaluated on the AD5C dataset, comprising 2380 T1-weighted

MRI scans across five stages: Mild Demented, Moderate Demented, Non-Demented, Severe
Demented, and Very Mild Demented. This section analyzes the performance of ResNet50,
vision transformer (ViT), their combined features without fusion, and the full framework,
achieving 99.42% test accuracy on a 173-image test set. To address the risk of overfitting,
we implemented multiple safeguards. Data augmentation techniques, including random
rotations, flips, and color jitter, were applied to enhance training data diversity (Section 3.2).
Dropout layers were also incorporated into the model architecture to reduce feature over-
reliance. Model performance was assessed on an independent test set of 173 images,
ensuring unbiased evaluation. Additionally, external validation on a four-class dataset
(Section 4.8) yielded comparable accuracy, further confirming the model’s reliability on
unseen data.
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4.1. ResNet50 Performance

ResNet50 extracts local features critical for Alzheimer’s disease (AD) stage differentia-
tion, such as cortical thinning and hippocampal atrophy [60,61]. It achieved 97.69% test
accuracy, with macro-averaged precision, recall, and an F1-score of 0.98. The confusion
matrix (Figure 7) details the performance:

• Mild Demented: 47 correct; 2 misclassified as Non-Demented.
• Moderate Demented: 40 correct; 2 misclassified as Severe Demented.
• Non-Demented: 22 correct; 0 misclassified.
• Severe Demented: 47 correct; 0 misclassified.
• Very Mild Demented: 13 correct; 0 misclassified.

Figure 7. Confusion matrix of ResNet50 on the 173-image test set (Equations (2)–(5)).

ResNet50 excels in Severe, Very Mild, and Non-Demented stages but struggles with
Mild and Moderate Demented due to overlapping features.

Training and validation accuracy reached 97.86% by epoch 15, with stable loss curves
(Figure 8).

Figure 8. Training and validation accuracy (left) and loss (right) curves for ResNet50.

4.2. Vision Transformer Performance

Vision transformer (ViT) models long-range brain connectivity, capturing AD-related
network disruptions [62,63]. It achieved 97.11% test accuracy, with macro-averaged preci-
sion, recall, and an F1-score of 0.97. The confusion matrix (Figure 9) details performance:

• Mild Demented: 47 correct; 2 misclassified as Non-Demented.
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• Moderate Demented: 40 correct; 2 misclassified as Severe Demented.
• Non-Demented: 21 correct; 1 misclassified as Mild Demented.
• Severe Demented: 47 correct; 0 misclassified.
• Very Mild Demented: 13 correct; 0 misclassified.

Figure 9. Confusion matrix of vision transformer (ViT) on the 173-image test set (Equations (6)–(10)).

Vision transformer (ViT) performs well in Severe and Very Mild Demented stages but
has errors in Mild, Moderate, and Non-Demented due to overlapping global features.

Accuracy stabilized at 97.11% by epoch 10, with stable loss curves (Figure 10).

Figure 10. Training and validation accuracy (left) and loss (right) curves for vision transformer (ViT).

4.3. Combined ResNet50 and Vision Transformer (ViT)

Features
Combining ResNet50 and vision transformer (ViT) features without adaptive fusion

achieves 95.95% test accuracy, with macro-averaged precision, recall, and an F1-score of
0.96 [64]. The confusion matrix (Figure 11) details the performance:

• Mild Demented: 45 correct; 4 misclassified as Non-Demented.
• Moderate Demented: 40 correct; 2 misclassified as Severe Demented.
• Non-Demented: 21 correct; 1 misclassified as Mild Demented.
• Severe Demented: 47 correct; 0 misclassified.
• Very Mild Demented: 13 correct; 0 misclassified.
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Figure 11. Confusion matrix of combined ResNet50 and vision transformer (ViT) on the 173-image
test set (Equations (2)–(10)).

This approach excels in Severe and Very Mild Demented stages but struggles with
Mild, Moderate, and Non-Demented due to static feature integration.

Training accuracy reached 96.90% by epoch 20, with validation at 97.76% and a loss of
0.4502 (Figure 12).

Figure 12. Training and validation accuracy (left) and loss (right) curves for combined ResNet50 and
vision transformer (ViT).

