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Abstract: Atmospheric benzene, toluene, ethylbenzene, and xylenes (BTEX) can lead to multiple
health injuries. However, what remains uncertain is the effect of long-term exposure to low levels
of BTEX. Thus, we determined the BTEX levels in the air from the refueling and office areas in gas
stations. Then we collected workers’ (200 refueling vs. 52 office workers) peripheral blood samples to
analyze the serum total-superoxide dismutase (T-SOD), glutathione (GSH), malondialdehyde (MDA),
and 8-hydroxydeoxyguanosine (8-OHdG) levels. DNA damage was analyzed by the comet assay and
micronucleus test in buccal epithelial cells. We found that the levels of BTEX in refueling areas were
significantly higher than those in office areas (p < 0.001). The serum T-SOD and GSH of refueling
workers were significantly lower than those in office workers (p < 0.001). By contrast, the serum MDA
and 8-OHdG of refueling workers were significantly higher than those of office workers (p < 0.001,
MDA; p = 0.025, 8-OHdG). Furthermore, tail and Olive tail moments in refueling workers were longer
(p = 0.004, tail moment; p = 0.001, Olive tail moment), and the micronucleus rate was higher (p < 0.001)
than those in office workers. Taken together, long-term exposure to low levels of BTEX may reduce
the antioxidant ability and increase the risk of DNA damage in refueling workers of gas stations.

Keywords: antioxidant; BTEX; comet assay; DNA damage; micronucleus test; refueling workers

1. Introduction

With the rapid development of the global economy and industrialization, many developing
countries, including China, have experienced decades of rapid growth in the consumption of petroleum
products for a certain number of automobiles. In addition, vehicle emission exhaust has become
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a growing source of volatile organic carbon (VOC) emissions [1,2]. Among the VOC pollutants,
particular research and environmental attention has been given to benzene, toluene, ethylbenzene,
and three xylene isomers (o-xylene, m-xylene, and p-xylene) (BTEX). BTEX can be extracted from
coal tar and petroleum, and used as a raw material and solvent in the chemical industry. Moreover,
BTEX are ubiquitous environmental contaminants and components of cigarette smoke [3]. However,
a major source of BTEX found in cities is gasoline evaporation and vehicle emissions. This is because
exhaust from fuel oil combustion contributes the most to BTEX concentrations in the atmospheric
environment [4].

Managerial supervision has been applied to reduce the environmental and occupational exposures
of BTEX. Taking benzene as an example, the Occupational Safety and Health Administration (OSHA)
approved 32.5 mg/m3 (10 ppm) as the permissible exposure limit of benzene exposure in 1971, but this
was later modified to 3.25 mg/m3 (1 ppm) in 1987 [5,6]. This mandatory limit is being used to this
day. Nevertheless, several lines of evidence suggest that BTEX can still be found mainly at low
concentrations below the standard levels in many workplaces, whether in developed countries or
in developing countries [7–11]. Hence, the influence of long-term exposure to low levels of BTEX
on human health effects has become an area of considerable research interest. However, a related
population study in fuel-filling station attendants (FFSAs), particularly in developing countries,
remains largely unexplored.

FFSAs can be exposed to BTEX from fuel and vehicular exhausts that enter their respiratory
system [12]. BTEX can affect human health and cause multi-organ damage, including the central
nervous, hemopoietic, and reproductive systems. Benzene has been classified as a human carcinogen
by the United States Environmental Protection Agency (USEPA) [13]. Exposure to high levels of
benzene for a short time can lead to toxicity or death, whereas prolonged exposure to low levels can
result in bone marrow abnormality, leukemia, and aplastic anemia [14]. Workers exposed to benzene
concentrations of 30 ppm and 650 ppm for three months to 17 years showed increased incidences of
pancytopenia [15–17]. Meanwhile, the USEPA stated that the carcinogenic potential of toluene cannot
be evaluated because of insufficient information [18]. Chronic inhalation of low levels of toluene,
ethylbenzene, and xylene can have harmful effects on the central nervous system (e.g., neurasthenic
syndrome). However, long-term exposure of workers to low levels of benzene but no other compounds
of the BTEX group has a positive correlation with hematologic diseases, including aplastic anemia
and leukemia.

