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Abstract: Aerogels have great potential in oil absorption applications; however, many reported
aerogels have the drawbacks of a low oil-recovery rate and poor mechanical properties, which limit
their application. In this study, highly reusable graphene oxide (GO)/TEMPO-oxidized cellulose
nanofiber (TOCN)/polyvinyl alcohol (PVA) aerogels with excellent mechanical properties and with
an architecture similar to that of Thalia dealbata stems were fabricated through a three-step process of
bidirectional-freezing, freeze-drying, and chemical vapor deposition (CVD) modification. After CVD
modification, the modified GTPA (MGTPA) accorded hydrophobicity. The synergistic effects of the
three components and the unique biomimetic structure conferred biomimetic-MGTPA (b-MGTPA)
with excellent compressible properties. As an adsorbent, b-MGTPA showed a high adsorption
capacity (75–151 g/g) for various types of organic solvents. In addition, its high compressibility
enables b-MGTPA to have fast and highly efficient recovery of absorbed oil through simple mechanical
squeezing and it possesses excellent reusable stability (the oil recovery rate and oil retention rate
reached 80% and 91.5%, respectively, after 10 repeated absorption–compression cycles).

Keywords: aerogel; bidirectional freezing; biomimetic structure; oil absorption; recyclability

1. Introduction

In the process of petroleum exploration, exploitation, transportation, and processing,
oil-spill accidents may occur due to accidents or for technical reasons, causing serious
impacts on the environment [1–3]. Aerogels, as ideal absorbents, can effectively and
selectively absorb oil in an oil–water mixture due to their high adsorption rate, large specific
surface area, and their light weight; however, many aerogels still face many problems,
such as a low mechanical strength, low oil absorption capacity, and low recyclability.
In particular, the oil recovery rate and reusability of absorbents restricts the extensive
application of oil–water-separation materials [4–6].

Cellulose, as a natural low-cost material, has been attracting more attention from
researchers due to its wide availability, biocompatibility, and good flexibility. It has
been widely used to prepare ultralight absorbent aerogel materials [7–9]. However, most
cellulose-based aerogels have the drawback of having a brittle mechanical performance,
which causes irreversible deformation during the recycling of the oil absorption process. To
overcome the drawbacks of cellulose aerogels, many functional nanomaterials have been
used as reinforcing materials in combination with nanocellulose to improve the mechani-
cal properties of aerogel, such as polyimide [10], poly(N-isopropylacrylamide) [11], and
polyvinyl alcohol (PVA) [12]. Especially, PVA with long polymer chains is of benefit in
the formation of high-density hydrogen bonding with nanocellulose, which can enhance
the mechanical properties of the aerogel, forming strong interactions with each other [13].
Therefore, we consider using PVA as a reinforcement to enhance the mechanical properties
of aerogels. Graphene oxide (GO) contains a large number of oxygen-containing functional
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groups on its surface, a large specific surface area, excellent mechanical properties, and
has an excellent dispersion in solution, making it an ideal enhancement phase for aerogel
materials. Nanocellulose, as the dispersant, can prevent the self-agglomeration of GO.
Thus, we considered adding GO to the aerogel. However, the obtained aerogel has a
random structure, which is more likely to rupture, resulting in inelastic deformation during
compression [14,15], which shows that there is still a great deal of room for improvement.

Natural organisms often provide inspiration for the design of compressible mate-
rials [16]. The compressibility of some natural materials is attributed to their complex
multi-scale architectures with their long-range orders [17–19]. Based on previous reports,
these three-dimensional porous lamellar layer structures show better mechanical properties
during compression. Recently, Yang [20] prepared highly compressible biomass-derived
nanofiber aerogel with an ordered honeycomb structure via directional freeze drying.
Gao [21] obtained hyper-elastic carbon–graphite aerogel with numerous arched parallel
lamellar structures through bidirectional freeze drying. Based on previous work, it has
been determined that the microstructure of aerogels is essential to their performance.