4.4. Full Framework with Adaptive Feature Fusion

The full framework, integrating ResNet50, vision transformer (ViT), and the adaptive
feature fusion layer, achieves 99.42% test accuracy, with macro-averaged precision, recall,
and an F1-score of 0.99 [48]. The confusion matrix (Figure 13) details the performance:

• Mild Demented: 48 correct; 1 misclassified as Non-Demented.
• Moderate Demented: 42 correct; 0 misclassified.
• Non-Demented: 22 correct; 0 misclassified.
• Severe Demented: 47 correct; 0 misclassified.
• Very Mild Demented: 13 correct; 0 misclassified.
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Figure 13. Confusion matrix of the full framework on the 173-image test set (Equations (2)–(16)).

The single error underscores the framework’s precision.
Training accuracy reached 99.5%, with validation at 99% by epoch 21, and tight loss

curves (Figure 14) confirm excellent generalization.

Figure 14. Training and validation accuracy (left) and loss (right) curves for the full framework.

4.5. Error Analysis

The framework achieves 99.42% accuracy on the AD5C dataset, with a single misclas-
sification of a Mild Demented sample as Non-Demented, attributed to overlapping latent
representations [49]. Mild Demented scans show subtle cortical thinning and hippocampal
atrophy [58], while Non-Demented scans exhibit preserved structures [7]. The misclassified
sample (Figure 15) showed minimal atrophy, aligning with Non-Demented characteristics.
Multi-modal inputs or expanded early-stage samples could enhance differentiation [52].

Figure 15. T1-weighted MRI with red border showing a misclassification: actual label Mild Demented,
predicted as Non-Demented.
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4.6. Component Ablation

Ablation studies (Table 3) assess ResNet50, vision transformer (ViT), their combination
without fusion, and the full framework. ResNet50 achieved 97.69% accuracy, vision trans-
former (ViT) achieved 97.11%, and their combination achieved 95.95%. The full framework
with adaptive feature fusion reached 99.42%, demonstrating the critical role of dynamic
feature synthesis.

Table 3. Performance comparison of framework components. Metrics include precision (P), recall (R),
and F1-Score (F1) for each class, along with macro and weighted averages.

Class/Metric ResNet50 ViT ResNet50 + ViT Full Framework
P R F1 P R F1 P R F1 P R F1

Mild Demented 1.00 0.96 0.98 0.98 0.96 0.97 0.98 0.92 0.95 1.00 0.98 0.99
Moderate Demented 1.00 0.95 0.98 1.00 0.95 0.98 1.00 0.95 0.98 1.00 1.00 1.00
Non-Demented 0.92 1.00 0.96 0.91 0.95 0.93 0.84 0.95 0.89 1.00 1.00 1.00
Severe Demented 0.96 1.00 0.98 0.96 1.00 0.98 0.96 1.00 0.98 1.00 1.00 1.00
Very Mild Demented 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Macro Precision 0.98 0.97 0.96 1.00
Macro Recall 0.98 0.97 0.97 0.998
Macro F1-Score 0.98 0.97 0.96 0.998
Weighted Precision 0.98 0.97 0.96 1.00
Weighted Recall 0.98 0.97 0.96 0.994
Weighted F1-Score 0.98 0.97 0.96 0.996
Overall Accuracy 97.69% 97.11% 95.95% 99.42%

Analysis of Component Synergies

Ablation studies show that ResNet50 excels in local feature extraction (97.69% accu-
racy) but struggles with early-stage ambiguities (Section 4.1). Vision transformer (ViT)
captures global connectivity (97.11% accuracy) but misses subtle differences (Section 4.2).
Their combination without fusion (95.95% accuracy) enhances integration but lacks dy-
namic weighting (Section 4.3). The full framework with adaptive feature fusion achieves
99.42% accuracy, minimizing errors to a single misclassification (Section 4.4).

4.7. Classical Machine Learning Baselines

To provide a comprehensive evaluation and address the need for classical machine
learning benchmarks, we implemented two baseline models: K-nearest neighbors (KNN)
and random forest, trained on features extracted from preprocessed 2D MRI slices. These
baselines serve to justify the necessity of our deep learning approach by comparing their
performance against our proposed ResNet50+ vision transformer (ViT) framework with
adaptive feature fusion. The preprocessing steps for all models were identical, consisting
of resizing to 224 × 224 pixels, sharpening with a 3 × 3 filter, and contrast limited adaptive
histogram equalization (CLAHE), as detailed in Section 3.1. Features were extracted
using a pre-trained ResNet18 model, producing 512-dimensional feature vectors from the
penultimate layer, which were then used to train the classical models.

