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ABSTRACT

Metabolic disturbance plays a critical role in the initiation of colorectal cancer (CRC), yet the identification of metabolites that
are useful for early detection of CRC and its precursor lesions remains elusive. We conducted an untargeted plasma metabolomic
profiling by liquid chromatography-mass spectrometry in a two-stage case—control study, including 219 CRC cases, 164 colorectal
adenoma (CRA) cases, and 219 normal controls (NC) as a training set, and 91 CRC, 115 CRA, and 109 NC as a validation set.
Among 891 named metabolites, 239 were significantly altered in CRC versus NC, 26 in CRA versus NC, and 88 in CRC versus
CRA within the training set. The results were stable when adjusting for potential confounders. A panel of 10 metabolites,
including six lipid species, one benzenoid, one organoheterocyclic compound, one organic acid derivative, and one organic oxygen
compound, showed optimal performance in discriminating CRC from NC (AUC = 0.81) in the validation. Moreover, a panel of
seven metabolites exhibited optimal performance in discriminating CRA from NC, with an AUC of 0.89. Our findings provide novel
evidence supporting specific plasma metabolites, particularly those implicated in lipid metabolism, as promising biomarkers for
the early detection of CRC.

#Jianv Huang, Le Wang and Xiang Zhang are co-first authors and contributed equally to this work.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

© 2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

MedComm, 2025; 6:¢70201 1of11
https://doi.org/10.1002/mc02.70201


https://doi.org/10.1002/mco2.70201
https://orcid.org/0000-0002-6142-7134
mailto:hangdong@njmu.edu.cn
mailto:junyu@cuhk.edu.hk
mailto:hexsheng@mail.sysu.edu.cn
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/mco2.70201

1 | Introduction

Globally, colorectal cancer (CRC) ranks third in incidence among
all malignancies and is the second most common cause of cancer
mortality, with an estimated 1.9 million newly diagnosed cases
and 0.9 million deaths in 2022 [1]. While highly developed
countries have seen a decrease in the burden of CRC, primarily
due to national CRC screening programs, low- and middle-
income countries have experienced a rapid upward trend [1]. In
China, CRCisarapidly increasing and deadly disease, accounting
for 28.8% of all incident CRC cases and 30.6% of all CRC-
caused deaths worldwide [2]. Unfortunately, less than 20% of the
cases were diagnosed at stage I, with approximately half being
diagnosed at stages I1I and IV [3].

Although colonoscopy is widely acknowledged as the gold stan-
dard for detecting CRC, its limited adherence and screening
effectiveness in the general population present significant chal-
lenges [4, 5]. Pre-selecting individuals who benefit the most
from screening has been proposed as great potential for enhanc-
ing the cost-effectiveness of screening programs [6, 7]. Fecal
hemoglobin measured through the fecal immunochemical test
(FIT) is the widely used biomarker to facilitate such pre-selection.
According to a previous meta-analysis, the sensitivity of FIT in
asymptomatic average-risk adults was 91% for CRC and 40% for
advanced adenoma at a positivity threshold of 10 ug hemoglobin/g
[8]. Despite its safety, affordability, and ease of use, the poor
sensitivity of FIT for detecting adenomas has limited its potential
to further decrease the incidence of CRC [9, 10].

Recent studies have emphasized the potential of single biomarker
and biomarker combinations in advancing blood-based tests for
CRC screening [11]. Carcinoembryonic antigen (CEA) serves as a
widely employed clinical marker for CRC diagnosis [11]. However,
the diagnostic sensitivity of CEA was only 33% for early-stage
CRC and 14% for colorectal adenoma [12, 13]. Other biomarkers,
such as serum cancer antigen 19-9, cytokeratin fragment 21-
1 (CyFra21-1), high-sensitivity C-reactive protein (hs-CRP), and
ferritin, have also been investigated, with individual areas under
the curve (AUC) all less than 0.65 [13, 14]. A combination of CEA,
CyFra2l-1, ferritin, and hs-CRP could improve the performance
for detecting CRC and high-risk adenoma, but the sensitivity
(60%) and specificity (75%) remained suboptimal [14]. These
findings underscore the urgent necessity for more sensitive and
specific biomarkers to enhance early detection of CRC and its
precursors.

