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The inter-organelle interactions, including the cytomembrane, endoplasmic reticulum,
mitochondrion, lysosome, dictyosome, and nucleus, play the important roles in
maintaining the normal function and homeostasis of cells. Organelle dysfunction can
lead to a range of diseases (e.g., Alzheimer’s disease (AD), Parkinson’s disease (PD), and
cancer), and provide a new perspective for drug discovery. With the development of
imaging techniques and functional fluorescent probes, a variety of algorithms and
strategies have been developed for the ever-improving estimation of subcellular
structures, organelle interaction, and organelle-related drug discovery with accounting
for the dynamic structures of organelles, such as the nanoscopy technology andmolecular
dynamics (MD) simulations. Accordingly, this work summarizes a series of state-of-the-art
examples of the recent progress in this rapidly changing field and uncovering the drug
screening based on the structures and interactions of organelles. Finally, we propose the
future outlook for exciting applications of organelle-related drug discovery, with the
cooperation of nanoscopy and MD simulations.
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INTRODUCTION

Cellular organelles with specific morphology and functions are highly dynamic in maintaining the
normal operation of eukaryotic cell life activities (Xu et al., 2016; Passmore et al., 2021), and they
interact with each other through coordination to complete a series of important physiological
functions (Valm et al., 2017). The fine division of labor, cooperation, and close contact of organelles
from the interaction network to realize rapid exchanges of substance and information and carry out
various biological processes under different conditions (Schwarz and Blower, 2016). Dysfunctional
interactions between organelles are usually accompanied by serious diseases (Sakhrani and Padh,
2013), including Alzheimer’s disease (AD) (Santos et al., 2010; Burte et al., 2015; Wong et al., 2018),
Parkinson’s disease (PD) (Hauser and Hastings, 2013; Jin et al., 2014; Pickrell and Youle, 2015;
Burbulla et al., 2017), and cancer (Doria et al., 2013; Nixon, 2013; Huang et al., 2016; Mc Donald and
Krainc, 2017; Plotegher and Duchen, 2017). The dysfunction of organelles in various human diseases
(Figure 1) could be mechanistically resolved by studying their architectures and interactions, as well
as closely monitoring the dynamic alterations (Plotegher and Duchen, 2017; Samanta et al., 2019).
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Organelle bioimaging can aid our understanding of the
organelle functions and the development of organelle-targeting
therapy for various diseases. Conventional fluorescence
microscopy (FM) opens the door to fine structural details of
cellular architectures and dynamics, while the resolution is
limited to approximately 200 nm because of the light
diffraction (Cox and Sheppard, 2004). As the dimension of the
interaction between organelles is much smaller than the light
diffraction limit, such as autophagosome, mitochondria-
lysosome contact, and transport vesicles, many methods and
techniques surpassing the diffraction limit have been
developed (Carrington et al., 1995; Huang et al., 2008;
Patterson et al., 2010). Among these technologies, super-
resolution microscopy (SRM) (Reiter et al., 2011) and cryo-
electron microscopy (cryo-EM) (Bai et al., 2015) have
established their roles in overcoming these limits and allowing
the study on organelles to enter the nanoage, helping us to
elucidate the dynamics structures of organelles and present the
intrinsically dynamic behavior of organelle interactions.

With the status of interactions between organelles in the
improvements of pathogenesis and therapeutics, related
articles are emerging as an endless stream. Recent advances in
organelle-targeted fluorescent probes (FPs) provide us with a
more suitable selection and high resolution scale under SRM
(Ning et al., 2017). Meanwhile, some review articles have
deliberated on the pathways to mitochondria-lysosome
interactions (Audano et al., 2018) and molecules or ions
transports between mitochondria and lysosomes (Raffaello
et al., 2016; Todkar et al., 2017). In this review, various

strategies will be summarized to the introduction and
application of nanoscopy (SRM and cryo-EM) and molecular
dynamics (MD) simulations in the dynamic nature of subcellular
structures, the subcellular interactions, and the organelle-related
drug discovery. In addition, this review presents the future
developments working in concert towards the spatial evolution
and throughput necessary for nanoscopy and MD simulations to
promote the organelle-related drug pipeline.