The KNN classifier was configured with five neighbors, a standard setting for baseline
comparisons, while the random forest classifier used 50 trees with a maximum depth of
10 to balance model complexity and generalization. Both models were evaluated on the
AD5C test set (173 images), and their performance is compared with our best model in
Table 4. The random forest baseline achieved a test accuracy of 97.11% (macro average
F1-score: 0.97), demonstrating robust performance for a classical method. The KNN
baseline, however, yielded a lower accuracy of 93.64% (macro average F1-score: 0.94),
indicating challenges in capturing subtle AD-related patterns. In contrast, our proposed
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framework achieved a test accuracy of 99.42% (macro average F1-score: 0.998), significantly
outperforming both baselines.

Table 4. Performance comparison of classical baselines and proposed framework. Metrics include
precision (P), recall (R), and F1-Score (F1) for each class, along with macro and weighted averages.
All models underwent identical preprocessing: resizing to 224 × 224 pixels, sharpening with a
3 × 3 filter, and CLAHE normalization.

Class/Metric KNN Random Forest Proposed Framework
P R F1 P R F1 P R F1

Mild Demented 0.98 0.84 0.90 1.00 0.94 0.97 1.00 0.98 0.99
Moderate Demented 0.95 0.95 0.95 1.00 0.98 0.99 1.00 1.00 1.00
Non-Demented 0.78 0.95 0.86 0.88 1.00 0.94 1.00 1.00 1.00
Severe Demented 0.96 1.00 0.98 0.98 0.98 0.98 1.00 1.00 1.00
Very Mild Demented 1.00 1.00 1.00 0.93 1.00 0.96 1.00 1.00 1.00

Macro Precision 0.93 0.96 1.00
Macro Recall 0.95 0.98 0.998
Macro F1-Score 0.94 0.97 0.998
Weighted Precision 0.94 0.97 1.00
Weighted Recall 0.94 0.97 0.994
Weighted F1-Score 0.94 0.97 0.996
Overall Accuracy 93.64% 97.11% 99.42%

The performance gap between the classical baselines and our deep learning framework
underscores the necessity of deep learning for multi-stage Alzheimer’s disease classification.
Classical methods like KNN and random forest rely on handcrafted or pre-extracted
features, which, despite being derived from a powerful ResNet18 model, fail to fully
capture the complex, hierarchical patterns in T1-weighted MRI scans, such as subtle cortical
thinning or global connectivity disruptions characteristic of Alzheimer’s disease (AD). In
contrast, our hybrid deep learning framework leverages end-to-end feature learning, with
ResNet50 extracting localized structural features and vision transformer (ViT) modeling
long-range connectivity, dynamically integrated via an attention-based adaptive feature
fusion layer. This enables superior discriminability across Alzheimer’s disease (AD) stages,
as evidenced by the 2.31% and 5.78% accuracy improvements over random forest and
KNN, respectively. The ability of deep learning to automatically learn and integrate
multi-scale neuroimaging features is critical for achieving the high diagnostic precision
required in clinical settings, validating its essential role in advancing Alzheimer’s disease
(AD) diagnostics.

4.8. External Dataset Validation

The framework’s generalizability was validated on an external four-class Alzheimer’s
disease (AD) dataset [53], achieving accuracy comparable to 99.42% on the AD5C dataset
(Figure 16). This robustness across varied MRI conditions highlights its clinical poten-
tial [65].
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Figure 16. True versus predicted labels for four-class dataset.

5. Comparison with State-of-the-Art Methods
The framework outperforms prior AD5C studies (Table 5). Zia-ur-Rehman et al. [13]

achieved 98.24% accuracy with DenseNet-201, limited by hyperparameter sensitivity. Oth-
ers reported 92.85% (DenseNet169) [9], 95.2% (CNN ensemble) [66], and 96.8% (CNN-
transformer) [67]. This framework’s 99.42% accuracy, driven by ResNet50, vision trans-
former (ViT), and adaptive feature fusion, sets a new benchmark with only one misclassifi-
cation (Section 4.4). For fair evaluation, all models in Table 4, including ours and those from
prior studies [9,13,66,67], underwent identical preprocessing: resizing to 224 × 224 pixels,
and sharpening with a 3 × 3 filter (Section 3.1). This ensures that observed performance
differences stem from architectural design rather than preprocessing disparities.

Table 5. Comparison with AD5C Studies. The five classes are as follows: Mild Demented
(MD), Moderate Demented (MOD), Non-Demented (ND), Severe Demented (SD), and Very Mild
Demented (VMD).