Despite the harmful effects of BTEX, the roles of its mechanism of action and the
concentration-response relationship in cases of low-level and long-term BTEX exposure to humans
have yet to be addressed. BTEX can be oxidized in the body to form less toxic or non-toxic derivates.
During this biochemical process, glutathione (GSH) and superoxide dismutase (SOD) protect cells
from superoxide toxicity. Moreover, malondialdehyde (MDA) is formed, which can measure the level
of oxidative stress in an organism. It also reacts with deoxyadenosine and deoxyguanosine in DNA,
thus forming DNA adducts which are mutagenic.

Furthermore, BTEX metabolites can be oxidized to highly reactive intermediates, which interact
with cellular macromolecules that can be detected by comet assay, including DNA strand breaks.
The oxidative damage by free radicals in DNA molecules can also be reflected in the serum level of
8-hydroxydeoxyguanosine (8-OHdG). Therefore, the levels of 8-OHdG in serum and comet assays
have been used to reveal DNA damage. The genotoxic damage of chemicals in humans can also be
examined via a micronucleus test (MNT) in peripheral blood lymphocytes, which has been a reliable
method for genotoxic carcinogens. MNT in buccal epithelial cells (BECs) is a much more convenient and
economical method. However, few studies have examined whether it could be used as a reliable assay to
determine genetic damage in humans, as in the case of gas station workers exposed to low levels of BTEX.

Therefore, our study aimed to (1) detect the concentration of BTEX in the air of gas stations
in Nanning, China; and (2) analyze the oxidative stress and genotoxicity of the refueling workers
who have had long-term and low-level exposure to BTEX in gas stations by determining the serum
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total-superoxide dismutase (T-SOD), MDA, GSH, and 8-OHdG contents using MNT in BECs and the
comet assay in lymphocytes, respectively; and (3) evaluate whether MNT in BECs could be a reliable
method for testing the DNA damage in BTEX-exposed workers.

2. Materials and Methods

2.1. Study Population

The study population consisted of 252 gas station workers working and living in Nanning City.
Among these workers, 200 are refueling workers who are mainly refueling motor vehicles and are
continually in contact with gasoline, and the remaining 52 are office workers who work and spend
their time indoors. The basic and occupational data on these workers were acquired through personal
interviews. Age, gender, occupation, exposure time, smoking, and drinking behavior were included in
our questionnaire. The above characteristics of all subjects are summarized in Table 1.

Table 1. Demographic characteristics of refueling workers and office workers.

Confounding Factor Refueling Workers (n = 200) Office Workers (n = 52) χ2 (t) p

Age (years) (Mean ± SD) 33.1 7.1 34.3 6.2 1.1 0.272

Years of exposure (Mean ± SD) 8.7 6.0 10.6 6.5 2.0 0.047

Gender, n (%)
Male 98 49.0 23 44.2 0.376 0.540

Female 102 51.0 29 55.8

Smoking, n (%)
Yes 57 28.5 16 30.8 0.103 0.748
No 143 71.5 36 69.2

Alcohol consumption, n (%)
Yes 83 41.5 20 38.5 0.158 0.691
No 117 58.5 32 61.5

SD: Standard Deviation.

2.2. Study Sites and Sampling

Nanning, the capital of Guangxi Province and a megacity located in the southwest part of China,
is a regional international city of the China-Association of South East Asian Nations. In this city,
motor vehicle population has increased rapidly, with numbers reaching as much as 1.756 million in 2015.