NANOSCOPY ON ORGANELLE
INTERACTIONS AND DRUG DISCOVERY

Super-resolution Microscopy
Precise imaging of intracellular and subcellular structures and
their dynamic processes are crucial to fundamental research in
biology and medicine (Dean and Palmer, 2014; Specht et al.,
2017). Super-resolution microscopy (SRM) techniques
(Gustafsson et al., 2016) enable the observation of fluorescence
images of subcellular organelles beyond the diffraction limit by
precluding fluorescence emission when fluorophores are exposed
to the excitation light, have been developed (Hell, 2007; Yang
et al., 2016). More recently, SRM has been used to investigate the
properties of soft matters (Woell and Flors, 2017) such as
polymers (Park et al., 2015), catalysts (Peng and Long, 2011),
DNA origami (Iinuma et al., 2014), and lipid-based materials
(Sharonov and Hochstrasser, 2006). There are two distinct
conceptual approaches to obtaining the super-resolution
image. One strategy based on probes for achieving supper

FIGURE 1 | Diseases associated with the specific organelles.
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resolution employs stochastic activation of fluorescence to switch
on individual photoactivatable molecules and then images and
bleaches them at different time points, including photoactivated
localization microscopy (PALM) (Betzig et al., 2006) (Figure 2A),
fluorescence photoactivated localization microscopy (FPALM)
(Hess et al., 2006), and stochastic optical reconstruction
microscopy (STORM) (Rust et al., 2006) (Figure 2A). The
other category of strategies is based on modulating the spatial
pattern of fluorescence emission of molecules, including
stimulated emission depletion (STED) (Zhan et al., 2017)
(Figure 2C) microscopy and its generalization reversible
saturable optical transitions (RESOLFT) technique (Klar et al.,
2000; Gustafsson, 2005; Hell, 2007) and structured illumination
microscopy (SIM) (Gustafsson, 2005; Li et al., 2015) (Figure 2B).
Commercial (e.g., Volocity, Amira, and Imaris) and open-source
[e.g., Fiji (Schindelin et al., 2012), ImageJ (Collins, 2007),
CellProfiler (Carpenter et al., 2006), Icy (de Chaumont et al.,
2011) and V3D (Peng and Long, 2011)] software packages have
been developed to enable the processing and analysis of
microscopy images of organelles, further reducing the
difficulty of analysis. SRM can obtain the images of dynamic

structures during the processes of organelle interactions, and
multicolor makes it more accurate in responding to subcellular
effects with the conventional fluorescent group and simple
operating device. But the resolution is largely affected by the
selected fluorescent probe. Besides, the introduction to
fluorophore will destroy cell activity and affect the
physiological environment. However, current ultra-resolution
imaging methods based on light and probe can visualize the
structure and dynamic processes of cells at the subcellular
organelle level, which provides great possibilities for studying
the pathogenesis and therapeutic of organelle-related diseases.

With the technical advancements in SRM, in practice,
however, many factors can influence the achievable resolution,
including the excitation and detection schemes, the properties of
fluorescent probes (FPs), as well as the labeling and sampling
density of FPs. SRM technologies have also enhanced the
requirements of FPs, which need especially low cytotoxicity,
high photostability, photobleaching resistance (Uno et al.,
2014), and specific background (Han et al., 2017) to monitor
organelle interplay in living cells. In recent studies, FPs (Table 1)
were mainly divided into organic small-molecule probes and