Metabolic reprogramming is a recognized core hallmark of
cancer development [15]. Metabolomics, an advanced technology
that can measure a broad spectrum of metabolites, offers a
new opportunity to discover novel biomarkers for early cancer
detection and to decipher mechanisms underlying carcinogen-
esis [16]. Several well-designed studies have reported promising
diagnostic accuracy for CRC using a combination of serum
tyrosine and glutamine-leucine [17], as well as different panels of
serum metabolite derived from the gut microbiome [18, 19], with
the AUCs of the receiver operating characteristic curve (ROC)
ranging from 0.80 to 0.98. However, the metabolites identified
in different studies had poor overlap and the diagnostic perfor-
mance for adenoma varied significantly [20]. These discrepancies

are likely due to the heterogeneity of study populations, such
as age, sex, lifestyle factors, and disease status, as well as varia-
tions in metabolomic methods including analytical instruments,
metabolome coverage, and data processing. Therefore, further
high-quality research is crucial to identify and validate reliable
biomarkers that can facilitate CRC early detection.

In this study, we initially carried out two matched case-
control studies serving as a training set, in which untargeted
metabolomics profiling of plasma samples was performed and
pairwise comparisons between CRC, colorectal adenoma (CRA),
and normal control (NC) were conducted to identify repro-
ducible metabolic biomarkers. Subsequently, we utilized machine
learning approaches to develop metabolic models and externally
validated their diagnostic performance for CRC and CRA in
another independent case—control study.

2 | Results

2.1 | Metabolic Profiles in CRC Progression

A total of 891 plasma metabolites were included in the analysis
and grouped into 13 chemical superclasses. These superclasses
included lipids and lipid-like molecules (51.52%), organohete-
rocyclic compounds (12.68%), organic acids and derivatives
(11%), organic oxygen compounds (8.87%), benzenoids (6.73%),
phenylpropanoids and polyketides (4.04%), organic nitrogen
compounds (2.13%), nucleosides, nucleotides, and analogues
(1.23%), alkaloids and derivatives (0.90%), hydrocarbons and
derivatives (0.56%), homogeneous non-metal compounds (0.11%),
organohalogen compounds (0.11%), and organosulfur compounds
(0.11%) (Figure 1A). Partial least squares-discrimination anal-
ysis (PLS-DA) revealed significant differences in the overall
metabolomic profiles for CRC, CRA, and NC in both the Nanjing
and Guangzhou studies (p < 0.05) (Figure 1B).

2.2 | Identification of Metabolic Biomarkers for
Colorectal Neoplasia

We identified various metabolites that had significantly altered
abundances between CRC, CRA, and NC (fold change [FC] > 1.2
or < 0.8, and pppy < 0.05). Volcano plots were generated to display
the log, fold change (x-axis) versus the adjusted —log,,p value
from the Tukey’s honestly significant difference (HSD) test (y-
axis) for each metabolite in Nanjing (Figure 2A) and Guangzhou
(Figure 2B). After cross-validating the results of the two studies
(Figure 2C, Table S1), we detected 239 metabolites with significant
differences in CRC patients compared to NC, including 19 ele-
vated metabolites (six lipids and lipid-like molecules, five organic
acids and derivatives, four organic oxygen compounds, two
organoheterocyclic compounds, one benzenoid, and one organic
nitrogen compound) and 220 reduced metabolites (164 lipids
and lipid-like molecules, 15 benzenoids, 9 organoheterocyclic
compounds, 7 organic acids and derivatives, 5 phenylpropanoids
and polyketides, 14 organic oxygen compounds, 4 nucleosides,
nucleotides, and analogues, 1 alkaloids and derivative, and 1
organic nitrogen compound). Differential metabolites between
CRC and NC were illustrated by the heatmaps (Figures S1-S3).
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Untargeted metabolic profiles in the Nanjing and Guangzhou studies. (A) A pie graph of 13 chemical superclasses of 891 plasma

metabolites. (B) PLS-DA plots based on 891 metabolites revealed clear separation of CRC, CRA, and NC groups in the Nanjing and Guangzhou studies.
CRA, colorectal adenoma; CRC, colorectal cancer; NC, normal control; PLS-DA, partial least squares discriminant analysis.

By comparing CRA with NC, we identified 26 differential
metabolites, including two elevated metabolites (one hydrocar-
bon and one organoheterocyclic compound) and 24 reduced
metabolites (15 lipids and lipid-like molecules, 4 organohete-
rocyclic compounds, 2 organic acids and derivatives, 1 ben-
zenoid, 1 organic oxygen compound, and 1 organic nitrogen
compound) (Table S1). Notably, the levels of 15 metabolites
were consistently lower in both CRA and CRC as com-
pared to NC (Figure S4). The heatmaps were also gener-
ated to show differential metabolites between CRA and NC
(Figures S1-S3).