Air samples were collected in November 2012. Thirteen gas stations were randomly selected
from six administrative zones of Nanning as occupational air sampling points. The samplers in each
gasoline refueling areas were placed near to and at the downwind area of the fuel pumps according to
the wind direction. The samplers in each office areas were placed in the middle of the offices. All the
samplers were placed 1.5 m above the ground. At each sampling point, air samples were collected in
3.2 L pre-cleaned SUMMA canisters with flow regulators. Sampling was performed at 8:30–9:30 and
17:30–18:30, which are the rush periods at all sites for one working day.

Three milliliters of peripheral vein blood samples were collected from each of the 252 workers in
gas stations during the same period. Normal heparin was used as anticoagulant. Serum was separated
via centrifugation and stored in the refrigerator at −80 ◦C.

2.3. Sample Analysis

The occupational air samples collected from the gas stations were pre-concentrated in a
concentrator (Entech7100A instrument, Simi Valley, CA, USA). 300 mL of air samples were extracted
from each concentrator and determined by using an Agilent 7890A-5975C chromatography/mass
spectrometry instrument (Agilent Technologies, Inc., Palo Alto, CA, USA). The initial temperature
was set at 35 ◦C for 3 min, increased to 120 ◦C at a rate of 5 ◦C/min, further raised to 250 ◦C
at a rate of 10 ◦C/min, and remained unchanged for 20 min. The relative standard deviation for
repeatability in air samples was ≤15%. The detection limit of the procedure for benzene, toluene,
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Ethyl-benzene, p/m-xylene, and o-xylene were 0.03 µg/m3, 0.01 µg/m3, 0.02 µg/m3, 0.18 µg/m3,
and 0.02 µg/m3, respectively.

2.4. Oxidative Stress Indicators Determination

T-SOD assay kits (Hydroxylamine method) were used to measure the activities of serum
T-SOD, (Nanjing Jiancheng, Nanjing, China) and values were expressed as U/mL. GSH assay kits
(Spectrophotometric method) were used to measure the levels of serum GHS (Nanjing Jiancheng,
Nanjing, China) and values were expressed as mg/L. MDA assay kits (TBA method) were used to
measure the levels of serum MDA (Nanjing Jiancheng, Nanjing, China) and values were expressed
as µmol/L. Next, 8-OHdG Enzyme Linked Immunosorbent Assay kits (eBioscience, San Diego, CA,
USA) were used to measure the levels of serum 8-OHdG and the values were expressed as ng/mL.

2.5. Comet Assay

A total of 50 lymphocytes were separated and collected from whole blood samples, according
to the method of Singh [19] with slight modifications. Each sample was examined on 50 cells
and randomly photographed under a fluorescent microscope (Nikon Eclipse E200, Tokyo, Japan).
The images were measured using IMI1.0 single-cell gel electrophoresis analysis software. DNA damage
was quantified by using the tail moment (TM) and Olive tail moment (OTM).

2.6. MNT in BECs

MNT was carried out on 200 refueling workers and 52 office workers. We followed the method
described by Stich [20] with slight modifications [21]. Before sampling, all workers were required
to rinse their mouth with clean water three or four times. Surface cells were scraped from their
buccal mucosa with sterile spatula. A total of 1000 BECs were screened per subject, after which the
micronucleus rate per 1000 cells was calculated. Scoring of micronuclei was performed manually using
Olympus BX 51 fluorescent microscope.

2.7. Statistical Analysis

Double entry and validation were performed through the Epidata 3.0, and statistical analysis
was performed by using the statistical package SPSS16.0. For descriptive analysis, results were
presented as median (range) or mean ± SD. For further analysis, Wilcoxon signed-rank test was
used to compare BTEX concentrations of refueling and office areas air samples. Wilcoxon rank
test was used to calculate the variance of GSH, MDA, and 8-OHdG levels in serum, as well as the
activities of T-SOD, TM, OTM, and micronucleus rate (BECs) in both the refueling and office workers.
Multiple linear regression was used to evaluate the effect of group variables and personal characteristics
(age, gender, years of exposure, and smoking and drinking habits) on T-SOD, GSH, MDA, 8-OHdG,
micronucleus rate, TM and OTM as dependent variables. A p-value of <0.05 (two-tailed) was
considered statistically significant.