FIGURE 2 | Acquisition schematics for each super-resolution technique. White circles represent molecules, green represents excitation light, red represents
depletion light, and yellow highlights fluorescing molecules. In acquisition schematics, molecular positions mimic the cellular distributions of the FtsZ protein (Coltharp
and Xiao, 2012). (A) ALM and STORM based on single-molecule localization use low levels of activation light (violet arrow) to stochastically activate and localize single
molecules. An activated molecule produces a diffraction-limited spot (diffuse yellow circle) to localize the molecule’s position. Different spots are superimposed to
create a superresolution image. (B) SIM utilizes the moiré effect. Interference between the illumination pattern (green stripes) and the sample (yellow stripes) produces
moiré fringes (black lines). Although the emission from fluorescing molecules (yellow circles) is diffraction-limited, spatial information extracted from the Fourier transforms
of each image with illumination patterns is combined to generate the super-resolution image. (C) STED projects concentric excitation (green circle) and depletion beams
(red donut) onto a sample. Although the fluorophore can be excited (large green circle), the depletion beam (red donut) stimulates molecules outside the central
30–80 nm region back to the ground state before they fluoresce, generating a super-resolution PSF (small green circle). The super-resolution image is obtained by
collecting beams.
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organelle-targeting phosphor transition metal complex probes
(Kim and Cho, 2015;Wu et al., 2017). Commercial dyes (Table 2)
are representative organic small-molecule probes for studying the
interactions between organelles, especially in STED-based
imaging. Because diluted dye solutions are used in the imaging
process, the photostability of these probes leaves much to be
desired. In addition, some commercial dyes alter the permeability
of organelles and the inhibition of complexes at very low
concentrations (Zielonka et al., 2017). Therefore, the
development of new FPs is important to reveal the dynamic
process of organelles for the special characters. The concept of
“aggregation-induced emission” (AIE) was proposed by Tang
et al. (2016) (Luo et al., 2001). Since then a series of AIE
luminogens (AIEgens) can emit bright fluorescence in the
aggregation state and do nothing in solution state (Zhang
et al., 2019; Ni et al., 2019). Organic fluorophores for STED
nanoscopy usually suffer from quenched emission in the
aggregated state and inferior photostability (Dang et al., 2019).
AIEgens have better photostability and photobleaching resistance
than commercial dyes, so it has been considered to have great
potential in STED applications (Zhang et al., 2018). TPE-Ade, a
Golgi-targeting probe, was first used Ade acts as an active site of
many small molecules in the Golgi apparatus and TPE with AIE
characteristics, and the fluorescence intensity was enhanced by
160 times (Xing et al., 2021). Together with the good
characteristics of AIE luminogens, Shen et al. synthesized
whole-cell targeting nanoparticles, DTPA-BTN (Shen et al.,
2021). Compared to the wide field images, the FWHM value

of SIM images with DTPA-BTN was decreased by 130 and
281 nm, which increased the signal-to-noise ratios. AIEgens
display good photostability and biocompatibility and can avoid
fluorescence from the background. To overcome the limitations
of small molecules during lysosomal membrane permeability
(LMP), Xu et al. (2022) used DTPA-BT-F, an organic
nanocrystal with high brightness for the lysosome imaging, at
STED to monitor and long-term address lysosomal movements,
including lysosomal contact. Due to the larger size, DTPA-BT-F
had a diffusion limit during LMP, which prolongs their retention
time with lysosomes for the long-term STED images which is the
first case of AIE nanoparticles prepared by nanoprecipitation for
STED. Compared with organic small-molecule probes, metal
complex probes have stronger photostability, photobleaching
resistance, and a large Stokes shift (Fernandez-Moreira et al.,
2010). Hence, it is more suitable to observe the dynamic process
of organelles for a long time (Chen et al., 2018). This provides the
added advantage that lifetimes of phosphorescence are much
longer than those of fluorescence, which makes changes in them
potentially easier to detect (Shewring et al., 2017). Shen et al.
(2018) designed and synthesized a mitochondrial-target probe
LC, a Zn(II) complex based on a thiophene unit, binding with
mtDNA in living cells. Due to the LC probe, the STED images
recorded mtDNA distribution within mitochondrial cristae and
inner matrix in living at unprecedented resolution (Shen et al.,
2018). Tang et al. (2016) reported a mitochondria-targeting Zn
(Ⅱ) complex dye, Znsalen J-S-Alk, whose fluorescence intensity
decayed to 10% of its maximum after 360 s of continuous
scanning under STORM (Tang et al., 2016).

The search for new therapies is a tedious process with long
cycles and high risks (Bialer andWhite, 2010). In the last 20 years,
technological advances in genomics (Xu et al., 2018), proteomics
(Han et al., 2008), andmetabolomics (Wishart, 2016) have greatly
increased the number of potential therapeutic targets for a wide
variety of important clinical diseases (Zhu et al., 2012; Li et al.,
2018). However, there still exists a gap in quickly and effectively
identifying the target compound with the best efficacy from a
large number of candidate compounds with high specificity and
sensitivity, which is also a difficulty in current scientific research.
Organelles are highly dynamic and equipped to constantly and
rapidly change their motility, positioning, morphology, and
identity for different functions (Passmore et al., 2021). Highly
dynamic organelle interactions at the subcellular level regulate

TABLE 1 | Properties of different fluorescent probes.