By comparing CRC with CRA, a total of 88 metabolites showed
significant differences, including six elevated metabolites (three
organic oxygen compounds, two lipids and lipid-like molecules,
and one organoheterocyclic compound) and 82 reduced metabo-
lites (52 lipids and lipid-like molecules, 12 organic oxygen
compounds, 6 benzenoids, 4 organoheterocyclic compounds, 4
organic acids and derivatives, 2 nucleosides, nucleotides, and ana-
logues, and 2 phenylpropanoids and polyketides). The differential
metabolites were also depicted in the heatmaps (Figures S1-S3).
The multivariate logistic regression models with adjustment for
age, area, body mass index, smoking status, and alcohol drinking
confirmed the robustness of the results (Table S1).

We performed a pathway enrichment analysis to deepen our
insight into the functional roles of metabolites that showed sig-
nificant differences. The top three significant pathways for CRC
versus NC were alpha linolenic acid and linoleic acid metabolism,
threonine and 2-oxobutanoate degradation, and sulfate/sulfite
metabolism (Figure 3A). The differential metabolites within the
top three pathways are shown in Table S2. The pathway of
alpha linolenic acid and linoleic acid metabolism (normalized
enrichment score [NES], —1.36; p = 0.034) was found to be
downregulated in the CRC compared to the NC (Figure S5).
Within the pathway, the levels of stearidonic acid and linoleic acid
were significantly lower in CRC than in NC. In the case of CRA
versus NC, the top three significant pathways were glycerolipid
metabolism, fatty acid (FA) elongation in mitochondria, and FA
biosynthesis (Figure 3B). The pathway of gycerolipid metabolism
(NES, —1.39; p = 0.046) was found to be downregulated in CRA
compared to NC. The level of palmitic acid was significantly
lower in CRA than in NC (Figure S5). For CRC versus CRA,
the top three significant pathways were trehalose degradation,
sulfate/sulfite metabolism, and bile acid biosynthesis (Figure 3C).
In the trehalose degradation pathway (NES, 1.22; p = 0.286),
the level of trehalose was significantly higher, while the level of
adenosine diphosphate was significantly lower in CRC than in
CRA (Figure S5).
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FIGURE 2 | Pairwise comparisons of plasma metabolites between CRC, CRA, and NC in the Nanjing and Guangzhou studies. Volcano plots of
one-way ANOVA and Tukey’s HSD test results in the Nanjing (A) and Guangzhou (B) studies. The vertical dashed lines indicate the fold changes of 0.8
(left) and 1.2 (right). The horizontal dashed line indicates the FDR of 0.05. (C) Scatter plots for the consistency of differential metabolites between the two
studies. Each point represents a metabolite, with significant changes depicted in red (upregulated) or blue (downregulated), and all other metabolites
shown in grey. ANOVA, one-way analysis of variance; CRC, colorectal cancer; CRA, colorectal adenoma; FDR, false discovery rate; HSD, honestly

significant difference; NC, normal control.

2.3 | Assessment of Diagnostic Performance for
Colorectal Neoplasia

We utilized the least absolute shrinkage and selection operator
(LASSO) algorithm to select biomarkers of diagnostic ability
among the above-mentioned differential metabolites. Among the
239 metabolites showing significant differences between CRC and
NC, we found that a panel of 10 metabolites, which were down-

regulated in CRC, displayed an AUC of 0.961 (95% CI: 0.945-0.976;
sensitivity: 94.1%, specificity: 85.4%) to discriminate CRC from NC
in the training set and an AUC of 0.810 (95% CI: 0.749-0.870; sen-
sitivity: 71.4%, specificity: 78.0%) in the validation set (Figure 4).
The positive predictive value (PPV) and negative predictive value
(NPV) were 0.866 (95% CI: 0.839-0.940) and 0.935 (95% CI: 0.866—
0.962), respectively, in the training set, as well as 0.730 (95% CIL:
0.646-0.965) and 0.766 (95% CI: 0.664-0.873), respectively, in the
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TABLE 1 | The PPV and NPV of metabolic biomarkers in the training and validation sets.

Datasets Groups PPV NPV

Training set CRCvs.NC 0.866 (0.839-0.940) 0.935 (0.866-0.962)
CRA vs. NC 0.970 (0.931-1.000) 0.977 (0.957-1.000)
CRCvs. CRA 0.860 (0.806-0.959) 0.793 (0.678-0.907)

Validation set CRCvs.NC 0.730 (0.646-0.965) 0.766 (0.664-0.873)
CRA vs. NC 0.841 (0.776-0.953) 0.820 (0.727-0.906)
CRCvs. CRA 0.725 (0.597-0.900) 0.738 (0.658-0.856)