Author(s) Model Classes Dataset Accuracy (%)

Pradhan et al. [9] DenseNet169 MD, VMD, MOD, ND, SD AD5C 92.85
Mahendran et al. [66] CNN Ensemble MD, VMD, MOD, ND, SD AD5C 95.2
Gao et al. [67] CNN-Transformer MD, VMD, MOD, ND, SD AD5C 96.8
Zia-ur-Rehman et al. [13] DenseNet-201 MD, VMD, MOD, ND, SD AD5C 98.24
Proposed Framework ResNet50+ViT MD, VMD, MOD, ND, SD AD5C 99.42

6. Discussion
The proposed framework achieves an exceptional 99.42% accuracy on the AD5C

dataset, demonstrating its ability to integrate multi-scale feature embeddings for precise
Alzheimer’s disease (AD) classification. This performance is driven by ResNet50’s extrac-
tion of local features (e.g., cortical thinning, hippocampal atrophy) and vision transformer
(ViT’s) modeling of global connectivity disruptions, dynamically synthesized by the adap-
tive feature fusion layer [60,62]. The single misclassification in the Mild Demented class
(Section 4.4) highlights challenges in distinguishing subtle early-stage signatures, where
Mild Demented scans resemble Non-Demented ones due to minimal atrophy (Section 4.5).
Incorporating multi-modal imaging or diverse early-stage samples could further enhance
accuracy [52].
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Compared to prior AD5C studies (Section 5), the framework addresses limitations
such as hyperparameter sensitivity [13], inadequate noise handling [9], and limited global
context [66]. For four-class studies, it surpasses models like those by Odusami et al. [68]
and Liu et al. [69] by offering a more streamlined architecture with reduced computational
demands while maintaining high accuracy. External validation on a four-class dataset
confirms robustness across varied MRI conditions (Section 4.8). The framework’s compu-
tational efficiency and superior accuracy position it as a transformative tool for clinical
Alzheimer’s disease (AD) diagnostics. Future work could integrate multi-modal imaging
and real-time deployment strategies to enhance clinical adoption. The lack of demographic
information in the AD5C dataset raises concerns about potential biases. For example,
over-representation of certain age groups or ethnicities could lead to reduced accuracy for
under-represented populations, a key issue for equitable Alzheimer’s disease (AD) diagno-
sis. Future work should validate the framework on demographically diverse datasets and
explore bias correction techniques to enhance robustness.

While our framework leverages T1-weighted MRI scans for Alzheimer’s disease (AD)
classification, multimodal approaches integrating neuropsychological tests and laboratory
biomarkers, such as tau protein levels, offer potential to enhance diagnostic precision,
particularly for early-stage detection. For instance, Qu et al. (2023) employed a graph
convolutional network combining MRI and clinical data, achieving high classification rates
for cognitively impaired subjects [24]. Bhattarai et al. (2024) utilized Deep-SHAP to map
relationships between MRI-derived neuroimaging biomarkers and cognitive assessments,
highlighting multivariate interactions [48]. Similarly, Arjaria et al. (2024) integrated MRI
with clinical data in a multimodal transformer, improving classification accuracy [14].
Incorporating such multimodal data could address limitations in our MRI-only approach,
such as the misclassification of subtle early-stage cases (Section 4.5), and we propose this as
a direction for future research to refine our model’s applicability in clinical settings.

The proposed framework, while achieving a classification accuracy of 99.42% on
the AD5C dataset, entails significant computational requirements due to the integration
of ResNet50 and vision transformer architectures. Training on an NVIDIA RTX 3090
GPU efficiently processes the 2382 T1-weighted MRI scans, with an inference time of
approximately 0.5 s per scan, enabling potential real-time use in clinical settings equipped
with adequate hardware. However, deployment in low-resource environments, where
high-performance GPUs may be unavailable, poses challenges. To address this, future
optimizations such as model pruning, quantization, or cloud-based inference could reduce
computational demands, enhancing accessibility and facilitating integration into diverse
clinical workflows.

7. Conclusions
The proposed deep learning framework achieves 99.42% accuracy on the AD5C dataset,

leveraging ResNet50, vision transformer (ViT), and an adaptive feature fusion layer to
capture multi-scale Alzheimer’s disease (AD) pathological signatures with unprecedented
precision [12]. It surpasses prior methods for both five-class and four-class Alzheimer’s
disease (AD) classification (Sections 2 and 5) by integrating local and global features, with
adaptive feature fusion ensuring robust stage-specific classification. The single misclas-
sification and robust four-class validation underscore its precision and generalizability
(Sections 4.4 and 4.8). Future research will focus on multi-modal MRI integration and
real-time deployment to enhance early Alzheimer’s disease (AD) detection, solidifying its
transformative potential in clinical diagnostics.
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