Probe Properties

LTR (Zhitomirsky et al., 2018) high quantum yield, cheap, and convenient but easily washed out, low photostability, and cytotoxicity
MTG (Chen et al., 2014)
ERTG (Phaniraj et al., 2016)
TPE-Ade (Xing et al., 2021) used Ade acts as an active site of many small molecules and the fluorescence intensity was enhanced by 160 times
DTPA-BTN (Shen et al., 2021) the FWHM value was decreased by 130 and 281 nm, which increased the signal-to-noise ratios
LC (Shen et al., 2018) recorded mtDNA distribution at unprecedented resolution
DTPA-BT-F (Xu et al., 2022) nanoparticle and have a diffusion limit during LMP

LTR: Lysosome Tracker Red, MTG: Mitochondria Tracker Green, ERTG: Endoplasmic Reticulum Tracker Green, TPE-Ade: Tetraphenylethylene- Adenosine, DTPA-BTN: 4,7-
ditriphenylamine-[1,2,5]- thiadiazolo [3,4-c]pyridine, LC: a thiophene-based terpyridine Zn(II) complex, DTPA-BT-F: 4,4 '-(5,6-difluorobenzo[c][1,2,5]thiadiazole-4,7-diyl)bis(N,N-bis(4-
methoxyphenyl)aniline).

TABLE 2 | Common commercial probes.

Organelle Probes

Mitochondrion Mito-Tracker Green FM(Pendergrass et al., 2004)
Mito-Tracker Red FM(Buravkov et al., 2014)

Nuclear DAPI (Castanheira et al., 2009)
Hoechst 33342 (Zhang et al., 1999)

ER ER-Tracker Green (Zhang et al., 2019b)
ER-Tracker Red (Wu et al., 2018)
ER-Tracker Blue-White DPX (Chini et al., 2018)

Lysosome Lyso-Tracker Green (Sintes and del Giorgio, 2010)
Lyso-Tracker Red (Freundt et al., 2007)

Golgi apparatus Golgi-Tracker Red (Li et al., 2017)

ER:Endoplasmic Reticulum.
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intracellular equilibrium and homeostasis and have been
considered as the important targets for drug discovery. SRM
can realize the observation of organelle interactions in living cells,
find possible targets for treating diseases, and then observe the
influence of drugs on the target. For example, there are thousands
of proteins attached to the mitochondria. However, most proteins
are encoded by nuclear genes except 13 proteins controlled by
mtDNA (Beattie et al., 1966). These proteins are synthesized in
the cytosol and imported into mitochondria by highly conserved
translocation machinery (Harbauer et al., 2014). Through the
analysis of mitochondrial protein composition, over fifty proteins
were found to be shared with the endoplasmic reticulum. Cellular
proteins include apoptosis inducing factor (AIF) (Chiang et al.,
2012), acyl-CoA: diacylglycerol acyl-transferase 2 (DGAT2)
(Stone et al., 2009), and retinol dehydrogenase 10 (Rdh10)
(Jiang and Napoli, 2013) trafficking from the ER to the
mitochondria directly. In addition, pathogen-encoded proteins
such as human cytomegalovirus (CMV) (Bozidis et al., 2008)
encode viral mitochondrial-localized inhibitor of apoptosis
(vMIA), hepatitis c virus (HCV) encodes the N3/4A protease,
and human immunodeficiency virus 1 (HIV-1) encodes viral
protein R (Vpr), which also traffics from the ER to mitochondria
(Huang et al., 2012). The contacts of ER and outer mitochondrial

membrane (OMM) may facilitate the transportation of proteins
between the ER and mitochondria (Kornmann et al., 2009).
Mitochondrial localization inhibitor of human cytomegalovirus
(HCMV) vMIA protein, which is transmitted to the
mitochondrial associated membrane (MAM) and ER is in
contact with OMM. For visualizing vMIA association with
MAM, a series of images under STED showed vMIA is
distributed in clusters (Bhuvanendran et al., 2014). The
distribution established the ability of super-resolution imaging
to provide valuable insight into viral protein localization,
particularly in the sub-mitochondrial compartments, and into
drug discovery and medical treatment of Cytomegalovirus. In
contrast to direct transport from the cytosol to the OMM and
vMIA traffics sequentially from the ER to mitochondria through
mitochondria-associated membrane contacts between the two
organelles rather than direct transport from the cytosol to the
outer mitochondrial membrane. To investigate the role of host
proteins in vMIA trafficking from the ER to mitochondria, Salka
et al. (2017) designed a series of experiments, and the results
revealed that the Mitofusin (Mfn1/2)- and phosphofurin acidic
cluster sorting protein 2 (PACS-2)-mediated ER-mitochondria
tethering is not required for the ER-mitochondria trafficking,
proven by a fluorescence lifetime comparison of PACS-2- and