Inspired by natural Thalia dealbata, which has a unique architecture with lamellar
layers interconnected by bridges [22]. a combination of bidirectional freezing and the
addition of reinforcing materials was employed in the design of a highly compressive
graphene/polyvinyl alcohol/cellulose nanofiber aerogel. Then, CVD modification was
carried out using simple sialylation to gain hydrophobicity. After modification, the aerogel
has an excellent oil–water separation effect for an oil–water mixture and its maximum
absorption capacity ranges from 75 to 151 times its own weight (for different organic
solvents). Moreover, b-MGTPA exhibits excellent reusability, maintaining a good absorption
capacity, even after 10 distillation or extrusion cycles. The b-MGTPA retrieves more than
90% of oil by mechanical squeezing (oil recovery rate and oil retention rate reached 80% and
91.5%, respectively, after 10 absorption–compression cycles) due to its unique biomimetic
structure. We believe that b-MGTPA has great potential application in practical oil or
organic solvent leakage treatments.

2. Experimental Section
2.1. Materials

Graphene oxide dispersion was purchased from Suzhou Tanfeng Graphene Co., Ltd.
(Suzhou, China). Conifer wood pulp fiber was received from Arauco Paper Co., Ltd.
(Santiago, Chile). Polydimethylsiloxane (PDMS, Sylgard 184, Dow corning, Midland, MI,
USA), Analytical grade PVA (Mw: 95,000 g/mol, alcoholysis degree: 99%) and all other
chemical reagents were purchased from Aladdin Chemical Reagent, Co., Ltd. (Shanghai,
China). All water used in the experiments was deionized water and all reagents did not
require further treatment.

2.2. Preparation of TOCN Suspension

TEMPO-oxidized CNFs (TOCN) were prepared using a previously reported method [23].
Conifer wood pulp fibers (1.0 g) were put into a blender and 50 mL of deionized water
was added, and the mix was dispersed evenly and poured into a 250 mL beaker. A total of
40 mL of deionized water, 0.016 g of TEMPO catalyst and 0.1 g of NaBr were added and
then stirred. Then, 10 mmol of NaClO solution was added slowly and the pH of the solution
was more than 10. After stirring for 5 h at room temperature, the pH decreased during the
reaction process. We then adjusted the system pH using 0.5 mol/L NaOH solution to keep
it stable at 10. After the reaction, the products were washed with deionized water several
times to achieve neutrality and to obtain TEMPO oxidized cellulose (TOCN), which was
poured into a high-pressure homogenizer at 100 MPa to induce circulating homogenization
for 20 min to obtain the nanocellulose dispersion. Subsequently, the concentration of TOCN
was adjusted to 0.5 wt% and stored in a refrigerator at 4 ◦C for further use.
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2.3. Preparation of PVA Solution

PVA (1.0 g) was dissolved in 100 mL of deionized water and then heated to 95 ◦C and
stirred until completely dissolved. It was then kept at room temperature for further use.

2.4. Preparation of Biomimetic GO/TOCN/PVA Aerogel (b-GTPA)

The TOCN suspension (5 mg/mL) and PVA solution (10 mg/mL) were mixed at a
volume ratio of 2:1. Then, we prepared the GO suspension at a concentration of 5 mg/mL.
Different amounts of GO (0 wt%, 5 wt%, 20 wt%, and 30 wt% of suspension) were added
and stirred for 2 h. Then, sulfuric acid solution (1.0% by volume) was gradually added to
the suspension of the GO/TOCN/PVA mixture until the pH of the suspension was 4–6.
Then, 0.2 mL of the crosslinking agent glutaraldehyde solution (25% by mass fraction) was
added to the prepared mixed suspension and stirred continuously for 1 h. Finally, bubbles
were removed ultrasonically for 1 h in an ice bath and the suspension was crosslinked
in a vacuum oven at 75 ◦C for 3 h and was then was cooled to room temperature. The
homogeneous suspension was then poured into a homemade mold (Figure S1) to obtain
the oriented biomimetic structures. The solution was placed on the surface of a cold finger
for 20 min to ensure that it was completely frozen. Finally, the forean frozen solution was
transferred to a vacuum freeze-drying machine and then freeze-dried at −50 ◦C for 48 h
to obtain biomimetic GO/TOCN/PVA aerogel (b-GTPA). For comparison, the random
structure the GO/TOCN/PVA aerogel (r-GTPA) was prepared without a PDMS wedge
using traditional unidirectional freezing.