Abbreviations: CRA, colorectal adenoma; CRC, colorectal cancer; NC, normal control; NPV, negative predictive value; PPV, positive predictive value.
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receiver operating characteristic curve; CEA, carcinoembryonic antigen.

validation set (Table 1). In addition, we found that the metabolic
panel exhibited significantly superior performance (AUC = 0.900,
95% CI: 0.857-0.943; sensitivity: 75.0%, specificity: 91.3%) in dis-
criminating CRC from NC compared to CEA (AUC = 0.773, 95%
CI: 0.705-0.841; sensitivity: 67.4%, specificity: 76.1%) (DeLong test,
p = 0.003) (Figure 5). The panel included six lipids and lipid-like
molecules ((9S,10E,12Z,15Z)-9-hydroxy-10,12,15-octadecatrienoic
acid, carnosic acid, DGTS(2:0/20:1), LPC(19:0), LysoPI(18:0/0:0),
and methyl jasmonate), one benzenoid (3,4-dihydroxybenzoic
acid), one organoheterocyclic compound (2-hydroxyxanthone),
one organic oxygen compound (Cer/AS(d14:2/13:1)), and one
organic acid derivative (4-methyl-2-oxovaleric acid). The perfor-
mance of individual metabolites in discriminating CRC from NC
is presented in Table S3, with the AUC ranging from 0.562 to 0.727
calculated by support vector machine (SVM) in the validation set.
Moreover, these metabolites together had a good discriminatory
ability for early-stage CRC (0-II) versus NC (AUC = 0.797, 95%
CI: 0.704-0.890) (Figure S6), and displayed similar diagnostic
performance for colon cancer (AUC = 0.824, 95% CI: 0.741-0.908)
and rectum cancer (AUC = 0.862, 95% CI: 0.794-0.931) in the

validation set (Figure S7). Additionally, the panel exhibited an
AUC of 0.711 (95% CI: 0.642-0.780) in discriminating CRA from
NC and an AUC of 0.854 (95% CI: 0.802-0.907) in discriminating
CRC from CRA (Figure S8).

We further evaluated the predictive performance of this metabolic
panel for four other types of tumors. The panel displayed an
AUC of 0.669 (95% CI: 0.564—0.774; sensitivity: 65.5%, specificity:
67.3%) for esophageal cancer, an AUC of 0.663 (95% CI: 0.559-
0.767; sensitivity: 41.8%, specificity: 98.2%) for gastric cancer, an
AUC of 0.802 (95% CI: 0.716-0.888; sensitivity: 65.5%, specificity:
89.1%) for liver cancer, and an AUC of 0.733 (95% CI: 0.641-0.825;
sensitivity: 41.8%, specificity: 94.5%) for breast cancer (Figure S9).
The results of low AUCs for the other types of cancer indicate that
the panel serves as a relatively specific diagnostic tool for CRC.

When comparing the change in plasma metabolites before and
after surgery for CRC patients, we found that among the ten
metabolites included in the metabolic panel, the level of 2-
hydroxyxanthone, which was lower in CRC compared to NC, was
significantly increased after surgery (Figure S10). Additionally,
we compared the levels of selected metabolites in tumor and
adjacent normal tissues and found that the level of carnosic
acid was significantly decreased in tumor compared to adjacent
normal tissues (Figure S11).

Among the 26 differential metabolites between CRA and NC, a
panel of seven metabolites was identified to have superior diag-
nostic performance for CRA. In the training set, these metabolites
showed an AUC of 0.997 (95% CI: 0.993-1.000; sensitivity: 97.0%,
specificity: 97.7%), a PPV of 0.970 (95% CIL: 0.931-1.000), and
an NPV of 0.977 (95% CI: 0.957-1.000). The validation set also
demonstrated excellent performance, with an AUC of 0.894
(95% CI: 0.851-0.937; sensitivity: 82.6%, specificity: 83.5%), a PPV
of 0.841 (95% CI: 0.776-0.953), and an NPV of 0.820 (95% CI:
0.727-0.906) (Figure 4 and Table 1). The seven metabolites were
downregulated in CRA, which included five lipids and lipid-like
molecules ((9S,10E,12Z,15Z)-9-hydroxy-10,12,15-octadecatrienoic
acid, ACar (18:3), P1(16:0/18:3), setariol, and SHexCer(d29:1)), one
organic acid (palmitoylethanolamide), and one organic nitrogen
compound (phytosphingosine).