FIGURE 3 | (A) Protein structure determination through cryo-EM involves several stages: sample grid preparation, data collection, and data processing followed by
3D reconstruction (Fernandez-Leiro and Scheres, 2016); (B) Steps Involved in Structure Determination by Single Particle Cryo-EM(Cheng et al., 2015); (C)Workflow of
cellular cryo-ET by cryo-FIB milling and VPP imaging (Wagner et al., 2017).
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Mfn1/2-knockdown human primary fibroblasts and mouse
embryos via STED method.

Cryo-Electron Microscopy
Although SRM can achieve the imaging of subcellular structures,
it is difficult to detect dense material structures by using FPs,
which prohibits the understanding of organelle interactions at the
nanoscale level. Cryo-electron microscopy (cryo-EM) (Glaeser,
2018) (Figure 3A) can observe hyperfine structures of organelles
at near atomic resolution under the conditions closest to the
physiological environment, without the need for probes to label
the samples. Due to the imaging and processing processes of cryo-
EM strategy, the time series of dynamic structures are difficult to
extract. However, cryo-EM remains firmly established as a central
tool in the arsenal of structural biology, enabling the generation of
numerous near-atomic resolution structures with the highest
resolution of 1.22 Å (the β3 GABAA receptor) (Nakane et al.,
2020). The establishment of cryo-EM benefits from the
development of cryofixation through rapid cooling, which
compels aqueous samples into a vitreous state, the
development of efficient data processing [i.e., RELION
(Zivanov et al., 2020)] and detector technology [direct electron
detector, DDD (Barak et al., 2020)]. The two most prevalent
approaches of cryo-EM are 1) to determine the three-dimensional
(3D) structures of biological specimens: single particle analysis
(SPA) (Figure 3B) (Nakane et al., 2020) and 2) cryo-electron
tomography (cryo-ET) (Figure 3C) (Ng and Gan, 2020). In cryo-
ET, the sample itself is imaged in 3D, and a series of 2D EM
images are photographed by the sequentially tilted specimen
(Wagner et al., 2017). The cryo-ET reconstruction method
uses large micrographs for reconstruction, believing that large
images can provide more signals and help to find the center of
images at various tilting angles, but this kind of large image limits
the resolution. Subtomogram averaging (STA) (Kucukelbir et al.,
2014) is a recent successful development in tomography which
collects data by tilt stage before tomographic reconstruction. Due
to each molecule frozen in a completely random direction, there
is no need to rotate the specimen stage for the projection in
different directions and the projection range of SPA also exceeds
the inclination range of specimen stage. The tilt angle limitation
can be regarded as missing part of the sample information
(Murata and Wolf, 2018). However, when the background
noise is high, such as in the complex cellular environment, it
is difficult to find and distinguish individual particles, only the
conventional method (e.g., single particle analysis) can be
adopted. In addition, the third dimension of STA is another
advantage over the 2D image of SPA, because the 2D projection
does not contain the absolute handedness of the structure, which
increases the possibility of incorrect 3D reconstructions. STA can
solve the brand-new structure with unknown symmetry and get
the positive deterministic structure. However, the wrong
symmetry information will cause the deviation of SPA and get
the inaccurate 3D classification results.