2.5. Modification of b-GTPA to Prepare Superhydrophobic b-MGTPA (Modified
GO/TOCN/PVA Aerogel)

The GTPA was put into a sealed container and a small vessel containing 8 mL of DDTS
was placed at the bottom of the sealed desiccator. Then, it was heated in an oven at 175 ◦C
for 10 h under vacuum to graft the DDTS to the hydroxyl groups of GO, PVA, and TOCN
through a silanization reaction to acquire modified GO/TOCN/PVA aerogels (MGTPA).

2.6. Characterization

The microstructures of the three different types of aerogels were characterized using
scanning electron microscopy (SEM) (ZEISS EVO18, ZEISS, Oberkochen, Germany) images.
Fourier transform infrared spectroscopy (FTIR) (Nicolet IS50, Thermo Electron Corp.,
Madison, WI, USA) was used to record the FTIR data in a range of 400−4000 cm−1. Raman
spectra were recorded in the range of 100–3500 cm−1. The contact angle measurements
were performed at room temperature with a Dataphysics OCA 15 optical contact angle
measuring system using the sessile drop method (Dataphysics, Stuttgart, Germany).

2.7. Density and Porosity

An electronic and digital caliper was used to measure the quality and size of the
aerogel, and Equation (1) was used to calculate the density of the aerogel.

ρ = M/
V (1)

M is the aerogel mass and V is the aerogel volume [24].
According to the solid density of each component and their weight ratios, the density

of the solid material is calculated according to Equation (2).

ρs = 1/(WTOCN/ρTOCN + WPVA/ρPVA + WGO/ρGO + Wsilane/ρsilane) (2)

where W is the weight percentage of the different components. TOCN, PVA, GO, and silane
are the solid densities of TOCN, PVA, GO, and silane, respectively. According to previous
literature, the densities of TOCN, PVA, GO, and silane used in this study were 1460, 1269,
2100, and 1273 kg/m3, respectively.

The porosity (P) of aerogels was calculated according to Equation (3).
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P(%) = (1 − ρ/ρs
)× 100% (3)

2.8. Mechanical Property Measurements

After the aerogel absorbs the oil, the aerogel and oil can be recovered by mechan-
ical extrusion. In order to study the mechanical properties of aerogel, the compressive
properties of MGTPA were tested using an Instron 5565 universal material tester (Instron,
Boston, MA, USA). The testing method was: placing the aerogel on a universal material
testing machine, and then setting the strain value and the relevant test parameters to test at
room temperature.

2.9. Absorption Capacity and Reusability

The absorption capacity of the aerogels was measured by immersing a piece of the
aerogel in an organic liquid until the saturation state was reached. The saturated aerogels
were then weighed and the organic solvent absorption capacity (g/g) of the aerogels was
calculated as:

Q =
msa − mo

mo

where Q is absorption capacity, and msa and mo are the weights of the aerogel saturated
with organic liquids and the pristine aerogel, respectively.

The reusability of b-MGTPA was evaluated via distillation and squeezing of the oil and
the removal rate after 10 absorption–desorption cycles was determined. The desorption
process was carried out by means of a simple and convenient squeezing method where the
mechanism of squeezing was performed for b-MGTPA for 10 cycles.

3. Results and Discussion
3.1. MGTPA Fabrication and Chemistry Characterization

Thalia dealbata stem, with a three-dimensional (3D) architecture of oriented lamellar
layers of multi-scale structures that are parallel to the growth direction, which has intercon-
nected bridges, is a lightweight, strong and resilient natural porous material [22]. In order
to mimic the architecture of Thalia dealbata and the excellent mechanical performance, as
shown in Figure S2, cellulose nanofibrils with an average width of 5–20 nm and lengths
of up to several micrometers were prepared. We divided the b-MGTPA preparation pro-
cess into three steps: bidirectional freeze-casting, freeze-drying, and CVD modification.
The fabrication scheme of the b-MGTPA is illustrated in Figure 1a. We created a biaxial
temperature gradient, including the vertical (∆Tv) and the horizontal (∆TH), to obtain
the biomimetic structure. During the bidirectional freezing process, the GO/PVA/TOCN
suspension was squeezed and repelled by growing ice crystals, and then expelled between
the ice layers and the ice crystal gaps, which formed more dendrites that were attached
to the lamellar layers (Figure 1b) [25]. Furthermore, with an increase in GO content from
0% to 30%, the density of the MGTPA ranged from 6.48 to 12.83 mg/cm3 (Figure S3). Due
to the ultralow density, the aerogel was ultralight and could rest on the top dogstail grass
without causing any deformations (Figure 1c). Both aerogels exhibited high porosities
(>99.21%), low densities, and ultralight characteristics. Scanning electron microscope (SEM)
images of the b-MGTPA exhibited a hierarchical mineral bridge structure (Figure 1d,e),
successfully mimicking the microstructure of Thalia dealbata stem.