2.8. Ethical Statements

All subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the medical ethics committee of Ethics and human subjects committee of Guangxi
Medical University, and the number/ID of the approval is (2014)LUNSHEN[KE]DI(125)HAO.

3. Results

3.1. Demographic and Occupational Characteristics, and Smoking and Drinking Habits between Refueling and
Office Workers in the Gas Stations

The demographic and occupational characteristics of the study population are reported in Table 1.
A total of 200 refueling and 52 office workers were investigated in 13 gas stations in Nanning.
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Among refueling workers, 98 (49%) were males and 102 (51%) were females; the average age was
33.1, and the average years of exposure were 8.7. Among office workers, 23 (44.2%) were males and
29 (55.8%) were females; the average age was 34.3, and the average years of exposure were 10.6.
No significant difference in age (t = 1.1, p = 0.272) and gender (χ2 = 0.376, p = 0.540) was found between
refueling and office workers. However, a significant difference was observed in years of exposure
between refueling and office workers (t = 2.0, p = 0.047). No significant differences in terms of smoking
(χ2 = 0.103, p = 0.748) or drinking (χ2 = 0.158, p = 0.691) habits were found between refueling and
office workers.

3.2. BTEX Levels of Refueling and Office Area Air Samples

The results of BTEX levels in refueling and office area air samples are reported in Table 2.
In the refueling area, the average levels of benzene, toluene, ethylbenzene, m-xylene, p-xylene,
and o-xylene were 60.03, 317.76, 113.85, 40.91, 57.51, and 37.18 µg/m3, respectively. In the office
area, the average levels of benzene, toluene, ethylbenzene, m-xylene, p-xylene, and o-xylene were
16.86, 89.93, 12.09, 28.44, 10.62, and 15.67 µg/m3, respectively. In both refueling and office areas of the
sampled gas stations, the average BTEX concentrations in the air were ranked in the following order:
toluene > m-xylene > benzene > o-xylene > ethylbenzene > p-xylene. Statistical analysis of the data
showed that the concentrations of BTEX compounds of occupational air samples in the refueling areas
were all significantly (p < 0.001) higher than those of the air samples collected from the office area.

Table 2. BTEX levels in the breathing zone air of the office area and refueling area (µg/m3, n = 26).

Compound
Refueling Area Office Area

z p
Mean Median P25 P75 Mean Median P25 P75

Benzene 60.03 41.89 26.54 60.36 16.86 9.59 5.42 21.75 −4.868 <0.001
Toluene 317.76 211.41 122.50 353.93 89.93 31.58 12.61 141.32 −4.392 <0.001

Ethyl-benzene 40.91 21.00 14.05 53.33 12.09 3.92 1.91 16.68 −3.990 <0.001
m-xylene 113.85 58.44 35.85 140.56 28.44 7.11 3.64 42.87 −4.081 <0.001
p-xylene 37.18 21.92 13.85 42.46 10.62 3.06 1.55 16.72 −4.099 <0.001
o-xylene 57.51 29.18 18.16 76.79 15.67 4.14 2.37 23.98 −4.008 <0.001

BTEX: Benzene, toluene, ethyl-benzene, m-xylene, p-xylene and o-xylene. P25: 25th percentile.
P75: 75th percentile.

3.3. Oxidative Stress Indicators in Refueling and Office Workers

The activities of T-SOD and the GSH levels were significantly (zT−SOD = −6.303, zGSH = −3.885,
p < 0.001) decreased in refueling workers compared with office workers, while the MDA and 8-OHdG
levels were significantly elevated (zMDA = −5.864, z8–OHdG = −6.047, p < 0.001), as reported in Table 3.

Table 3. T-SOD, GSH, MDA, 8-OHdG, micronucleus rate, TM and OTM in refueling workers and
office workers.