Ren and Zhang invented the IPET method and FETR
algorithm to perform the three-dimensional reconstruction.
Via IPET and FETR, the adverse effect caused by the
inclination error can be effectively limited, and the

macromolecular center can be found more accurately, thus
greatly improving the resolution of reconstruction results
(Zhang et al., 2013). Interaction or crosstalk between
organelles occurs in the blink of an eye at the nanoscale level.
The dynamics of microenvironmental processes can be visualized
by SRM with fluorescence probe labeling organelles however at
the cost of wasting the structural and morphological information
around the probes (Song and Murata, 2018). Whereas the
dynamic processes of organelles are almost impossible to
obtain due to the mechanism of cryo-EM forcing us to get a
static picture (Ohta et al., 2021). Combining with fluorescence
light microscopy and cryo-EM, correlative light and electron
microscopy (CLEM) (Murata and Wolf, 2018; Ohta et al.,
2021) can break through such technical limitations to meet
the needs of life sciences and pharmacotherapeutics.
Fluorescence microscopy captures the dynamics of the cellular
process, then cell samples are fixed at a specific time.
Subsequently, cryo-EM provides the surrounding ultrastructure
at fluorescence localization. Focused ion beam SEM (FIB-SEM)
can further improve the resolution of electron microscopy
imaging of intracellular structures. Fermie was the first to use
CLEM to link the dynamic characteristics and interactions of
organelles to the hyperfine integrity of the structure of the labeled
region. Combining CLEM and FIB-SEM, live images of the endo-
lysosomal system were written down realizing the real-time
tracking of late endosome-lysosome interactions (Fermie et al.,
2018). In addition, Cryo-FIB provides a reliable technical option
for understanding how subcellular organelles work together. Guo
et al. (2022) visualized organelles of microalgae in unprecedented
detail under cryo-FIB. The organelle volume of nuclear radiation
mutant cells was significantly larger than that of wild-type cells.

The ER forms a continuous network of tubules and cisternae
that extends throughout all cell compartments, including
neuronal dendrites and axons (Griffing et al., 2017). There are
two pathways in organelle communication: 1) vesicle transport
between organelles and 2) membrane contacts without leading to
the bulk transfer of organelle luminal content (Winters et al.,
2020). Interorganellar communication at membrane contact sites
(MCSs) plays a major role in lipid metabolism, Ca2+ homeostasis,
and other fundamental cellular processes (Parnis et al., 2013). The
ER forms MCSs with virtually all other organelles, such as the
Golgi apparatus, mitochondria, lysosomes, or endosomes, as well
as the plasma membrane (PM). The DHPR–RyR couplon is an
excellent example of the importance of supramolecular
architecture for MCS function. Visualization of components of
the junction smaller than RyRs or DHPRs has been hindered by
technical limitations, but pioneering cryo-ET work approached
this issue in fully hydrated, unstained isolated triad junctions
(Renken et al., 2009). These studies measured an average
separation between sarcoplasmic reticulum and T-tubule
membranes of 15.5 nm and hinted at a periodic arrangement
of the calsequestrin layer, which is separated from the RyRs by a
5 nm gap bridged by fine filaments that could correspond to
proteins such as triadin or junction. There are three protein coats,
COPI (Zachaus et al., 2017), COPII (Hurley and Young, 2017),
and clathrin (Kaksonen and Roux, 2018) mediating the formation
and trafficking of vesicles in transport. The COPI coat mediates
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intra-Golgi and retrograde Golgi-ER trafficking and is
fundamental to the polarized Golgi structure (Duden, 2003).
Bykov et al. (2017) reported the in situ cryo-ET studies of
Golgi stacks and the native structure of the COPI coat within
Chlamydomonas reinhardtii cells, which provided reproducible
Golgi architecture. Structural analysis of the Golgi apparatus and
vesicle topology (Figure 4A) showed that vesicles change their
size, membrane thickness, and cargo content as they progress
from cis to trans, but the structure of the coat machinery remains
constant. During apoptosis, mitochondria permeabilize the outer
membranes to release apoptogenic proteins from the
intermembrane space (Dingeldein et al., 2018). To further
investigate mitochondrial outer membrane permeabilization
(MOMP), Kuwana developed simple but faithful vesicle
systems—outer membrane vesicles (OMVs) and liposomes—to
visualize the pores in the membrane and dynamics by using cryo-
EM in vitro preserving the native and hydrated membrane
structure (Schafer et al., 2009; Gillies et al., 2015; Kuwana
et al., 2016; Kuwana, 2019). Studies have indicated that Bax,
an effector proapoptotic molecule that permeabilizes lipid
membranes (Yang et al., 2006), is localized on the pore edges
constituting part of the pore walls, and the pore exclusively
formed by Bax oligomers will enlarge while more Bax
molecules join.