To investigate the chemical structure and CVD modification efficiency of MGTPA,
FTIR spectroscopy, Raman spectroscopy tests, and XPS were used. The FTIR spectra of
the TOCN, GO, PVA, GPTA, and MGPTA are shown in Figure 2. The spectrum of TOCN
(Figure 2a) shows that the absorption peaks at 3312 cm−1, 1605 cm−1, and 1023 cm−1 are
attributed to the stretching and bending vibrations of -OH and glycosidic ring vibration,
respectively [26], while the vibration at 2910 cm−1 corresponds to the stretching vibration of
-CH. The spectrum of GO (Figure 2b) occurring at 3436 cm−1 and 1629 cm−1 corresponds to
-OH stretching vibrations and the C=C from an aromatic ring, respectively [27]. The peaks
of the PVA (Figure 2c) infrared spectra at 2923 cm−1 were associated with the stretching of
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-CH. The strong absorption peaks at 3280 cm−1, 1413 cm−1, and 1080 cm−1 are characteristic
peaks of hydroxyl groups caused by O–H stretching vibration, in-plane bending vibration
of CH–OH, and stretching vibration of C–O, respectively. The spectrum of GPTA (Figure 2d)
showed similar characteristic peaks, but showed a slightly weakened peak value, indicating
the strong interface interaction between the three components of TOCN, PVA, and GO.
The weakness of the peak at 3359 cm−1 revealed that the compatibility of the GA and PVA
chains led to a decrease in the number of free hydroxyl groups, which may indicate the
formation of acetal bridges and the completion of acetal reactions [28].

Figure 1. (a) Schematic illustration of the fabrication process of b-MGTPA. (b) Schematic of the b-MGTPA
with a mineral bridge structure. (c) Photograph of an ultralight b-MGTPA located on a dogstail grass.
(d,e) SEM images showing the architecture of the biomimetic aerogel at different magnifications.

Figure 3a shows that the ID/IG value decreased from 1.41 to 0.87 after CVD modifica-
tion. The reason for this change may be that the high temperature (175 ◦C), not only the
partially removed the oxygen-containing groups on GO, but also benefitted an increase in
graphitization degree, which is favors water–oil separation.
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Figure 2. The FTIR spectra of the (a) TOCN, (b) GO, (c) PVA, (d) GPTA, and (e) MGPTA.

To further confirm that the DDTS was grafted to the hydroxyl groups during CVD
modification, X-ray photoelectron spectroscopy was carried out (Figure S4). We detected
carbon and oxygen from GTPA, while MGTPA showed silicon peaks from DDTS. The
curves were Gauss fitted to indicate the proportion of different bonds (shown in Table 1).
The high-resolution C1s core-level spectra show that the proportion of C-C bonds increased
from 63.2% to 83.3% due to the grafting of long carbon chains (Figure 3b,c). In the mod-
ified TOCN/PVA/GO spectrum (Figure 2e), the intensity of the –CH2 bonds (2850 and
2918 cm−1) increased, while the intensity of the -OH (3400 cm−1) bonds decreased, in-
dicating the grafting of hydrophobic carbon chains after CVD modification, which is in
agreement with the XPS results.

Table 1. The proportion of different bonds of XPS.

GTPA MGTPA

Position % Position %

C–C 284.7 63.2 284.8 83.3
C–O 286.4 30.1 286.5 14.3
C=O 288.3 6.7 288.2 2.4

Figure 3. Cont.
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Figure 3. (a) Raman spectra of MGTPA and GTPA. XPS high-resolution C1s scans of (b) GTPA and
(c) MGTPA. (d) XRD patterns of GTPA and MGTPA.