A panel of six metabolites was identified from the 88 differential
metabolites between CRC and CRA to discriminate CRC from
CRA. The panel showed an AUC of 0.905 (95% CI: 0.876—
0.935; sensitivity: 84.0%, specificity: 81.7%) in the training set
and 0.776 (95% CI: 0.711-0.840; sensitivity: 63.7%, specificity:
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80.9%) in the validation set (Figure 4). The PPV and NPV
were 0.860 (95% CI:. 0.806-0.959) and 0.793 (95% CI. 0.678-
0.907), respectively, in the training set, as well as 0.725 (95% CI:
0.597-0.900) and 0.738 (95% CI: 0.658-0.856), respectively, in the
validation set (Table 1). The six metabolites included three lipids
and lipid-like molecules ((3beta,5alpha,6beta,7alpha,22E,24R)-
ergosta-8,22-diene-3,5,6,7-tetrol, ACar (10:0), and (R)-3-hydroxy-
tetradecanoic acid), two organic oxygen compounds (trehalose
and Cer/AS(d14:2/13:1)), and one phenylpropanoid (mulberrofu-
ran E). The ROC analysis based on SVM demonstrated the similar
AUC results (Figure S12).

The majority of selected predictors from the random forest
remained the same as those from LASSO (Figure S13). Compared
to the metabolites selected by LASSO, the metabolites selected by
the random forest exhibited similar performance in distinguish-
ing CRC from NC, but inferior performance in distinguishing
CRA from NC and CRC from CRA (Figure S14).

3 | Discussion

In this multicenter case-control study, we identified distinct
plasma metabolomic profiles between CRC, CRA, and NC. We
also evaluated the diagnostic accuracy of metabolic biomarkers
selected by machine learning models for CRC and CRA. The
results showed that a panel of 10 metabolites had excellent
discrimination ability to distinguish CRC from NC, while seven
metabolites performed well in discriminating CRA from NC.
Additionally, six metabolites exhibited potential to discriminate
CRC from CRA. Most of the metabolites belong to lipids and
lipid-like molecules. Our study thus provides novel evidence
indicating that specific lipid metabolites hold significant potential
as noninvasive biomarkers for the CRC early detection.

According to a recent systematic review [20], previous studies
evaluating the diagnostic potential of metabolomics for CRC were
often limited by small sample sizes (typically less than 100 cases)
and without replicating their findings in independent datasets.
Only a few studies adopted a two-stage design with discovery
and replication phases to increase confidence in the validity of
metabolic biomarkers, and even fewer studies have committed
to exploring biomarkers for CRA. For instance, based on one
hospital, Chen et al. recruited 49 CRC, 12 CRA, and 31 NC cases
as a discovery set, as well as 84 CRC, 19 CRA, and 53 NC cases
as a validation set. They identified eight gut microbiome-related
serum metabolites with potential for CRC (AUC = 0.92) and
CRA (AUC = 0.84) diagnosis in the validation [18]. In addition,
Coker et al. established a biomarker signature of twenty gut
microbiome-related metabolites, showing an AUC of 0.80 for
CRC and 0.66 for CRA [19]. However, there were no common
biomarkers between the two studies. In the current study, we
first conducted two case-control studies to reduce the risk of
false positivity, and then validated the model based on the same
platform and protocols using data from another independent
population, ensuring the validity and generalizability of our
findings. The validated performance of our model for CRA versus
NC (AUC = 0.89) is greater than those previously reported. The
model also outperforms the current noninvasive tools clinically
used for CRA diagnosis, such as the multi-target fecal DNA
test and FIT, which have reported sensitivities of only 42% [21]

and 40% [8], respectively. Furthermore, we identified a panel
of six metabolites for distinguishing CRC from CRA with AUC
of 0.905 in the training set and 0.776 in the validation set.
Only a few studies have focused on identifying biomarkers to
distinguish CRC from CRA. One study reported that a panel of
13 gut microbiome-related metabolites differentiated CRC from
CRA with an AUC of 0.81 [19], while another study found that
diacyl-glycerophosphocholines C36:5 discriminated CRC from
CRA with an AUC of 0.83 [22]. Neither of the studies validated
their findings in an independent cohort.

One of the key findings from our study is that significant
alterations in lipid metabolism were associated with colorectal
carcinogenesis. Among 239 differential metabolites between CRC
and NC, 170 metabolites could be classified into lipids and lipid-
like molecules and majority of them were downregulated in CRC
patients. This pattern might reflect an increase in rate of lipid
degradation as energy resources for the uncontrolled proliferation
rate of malignant cells [23]. Referring to phospholipids, which
have been extensively researched, as an illustration, a prior case—
control study utilizing lipidomic approaches discovered that CRC
patients had decreased levels of five phosphatidylcholines (PCs),
four lyso-phosphatidylcholine (LPCs) (also including LPC(14:0)
and LPC(18:2)), and 11 phosphatidylethanolamine (PEs) in
plasma as compared to healthy controls [24], lending support to
our findings. In a two-stage case-control study, serum levels of
seven LPCs including LPC(15:0) were also found to be lower in
CRC cases than in healthy individuals [25]. Moreover, a nested
case—control study based on two prospective Shanghai cohorts
revealed that lower levels of PC(22:6/18:0) and seven PEs were
associated with an increased risk of CRC [26]. For adenoma, a
case—control designed lipidomics study found that CRA patients
had lower levels of five PCs in serum than healthy controls
[27]. These epidemiological data indicate a potential role of
certain phospholipids in CRC initiation, and further biological
investigations are necessary to confirm the hypothesis.