Drug discovery and targeted drug transport are two links in
the whole process of disease treatment. Although SRM can
observe the structural changes and interaction dynamics of

organelles in living cells, specific binding to organelle
membrane proteins or other contact sites is still required for
organelle-related drug development. Cryo-EM can image specific
targets on organelles at a resolution of atomic level benefiting the
understanding of therapeutic targets and drugs. By determining
the structural basis for the improved affinity of the peptidic
agonist of an aGPCR, peptidic antagonists toward aGPCRs
were developed by converting the “finger residues” to acidic
residues (Xiao et al., 2022). In search of drugs to treat
hypertension and Parkinson’s disease - highly selective DRD1
agonists—Xiao et al. (2021) determined near-atomic-resolution
cryo-EM structures of activated DRD1 with a downstream Gs
effector revealing a conserved motif for dopaminergic receptor
recognition with catecholamine agonists. With cell aging or
cytopathic effect, the expression of mitochondrial DNA was
changed. Inhibitors of mitochondrial transcription (IMTs)
impair mtDNA transcription and inhibit mtDNA expression
and the oxidative phosphorylation (OXPHOS) system. The
OXPHOS system plays a vital role in the persistence of
therapy-resistant cancer cell growth. Through the
reconstruction of human mitochondrial RNA polymerase by
cryo-EM, Bonekamp et al.(2020) found the allosteric binding
site near the active center cleft of POLRMT (Figures 4B,C). After
the treatment of IMT, the viability of cancer cells strongly
decreased, but importantly, treatment with IMT was not
cytotoxic to human PBMCs or pooled primary human
hepatocytes. Prolonged treatment with an IMT thus

FIGURE 4 | (A)Cryo-EM of the mitoribosome fromQ/D-treated cells (Sighel et al., 2021); (B)Cartoon representation of the cryo-EM structure of POLRMT bound to
IMT1B. The cryo-EM density for IMT1B is shown as blue mesh (Bonekamp et al., 2020); (C) Structure of the palm loop in the mitochondrial transcription elongation
complex (EC) (PDB code: 5OLA) and the palm loop in the presence of IMT(Bonekamp et al., 2020).
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specifically affects the proliferation of cancer cells, which suggests
that cancer therapy may be a potential in vivo application of
IMTs. Glioblastoma (GBM) is the most common malignant
primary brain tumor in adults. However, existing treatments,
such as surgery and chemotherapy, have little effect on
glioblastoma stem cells (GSCs) (Schulze et al., 2018). After
high-content screening in a custom-made library of potential
mitochondrial translation inhibitors, Sighel et al. (2021)
identified the bacterial antibiotic quinupristin/dalfopristin (Q/
D) as an effective suppressor of GSC growth that can disrupt the
cell cycle, induce cell death and inhibit the replication of GSCs.
Cryo-EM results revealed that Q/D binds to the large
mitoribosomal subunit, inhibiting the mitochondrial protein
synthesis and functionally dysregulating the OXPHOS
complexes, suggesting that Q/D could potentially be
repurposed for the treatment of tumors.

MOLECULAR DYNAMICS SIMULATIONS
APPROACH FOR ORGANELLE
INTERACTIONS
Although the dynamic process of organelle interactions can be
obtained by nanoscopy, it is still necessary to analyze the
evolution behavior at the all-atom level. Molecular dynamics
(MD) simulations could obtain structural and dynamical insight
into organelle interactions at the all-atom level (Fiorin et al.,
2013). MD simulations have been used not only to study the
dynamics of short-term organelle interactions in the presence and
absence of membrane proteins but also to study the formation of
structures and nanodomains around the organelle proteins.
During these simulations, the coarsening models (Saunders
and Voth, 2013) are usually adopted to save computing
resources with the cost of sacrificing spatial resolution by
allowing a significant increase in the integration time step in
the numerical solution of Newton’s equation of motion
(Pluhackova and Bockmann, 2015).