The XRD pattern of the GTPA exhibited a diffraction peak at 19.5◦ and 22.6◦ (Figure 3d),
corresponding to the diffraction peaks of the PVA and TOCN. Moreover, the peak of GO
(10.9◦) disappeared, probably due to the relatively small amount of GO that was added
to the sample, and the GO was uniformly dispersed in the matrix without agglomeration.
After CVD modification, a broad peak was observed at 21.6, which meant that reduced
graphene oxide was formed. Simultaneously, the color of the aerogel also changed from
brown to black after modification, as shown in Figure 4a,b, which is a good indicator of the
reduction of GO. Simultaneously, there was a very low and almost negligible dimensional
shrinkage after modification, indicating the good dimensional stability of b-MGTPA.

Figure 4. (a) Photograph of r-GTPA and b-GTPA. (b) Photograph of r-MGTPA and b-MGTPA.
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3.2. Mechanical Properties of MCGA

Mechanical properties, especially reversible compressibility, are particularly important
for the evaluation of adsorbed materials to obtain a high oil-recovery rate from squeezing.
To evaluate the mechanical properties of MGTPA, a series of compression tests were
performed. Figure 5a shows a typical photograph of b-MGTPA, which can withstand
pressures more than 5000 times its own weight (where it is compressed to 5% of the original
height). After the load is removed, the b-MGTPA can quickly return to its initial height
without any damage, and the structure exhibits a high compression resilience and suffers
no obvious lateral deformation in the process of compression.

Figure 5. (a) Demonstration of the high compressibility and recoverability of MGTPA. (b) Recov-
ery rate of different aerogels in cyclic compression tests. All samples were compressed to 60%
strain and released to 0% strain for 100 cycles. (c) Stress−strain curves of b-MG20TPA at 40%
and 80% strain. Comparison between (d) random and (e) biomimetic structure aerogels in their
compression−recovery behaviors.
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In addition, through uniaxial compression and cyclic loading tests, we studied the stress–
strain curve of MGTPA as well as its fatigue resistance stability. As shown in Figure 5b, a
universal tension machine was used to load the MGTPA at a speed of 100 mm/min, and the
MGTPA was compressed to 60% for 100 and 300 cycles. We investigated the effect of GO
content on the mechanical properties. Comparing MGTPA with different GO concentrations
(0 wt%, 5 wt%, 20 wt%, and 30 wt% of suspension), Figure 4b shows that the recovery rate
obviously improved after adding a certain amount of GO, which might be attributable to
the rigidity of the GO sheets in the TOCN/PVA matrix. In addition, MG20TPA showed
the highest original strength of 98.4% after being compressed for 100 cycles, and the
highest stress-retention rate (it retained 99.3% and 98.4 of its maximum stress) after 100 and
300 cycles (Figure S5), which exhibited an almost negligible plastic deformation. Therefore,
we selected MG20TPA for the following mechanical property test.

Figure 5c shows the cyclic compressive loading process of the b-MG20TPA with dif-
ferent strains (40% and 80%). There were two obviously different regions during the
compression–release process. An elastic deformation region appeared under a low com-
pressive strain (less than 45%), followed by a densification region under a high compressive
strain (more than 45%). The stress increased linearly with strain due to the elastic bending
of the bridge when the strain was below 45%. At a strain of more than 45%, the stress
increased rapidly with the strain, producing a larger compressive stress and hysteresis loop
due to the collisions between the lamellar frames.

To investigate the excellent mechanical strength of the biomimetic MG20PTA, we
systematically compared it with MG20PTA with random and biomimetic architectures, as
shown in Figure 5d. The b-MG20PTA showed a maximum compressive stress of 11.51 kPa
when it underwent 60% compression. The 100 and 300 cycle stress–strain curves compared
with the first curve almost remained the same. r-MG20TPA was much less robust and
resilient. With a maximum compressive stress of 7.82 Kpa, after only 100 compressive
cycles at 60% strain, the maximum stress of the aerogel already decreased obviously,
retaining only 83.1% of its maximum stress.

In the compression process, stress can be evenly distributed across the lamellar layer
through the bridge to avoid stress concentration, resulting in permanent deformation and
structural damage to the material (Figure 6a). The bridge between the lamellar layers
acts as an infinite number of small “springs”, prompting elastic deformation during the
compression cycle. When the external force is removed, biomimetic aerogels are able to fully
recover their original shape without significant deformation or damage. Compared to bionic
structures, random structures have more concentrated stress areas, so the compression
performance ultimately depends on the weakest connection. In the compression process,
the weakest part is more likely to rupture, resulting in inelastic deformation (Figure 6b),
which makes causes the recovery performance to be poor, when the external force is
removed, and it cannot fully recover.