The diagnostic potential of phospholipids and other lipid species
has been previously proposed. For example, Li et al. found
gradual decreases in plasma levels of major LPC species as
CRC progressed, and certain choline-containing phospholipids
achieved 88% sensitivity and 80% specificity in distinguishing
CRC from healthy controls [28]. Shen et al. identified LPC(18:2),
LPC(18:3), PE(O-36:3), PE(O-38:3), ceramide(44:5), phosphatidyl-
glycerol(34:0), and two sphingomyelins as promising diagnostic
biomarkers for CRC, with AUC > 0.90 [24]. Similarly, in a plasma
lipidomics study by Zhou et al., 12 lipids primarily consisting of
PCs and FAs showed good diagnostic potential for CA (AUC >
0.90) [27]. However, it remains unknown whether these biomark-
ers can perform well in external validation. To make metabolomic
biomarkers clinically applicable, external validation is necessary.
In this study, we utilized an untargeted metabolomics approach
that encompassed a diverse range of metabolites, including
numerous species of lipids. To derive optimal models for CRC
and CRA, we selected metabolites of independent predictiv-
ity for CRC and CRA separately in a training set, and then
externally validated the models. Our findings indicate that a
panel of 10 metabolites, including two phospholipids (LPC(19:0)
and LysoPI(18:0/0:0)), one FA derivative (methyl jasmonate),
one glycerolipid (DGTS(2:0/20:1)), one lineolic acid derivative
((9S,10E,12Z,15Z)-9-hydroxy-10,12,15-octadecatrienoic acid), and

7of11



one prenol lipid (carnosic acid) showed an AUC of 0.81 in the
external validation for discriminating CRC from NC. The panel
also showed a good discriminatory ability for early-stage CRC
with an AUC of 0.80. For CRA, a panel of seven metabolites,
which incorporated five lipid species, was identified with a
validated AUC of 0.89. Therefore, our results support that plasma
metabolite biomarkers have potential to serve as a promising tool
for the detection of CRC and CRA.

Apart from lipids, a previous case—control study reported that
serum level of benzoic acid was downregulated in CRC patients
compared to those without CRC, and this metabolite could
be useful for CRC diagnosis (AUC = 0.89) [29]. Our model
for distinguishing CRC from NC also included a benzoic
acid derivative, namely, 3,4-dihydroxybenzoic acid. This com-
pound has been suggested to have an inhibitory effect against
intestinal carcinogenesis [30]. Additionally, as far as we know,
this study for the first time identified an organoheterocyclic
compound (2-hydroxyxanthone), an organic acid derivative (4-
methyl-2-oxovaleric acid), and an organic oxygen compound
(Cer/AS(d14:2/13:1)) as promising biomarkers for CRC detection.
Invitro and vivo studies suggest that hydroxyxanthones may serve
asan anticancer agent against several cancers including CRC [31].
The roles of 4-methyl-2-oxovaleric acid and Cer/AS (d14:2/13:1) in
CRC remain to be determined.

A major strength of this study is based on a two-stage design with
discovery and replication phases involving three independent
case—control studies, because it enabled the exclusion of metabo-
lites with inconsistent associations with the case-control status.
Additionally, machine learning approaches were employed to
identify reliable biomarker panels. However, several limitations
should be acknowledged as well. First, the retrospective design
of the study limited our ability to establish causal associations.
Future studies with prospective designs and biological experi-
ments would be useful in explaining the associations observed
in the current study. Second, metabolomics data from the untar-
geted approach were relative quantification. Efforts are required
to determine absolute concentrations of the biomarkers before
clinical translation. Finally, it remains undetermined whether
the differential metabolites in plasma could reflect the status in
colorectal tissues. In vivo and in vitro experiments are warranted
to clarify the origin and biological mechanisms of the identified
metabolites.