Oxidative Stress and
Genetoxic Indicators

Refueling Workers (n = 200) Office Workers (n = 52)

Median (P25–P75) Median (P25–P75)

T-SOD (U/mL) 42.97 (39.04–47.04) 48.70 (45.49–52.46)
GSH (mg/L) 6.91 (5.56–8.61) 8.85 (6.29–10.99)

MDA (µmol/L) 3.02 (2.55–3.70) 2.42 (2.09–2.77)
8-OHdG (mg/L) * 23.23 (15.87–39.21) 19.79 (13.54–25.58)

micronucleus rate (‰) 3.00 (1.00–8.00) 2.00 (0.25–3.00)
TM (µm) 0.094 (0.045–0.215) 0.064 (0.027–0.113)

OTM (µm) 0.160 (0.099–0.285) 0.104 (0.068–0.153)

* 8-OHdG was analyzed only in 57 refueling workers and 43 office workers. T-SOD: Total-superoxide
dismutase. GSH: Glutathione. MDA: Malondialdehyde. 8-OHdG: 8-Hydroxydeoxyguanosine. TM: Tail
moment. OTM: Olive tail moment.
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3.4. MNT and Comet Assay in Refueling and Office Workers

The micronucleus rate in refueling workers was significantly higher than that of office workers
(zMicronucleus rate = −4.123, p < 0.001). Similarly, TM and OTM were significantly longer in refueling
workers compared with those in the office workers (zTM = −2.779, p = 0.005; zOTM = −3.496, p < 0.001),
as reported in Table 3.

3.5. Multiple Linear Regression for T-SOD, GSH, MDA, 8-OHdG, Micronucleus Rate, TM, and OTM in
Refueling and Office Workers

The results of the multiple linear regression analysis are reported in Table 4. For T-SOD, GSH,
MDA, 8-OHdG, the micronucleus rate, TM, and OTM, both models were significant, with R2 values of
0.152, 0.094, 0.087, 0.091, 0.214, 0.035, and 0.044, respectively. After controlling for the confounding
factors (age, gender, years of exposure, and smoking and drinking habits), T-SOD, GSH, MDA, 8-OHdG,
TM, and OTM were influenced by the groups, the micronucleus rate was influenced by the groups and
years of exposure. The activities of T-SOD and levels of GSH in refueling workers were significantly
higher than in office workers. On the contrary, the levels of MDA, 8-OHdG, the micronucleus rate,
TM, and OTM in refueling workers were significantly lower than in office workers. In addition,
the micronucleus rate was positively correlated with years of exposure.

Table 4. Multiple linear regression analysis of products of serum oxidative stress and genotoxicity end
points with independent variables.

Dependent Variables Independent Variables * β (SE) t p

T-SOD groups −5.987 (0.972) −6.159 <0.001
GSH groups −2.628 (0.551) −4.768 <0.001
MDA groups 0.778 (0.148) 5.240 <0.001

8-OHdG groups 5.958 (2.606) 2.286 0.025

Micronucleus rate
groups 3.685 (0.683) 5.476 <0.001

years of exposure 0.236 (0.021) 3.892 <0.001
TM groups 0.103 (0.035) 2.897 0.004

OTM groups 0.110 (0.033) 3.344 0.001

* Group assignment: Refueling workers for 1, office worker for 0. SE: Standard error.