The above tests indicated that b-MGTPA was much more resilient than r-MGTPA
due to the unique architectures of the “lamellar layers with interconnected bridges”. The
above results explain that b-MGTPA possesses excellent mechanical properties due to its
unique “lamellar layers with interconnected bridges” and there is hope for it to be applied
in sensors, electrode materials, and flexible electronics in the future.



Polymers 2022, 14, 1077 10 of 15

Figure 6. (a) Schematic diagram of the mechanism of the high compressibility and recoverability
of biomimetic mineral bridge structures. (b) SEM image showing the r-MGTPA with random
structure before and after 100 cycles of compression (strain = 60%) and recovery. Inserts show the
corresponding schematics.

3.3. Absorption Properties and Reusability

Due to it low density, high compressive, and high porosity, MGTPA has great applica-
tion prospects for absorbing oil and organic pollutants. In order to systematically study the
absorption capacity of MGTPA, MGTPA was used for the saturated absorption of various
oils and organic solvents, such as hexane, olive oil, toluene, and some common pollutants
and leaks in daily life or in the chemical industry. As shown in Figure 7a, the saturated
absorption capacity of b-MG20TPA varies from 75 to 151 times its own weight for various
oils, depending on the density, viscosity, and surface tension of the absorbed oil. In addition,
biomimetic structures have a better oil adsorption performance than random structures,
which may be due to the fact that the unique mineral bridge structure can provide greater
space for oil absorption.

As shown in Figure 7b, MG20TPA could be used to absorb and separate hexane floating
on the surface of water and it can be seen that the hexane dyed using Sudan red III was
rapidly and completely absorbed by MG20TPA, accomplishing the separation of hexane
and water. Due to the ultralight and hydrophobic coating of the aerogel, it still can float on
the water’s surface, even if saturated, which is of high value in practical applications and
facilitates unified collection after adsorption.
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Figure 7. (a) Absorption capacity of d-MG20TPA and b-MG20TPA for various solvents. (b) Demon-
stration of selective oil (dyed red with Sudan III) absorption atop water using b-MGTPA. (c) Water
contact angle of the b-GTPA and b-MGTPA taken at 1 s and 3 min.

In order to further determine the contact angle of MGTPA, we use a contact angle
tester for modified GTPA. As can be seen from Figure 7c, the contact angle was 0◦ before
modification and was not hydrophobic. The contact angles of the modified aerogel to
water at 1 s and 180 s were 136◦ and 134.8◦, respectively, greater than 90◦, which exhibited
surface hydrophobicity.

As a comprehensive and suitable oil–water separation and absorption material, Ab-
sorbent can not only effectively separate oil and water from an oil–water mixture, but it
can also efficiently recycle the absorbed organic solvent. The reusability and oil recovery of
adsorbent materials are a significant standard for evaluating the application of adsorbent
materials. In this work, b-MGTPA proved to have excellent hydrophobic properties and
compressibility, which grants it two methods to recycle absorbed oil or organic solvent
in actual oil–water separations according to different practical needs. First, when dealing
with low boiling point oils, such as hexane or toluene, the absorption/distillation cycle is
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an option. Saturated b-MGTPA is heated to near the boiling point of the solvent to release
the absorbed oil, and the oil can be recovered by collecting the evaporating oil vapor. This
kind of recycling efficiency is very high, and can basically achieve a 98% recycling rate after
10 cycles of absorption and desorption (Figure 8a).

Figure 8. (a) Oil recovery ability of b-MG20TPA over 10 cycles of absorption and desorption by
distillation of hexane. Ethanol was selected as the model oil to test the distillation. Demonstration of
expelling absorbed hexane by squeezing from (b) b-MG20TPA and (c) r-MG20TPA. Oil recovery ability
of b-MG20TPA and r-MG20TPA over 10 cycles of absorption and desorption by mechanical squeezing.