With the increase in understanding of organelle composition
and the importance of organelle interactions, modeling of
organelle interactions has become more complex. An energy-
based model has been designed for the molecular reaction-
diffusion dynamics involved with the cytomembrane,
cytoskeletons, and organelle membranes. The existence of a
clustering associated with receptor-cluster rafts and the “fluid
mosaic model” in the plasma membrane was confirmed based on
this perspective (Azuma et al., 2006). With the development of
computer hardware and algorithms, Coarse-Grained MD
simulations have been widely extended beyond the
cytomembrane, entering the domain of organelles and
subcellular structures (Chavent et al., 2016). A model
integrating multiple data from structural biology, mass
spectroscopy, and biophysics realized the near atomic
resolution of synaptic vesicles (Takamori et al., 2006). Based
on MD simulations of bovine heart mitochondria, Arnarez et al.
(2016) revealed the reason why cardiolipins glue complexes
together is cardiolipin binding strength is higher than
mitochondrial lipids resulting from non-additive electrostatic

and van der Waals forces, suggesting that lipids have the
ability to selectively mediate protein-protein interactions. The
study of interactions between membraneless organelles has also
benefited from MD simulations. For example, membraneless
organelles exhibit classic signatures of liquids which allows to
concentrate molecular reactants and organelle interactions to
take place. Wei et al. (2017) found that the effective mesh size
of intracellular droplets is ~ 3–8 nm, which determines the size
scale of droplet characteristics affecting molecular diffusion and
permeability, and reveals how specific intrinsically disordered
proteins (IDPs) phase separate to form permeable, low-density
liquid. Liquid-liquid phase separation (LLPS) condensates can
simulate membraneless organelles in vitro. The rebalancing MD
simulation force fields, based on experimental data on LLPS and
without limiting specific coarse-particle sizes, not only perfect the
interaction between proteins, but also correct the potential energy
surface, improving the reliability of modeling interactions
between membraneless organelles (Benayad et al., 2021). With
the support of a new MD simulation approach equipped with a
subtractive assembly technique to eliminate the overlap in space,
Vermaas et al. (2022) simulated one protocell model at the
organelle scale level and one protocell model at the cell scale
level. The MD results revealed how membrane curvature plays a
role in diffusion and protein organization at the subcellular
scale level.

OUTLOOK

Organelle interactions play the important roles in maintaining
cell homeostasis and function, and the fine organelle structures
have extraordinary implications for drug discovery. Super-
resolution microscopy (SRM) techniques enable the
observation of fluorescence images of subcellular organelles
beyond the diffraction limit and arouse the discovery of
mitochondrial lysosome contact (MLC), providing a new
perspective on the drug screening and the treatment of
diseases (Chen et al., 2018; Chen et al., 2020). However, the
resolution of ultra-resolutionmicroscopy is still lower than that of
cryo-EM, and the three-dimensional reconstruction results of
organelles obtained by SRM seem to be different from those of
cryo-EM approaches (e.g., cryo-ET) (Diebolder et al., 2012;
Broeken et al., 2015). With the development of cryo-EM, the
resolution of organelle structures has reached the approximate
atomic level, especially the dynamic structural changes of the
organelle interactions. While, the three-dimensional
reconstruction of cryo-EM captures the configuration frozen
in various random states, with the less time sequence
information of captured structures.

The ideal of organelle interaction research is to capture a series
of atomic resolution images in active state in chronological order,
construct the dynamic structures during the interaction
processes, and deeply understand the details of conformational
transitions and “energy motion” transformation mechanism. Due
to the limitation of current nanoscopy techniques, SRM and cryo-
EM analyses cannot reach the atomic resolution or look at how a
particular change over time trends. The two deficiencies could be
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partially compensated by molecular dynamics (MD) simulation.
Although the computational power of MD simulation is far from
being able to replace the experiments, through careful design,
especially constrained by the key dynamic spatial and temporal
data provided by nanoscopy (SRM and cryo-EM), it can provide
sufficient information for the construction of the initial model.
Combined with Coarse-Grained MD and all-atom MD
simulations, it is expected to not only connect the dynamic
evolution process of organelle interaction on a large scale (the
application of CG models sacrifices degrees of freedom), but also
analyze the evolution behavior of key dynamic nodes at the all-
atom level (reintroducing the atomic details by subsequent all-
atom models), then summarize the physical characteristics and
laws of the structure-activity changes of the system, and establish
the correlation between the dynamic structure and function of
organelles (Marrink et al., 2019).

With the continued advances in SRM, cryo-EM, and MD
simulation, the combination of the three techniques and the
cooperation of super-resolution time series and cryo-EM
structure information will be an effective solution for the

in-depth investigation of large-scale dynamic structural
evolution and will provide new insight for the organelle
interaction and drug discovery. It is promising to see the
breakthroughs with this approach in the field of organelle-
related drug discovery.
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