In conclusion, our study revealed obvious differences in plasma
metabolic profiles of CRC, CRA, and NC, suggesting significant
perturbations of energy metabolism in colorectal carcinogenesis.
Specific metabolites, particularly lipid and lipid-like molecules,
showed good potential to improve the early detection of CRC.
These results provide new clues on metabolic mechanisms
underlying CRC and afford novel biomarkers for future clinical
utility.

4 | Methods and Materials
4.1 | Study Design and Population

Three case-control studies were conducted involving 975 par-
ticipants. The Nanjing study recruited 112 CRC patients, 57

CRA patients, and 112 individuals as NC from the Second
Affiliated Hospital of Nanjing Medical University in Nanjing,
China. The Guangzhou study included 107 CRC, 107 CRA,
and 107 NC cases from the Sixth Affiliated Hospital of Sun
Yat-sen University in Guangzhou, China. The Kunming study
enrolled 91 CRC, 115 CRA, and 109 NC cases from the First
Affiliated Hospital of Kunming Medical University, Kunming,
China. Demographic characteristics of participants are shown in
Table S4.

All patients were newly diagnosed and confirmed by histol-
ogy. Exclusion criteria included (1) receipt of any treatment
before enrollment; (2) history of intestinal inflammation, infec-
tious injury, or diarrhea; (3) history of surgery on colorec-
tal or any malignant tumors; and (4) hereditary or familial
CRC. The NC group was randomly selected from those with
normal colonoscopy in the same hospital as the correspond-
ing case group. In the Nanjing and Guangzhou studies, NC
was 1:1 matched to CRC and CRA on age (+2 years) and
sex. These two studies were designed to identify differential
metabolites and train diagnostic models, while the Kunming
study served as an external validation set (see flowchart in
Figure 6).

To compare the performance of metabolites and CEA in aiding
the diagnosis of CRC, we additionally recruited 92 CRC and
92 NC cases from the Zhejiang Cancer Hospital in Hangzhou,
China. The recruitment and exclusion criteria were consistent
with those employed in Nanjing and Guangzhou. Serum CEA
concentrations, which were measured using an electrochemilu-
minescence immunoassay (CEA assay kit, Cobas e 801, Roche,
Basel, Switzerland), were retrieved from medical records. To
determine whether the plasma metabolites identified in this study
were relatively specific diagnostic markers for CRC, we randomly
recruited 55 patients with esophageal cancer, 55 with gastric
cancer, 55 with liver cancer, 55 with breast cancer, and 55 NC
from the biobank of the Zhejiang Cancer Hospital. To evaluate the
change in plasma metabolites before and after treatment for CRC
patients, we included an additional group of 25 CRC patients who
provided blood samples both before and 5-7 days after surgery. To
explore whether the metabolites with significant differences in
plasma between CRC and NC were also differentially expressed
in tumor and normal tissues, we included an additional group of
25 CRC patients who provided paired tumor and adjacent normal
tissue samples.

4.2 | Sample Collection and Metabolomic
Profiling

Each participant provided approximately 5 mL of peripheral
venous blood after fasting for a minimum of 8 h overnight. For
patients with CRC and CRA, blood samples were drawn prior to
any treatment. To determine the change in metabolites before and
after treatment, a subset of CRC patients was asked to provide
blood samples both before and 5-7 days after surgery. The blood
samples were drawn by trained healthcare professionals using
ethylenediaminetetraacetic acid anticoagulant tubes. Within 2 h
of collection, the blood samples underwent rapid centrifugation
to separate into plasma, red blood cells, and white blood cells, all
of which were then stored at —80°C.
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(n=107) (n=107)

ANOVA & HSD test's
FDR <0.05 &
Fold change >1.2 or <0.8

187 239 99 155 26 129 201 88 157
Nanjing Guangzhou Nanjing Guangzhou Nanjing Guangzhou
CRC vs.NC CRCvs. NC CRA vs. NC CRA vs. NC CRC vs. CRA CRC vs. CRA

LASSO regression &
ROC analysis

Kunming study

CRC patients
(n=91)

CRA patients NC
(n=115)

(n=109)

FIGURE 6 |

Schematic flow chart of the study. The case-control studies in Nanjing and Guangzhou (training set) were deigned to identify

reproducible metabolic biomarkers of diagnostic potential in plasma using untargeted metabolomics. The case—control study in Kunming (validation

set) was conducted to externally validate the diagnostic performance of selected metabolites. ANOVA, one-way analysis of variance; CRA, colorectal

adenoma; CRC, colorectal cancer; FDR, false discovery rate; HSD, honestly significant difference; LASSO, least absolute shrinkage and selection operator;

NC, normal control; ROC, receiver operating characteristic.