When we need to address expensive oils or retrieve high-boiling point oils, we can
use the mechanical characteristics of b-MGTPA to conveniently recycle oil through simple
mechanical squeezing. The cyclic absorption–extrusion behavior of MGTPA was studied
using hexane as the model adsorbent. As a result, the biomimetic structure could maintain
more than 92% of its initial saturated absorption capacity to a large extent after the 10th
cycle test (Figure 8b), which indicated that the porous structure of b-MGTPA was not
destroyed and maintained property stability in the absorption and squeezing process. In
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contrast, the random structure underwent huge losses (only maintained 60–75% of its initial
capacity) after 10 cycles of absorption and squeezing (Figure 8c), which was consistent with
the results of scanning electron microscopy. Furthermore, the b-MGTPA showed around
15–20% residual oil rate in the cycle, which was higher than other reported compressible
absorbents, which usually retain about 40–60% oil after squeezing. The above results clearly
demonstrate the excellent reusability of b-MGTPA, which has a high compressibility and
high oil recovery ability though mechanical squeezing that has not been achieved by other
aerogels, as shown in Table 2, indicating that distillation and squeezing can be used to deal
with various situations of oil–water separation from accidents. b-MGTPA can be selected
as an ideal high-performance oil sorbent candidate for practical use.

Table 2. Performance comparison of b-MGTPA with 3D absorbent materials reported in the literature.

Absorbent Material Density
(mg/cm3)

Absorption
Capacity (g/g)

Compressibility (%),
Oil Recovery (%) Reference

1 CNF/PVA/MTMS aerogel 10.2 45–99 Compressible to 70%
55% oil recovery [11]

2 freeze-dried SA/GO aerogel 20 20–50 Compressible to 80%
80% oil recovery [29]

3 Carbon fiber aerogel from bamboo 4.3–8.3 22–80 Compressible and 60%
50% oil recovery [30]

4 CNF/PVA/MMT aerogel 26.25 40–68 Not compressible [31]

5 lignin, agarose, and PVA 0.052 44–96 Compressible and 60%
60% oil recovery [32]

6 Directionally freeze-dried
TOCN/GO/PVA carbon aerogel 6.17 155–288 Compressible to 50% and 50%

oil recovery [9]

7 Directionally freeze-dried 4.3–8.3 120–200 Compressible to 50% and 50%
oil recovery [6]

8 GO/TOCN aerogels 6.8 100–240 Compressible and 50% oil
recovery [33]

9 Freeze-dried CNF/graphene 7.5 44–265 Compressible to 50% and 80%
oil recovery [5]

10 Directionally freeze-dried
TOCN/GO/PVA aerogels 7.1 75–151 Compressible to 90% and 85%

oil recovery
This
work

4. Conclusions

A biomimetic highly compressive and hydrophobic graphene/polyvinyl alcohol/cellulose
nanofiber aerogel with unique three-dimensional (3D) interconnected lamellar layers with
bridges was successfully prepared through bidirectional freezing. Long carbon chains were
grafted to the surface of GTPA, which yielded the modified GTPA (MGTPA) hydrophobicity
(WCA = 134◦) through CVD modification.

b-MGTPA exhibits an excellent recovery rate of 98.4% and a maximum stress of 99.3%
from 60% strain after 100 cycles, due to its unique structure of lamellar layers with bridges,
which act as an infinite number of small “springs”. In addition, b-MGTPA also shows a
high absorption capacity, 75–151 times its weight, which was tested for various oils and
chemical solvents, and that surpasses most hydrophobic cellulose-based aerogels. The
adsorption capacity of b-MGTPA decreases less than 10% during squeezing and less than
2% during distillation after 10 cycles, indicating a high degree of reusability. Approximately
80–85% of absorbed oil can be recovered by simple mechanical extrusion. b-MGTPA
has great application potential in cleaning water spills and as organic solvents due to
its characteristics of being hydrophobic, and having a low cost, simple preparation and,
stable performance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14061077/s1, Figure S1: Schematic illustrations of bidi-
rectional freezing; Figure S2: TEM image of prepared TOCN; Figure S3: The density of the b-
MGTPA as a function of initial GO concentration; Figure S4: XPS survey scans of GTPA and MGTPA;

https://www.mdpi.com/article/10.3390/polym14061077/s1
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Figure S5: Comparison between MGTPA with different GO concentrations in their compression–
recovery behaviors.
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