4. Discussion

BTEX comprise the most important components of gasoline and can be found at low levels
in gasoline stations such as those reported earlier in other studies [10,22,23]. For benzene, toluene,
ethylbenzene, and xylene, the exposure limits of the time weighted average, which are recommended
by the National Institute for Occupational Safety and Health, are 0.1 (325 µg/m3), 100 (375 mg/m3),
100 (435 mg/m3), and 100 ppm (435 mg/m3 for three isomers), respectively [24–27]. In the present
study, the mean BTEX concentrations in the air were 60.03, 317.76, 113.85, 40.91, 57.51, and 37.18 µg/m3,
respectively, which are much lower than the current occupational limit values. However, the daily mean
concentrations of BTEX compounds in the ambient air of the refueling areas were significantly higher
compared with those in the office areas. This finding indicated that refueling workers were exposed
to higher levels of BTEX compared with office workers via inhalation because BTEX concentrations
significantly vary between the refueling and office areas. Similarly, air monitoring for benzene in petrol
pumps from northern India also revealed significantly higher benzene levels [28]. For all practical
reasons, fixed environmental monitoring was performed to characterize the exposure to BTEX in
our study, and the levels of BTEX that FFSAs may actually be exposed to could be underestimated.
According to previous studies [29] in which both ambient and personal breathing zone air sampling
were conducted, a higher level of BTEX was found in the personal breathing zone air when compared
to the ambient air. However, the variance of BTEX levels between the ambient and personal breathing
zone air was small.
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Furthermore, the concentrations of benzene, toluene, and m-xylene made up the greatest
percentage of BTEX in the air of the gas station in this study. Toluene can be used as an octane
booster in gasoline fuels, thus it is often used as a substitute for benzene. Nevertheless, toluene is
less toxic than benzene. Mixed xylenes are used to blend into the gasoline, and 40%–65% m-xylene is
typically present in mixed xylenes. That may explain why the m-xylene is in a majority of BTEX in the
air samples among the three isomers of the xylene. However, mixed xylenes are classified as a Group
D substance by USEPA which means they are not classifiable as to human carcinogenicity [30].

As a consequence, the reduction of the antioxidant ability and the genetic damage induced
by low levels of BTEX were found in the refueling workers of gas stations in the present study.
The T-SOD activities and GSH levels were significantly lower in refueling workers than in office
workers, whereas the MDA and 8-OHdG levels showed the opposite trends. Our results are also
supported by investigations on oxidative stress detected in various occupational exposures [31–33].
Comet parameters were used to study DNA damage, and significant increases in TM and OTM were
noted in refueling workers. This result suggested that exposure to BTEX in air may increase the DNA
damage in refueling workers, and the comet assay could be a useful detection method for occupational
exposure to BTEX via inhalation. Besides, there are animal experiments suggesting that long-term
VOC inhalation, including BTEX inhalation at low levels, can cause oxidative stress and a genotoxicity
response in mice [34]. Results showed that exposure to BTEX (indoor air quality standard dose) results
in oxidative lung damage, which is supported by significant changes in GSH and MDA. BTEX exposure
also induces significant DNA damage in the liver. Because of a large sample size, immunoenzymatic
assays were used to determine the biomarkers of the oxidative stress and genotoxicity of gas station
workers in our study, the results of which may be less sensitive and specific since they could be affected
by some exogenous factors, especially when compared to gas chromatography/mass spectrometry
or liquid chromatography-mass spectrometry methods. However, immunoenzymatic assays can
still be used to test the biomarkers when they can meet the requirements of accuracy and precision,
which means more attention should be paid to the accuracy of methods in our future research.

Meanwhile, a significant increase of the micronucleus frequency in BECs in refueling workers was
also found. Notably, we observed a consistent trend with the micronucleus frequencies in previous
studies, which were tested in peripheral blood lymphocytes [28,35]. Therefore, our study may suggest
that the micronucleus ratio of BECs could also reflect the damage of the genetic material. The MNT in
BECs could serve as a more economical and convenient assay in detecting genotoxic damage caused
by exposure to BTEX.

5. Conclusions

In conclusion, our results showed that despite the fact that the BTEX levels are below the current
occupational exposure limits, the decrease of antioxidant enzymes and the increase of genotoxic
damage could still be observed in refueling workers. Therefore, our results suggested that the
end points of oxidative stress and genotoxicity are both useful biomarkers (of exposure and effect,
respectively) of occupational exposure to low levels of BTEX. The results also suggested that MNT
in BEC could also be a reliable assay in detecting the DNA damage in BTEX-exposed workers of
gas stations. However, for the present results, we still need large, retrospective cohort studies with
sufficient follow-up to understand the effects of long-term exposure to low levels of BTEX, specifically
in developing countries to ensure occupational health.
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