Additionally, tumor and adjacent normal tissues from CRC
patients were obtained during surgery and subsequently flushed
using phosphate-buffered saline. After the operation, all tissue
specimens were immediately snap-frozen in liquid nitrogen.

The details of laboratory procedures have been outlined pre-
viously [32]. Briefly, an aliquot of plasma specimen (100 pL)
was mixed with methanol containing isotope-labeled internal
standard (300 pL). Supernatants were separated by high-speed
centrifugation after vortexing, sonication, and incubation pro-
cesses. To prepare the quality control sample, equal volumes
of the supernatants from each of the samples were combined.
High-resolution and accurate profiling data were obtained using
liquid chromatography-mass spectrometry (LC-MS) technique
that comprised of UHPLC System (Vanquish, Thermo Fisher
Scientific, Waltham, MA) coupled to a Orbitrap Exploris 120 mass
spectrometer (Orbitrap MS, Thermo Fisher Scientific). Chro-
matography separation was achieved using UPLC HSS T3 column
(21 mm x 100 mm, 1.8 um) and a mobile phase consisting of
5 mmol/L ammonium acetate and 5 mmol/L acetic acid in water
(A) and acetonitrile (B). The MS/MS spectra was acquired in
a mode of information-dependent acquisition, with electrospray
ionization settings configured as follows: a sheath gas flow rate of
50 Arb, an aux gas flow rate of 15 Arb, a capillary temperature

of 320°C, a full MS resolution of 60000, a MS/MS resolution
of 15,000, a collision energy of 10/30/60 in normalized collision
energy mode, and a spray voltage of 3.8 kV (positive) or —3.4 kV
(negative).

4.3 | Data Processing

The raw data of mass spectrometry were transformed into the
mzXML format by the MS Convert software within ProteoWizard
[33]. Peaks were detected, extracted, aligned, and integrated by
an in-house program (R package CAMERA). To ensure the
data quality, peaks with a relative standard deviation greater
than 0.3 in quality control samples and those with missing
value (intensity = 0) in more than 50% of the samples were
discarded. The LOESS method was used to normalize each peak
for predicting and correcting intensity of the same metabolite
across the real samples. [34] Metabolite was annotated by an in-
house MS2 database (Biotree, Shanghai, China). A total of 5736
metabolic features were detected in positive ionization mode, and
4626 features were detected in negative ionization mode. After
concatenating the positive-mode and negative-mode features, 1117
endogenous metabolites were annotated (MS2 score > 0.3). For
the current study, we included metabolites with a missingness
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rate less than 50% and imputed missing values with half of the
minimum value of each metabolite across all samples. Finally, 891
named metabolites were analyzed.

4.4 | Statistical Analysis

4.4.1 | Differential Metabolites Identification

To compare the differences in basic characteristics between CRC,
CRA, and NC, continuous variables were analyzed with one-way
analysis of variance (ANOVA), while categorical variables were
analyzed with chi-square tests. To improve normality, metabolite
data were natural-log transformed. PLS-DA was performed to
visualize metabolomic discrimination between CRC, CRA, and
NC. ANOVA with Tukey’s HSD tests were used to identify differ-
ential metabolites. The false discovery rate (FDR) was calculated
by the Benjamini-Hochberg procedure to correct for multiple
comparisons. Metabolites with an FC > 1.2 or < 0.8 and pgpg
< 0.05 in both the Nanjing and Guangzhou studies were selected
as candidate biomarkers. Heatmaps of differential metabolites
were constructed.

4.4.2 | Pathway Analysis

In the enrichment analysis, Human Metabolome Database IDs
were used to annotate metabolites and the pathway information
was collected from Small Molecule Pathway Database (https://
smpdb.ca/). Pathway enrichment analysis was conducted using
MetaboAnalyst 5.0 [35]. We then conducted gene set enrichment
analysis to obtain NES for the most significant pathway and depict
the upregulation or downregulation of metabolites [36].

4.43 | Machine Learning

The LASSO algorithm with 1000 runs was used to further select
the most reliable metabolites of diagnostic potential, requiring the
presence in at least 700 runs [37]. To confirm the robustness of the
LASSO selection, we applied the random forest method to select
predictors as a sensitivity analysis. Differential metabolites with
variable importance greater than three were chosen for model
construction [38]. To evaluate the overall diagnostic performance
of selected metabolites, AUC was calculated by LASSO and SVM
with 1000 cross-validation. The Youden Index was employed to
identify the cut-off point that maximized the combination of
sensitivity and specificity. The DeLong test was used to evaluate
the difference between the performance of metabolites and CEA
in differentiating CRC from NC. All statistical analyses were
conducted using R version 4.2.1.
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