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Abstract: The intramolecular oxidative cycloaddition reaction of alkyne- or alkene-tethered aldoximes
was catalyzed efficiently by hypervalent iodine(III) species to afford the corresponding polycyclic
isoxazole derivatives in up to a 94% yield. The structure of the prepared products was confirmed by
various methods, including X-ray crystallography. Mechanistic study demonstrated the crucial role
of hydroxy(aryl)iodonium tosylate as a precatalyst, which is generated from 2-iodobenzoic acid and
m-chloroperoxybenzoic acid in the presence of a catalytic amount of p-toluenesulfonic acid.

Keywords: hypervalent iodine; hydroxy(aryl)iodonium; catalysis; aldoximes; intramolecular
cycloaddition; nitrogen heterocycles

1. Introduction

Heterocycles play a key role in modern drug discovery and agrochemistry [1–6].
Heterocyclic fragments can be found in the structure of many marketed small molecules.
Currently, approximately 60% of approved US FDA drugs are derivatives of nitrogen
heterocycles [7,8]. Isoxazole fragment is among the most popular heterocyclic fragments of
drugs. These heterocycles have two connected heteroatoms in the structure. As a result,
isoxazoles can form specific interactions with various protein targets via hydrogen bonds,
as well as stacking and hydrophilic interactions. All these structural advantages have
made them very popular in drug discovery. Their derivatives exhibit a broad range of
bioactivities, such as being anticancer, antibacterial, antifungal, antimicrobial, antiviral, and
antituberculosis [9–15].

The 1,3-dipole cycloaddition reaction is one of the most powerful methods to construct
five-membered heterocycles [16–26]. The cycloaddition of nitrile oxides with alkenes and
acetylenes is often used in the synthesis of isoxazoles and isoxazolines [27–37]. However,
nitrile oxides are unstable species usually generated in situ from aldoximes under appro-
priate conditions [38–40]. The intramolecular version of the cycloaddition of nitrile oxides
with alkenes and acetylenes is less investigated. On the other hand, this approach can
provide an efficient approach to condensed heterocyclic systems containing isoxazole or
isoxazoline rings.

This study is devoted to the investigation of synthetic approaches to isoxazole- or
isoxazoline-fused heterocycles via the catalytic intramolecular cycloaddition of alkyne- or
alkene-tethered aldoximes using hypervalent hydroxy(aryl)iodonium species generated in
the reaction system (Figure 1c), as well as the study of the reaction mechanism. Hypervalent
iodine compounds are known as low-toxic, environmentally benign reagents that have been
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applied to various organic synthetic reactions [41–64]. In recent years, several examples
of the oxidative cycloaddition of aldoximes with alkenes or alkynes were demonstrated
using hypervalent iodine(III) species as oxidants (Figure 1a,b) [65–69]. However, the
intramolecular version of the catalytic oxidative cycloaddition of aldoximes is unknown
so far. In the present work, we have developed an efficient synthesis of fused isoxazole
derivatives using this approach.
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2. Results and Discussion

In order to find the optimal conditions for intramolecular cycloaddition, alkyne-tethered
aldoxime 1a was treated with a catalytic amount of iodine reagent 2, p-toluenesulfonic acid
and m-CPBA in various solvents at room temperature (Table 1). After the screening of
solvents for this reaction (entries 1–8), dichloromethane was found to be the best solvent
and the target compound 3a was obtained in a 94% yield (entry 1). However, decreasing
the amount of p-toluenesulfonic acid or using trifluoromethanesulfonic acid instead of
p-toluenesulfonic acid resulted in lower yields of the desired product 3a (entries 9–11).
These results indicated that the addition of p-toluenesulfonic acid was necessary for the
intramolecular cycloaddition of aldoxime 1a. In addition, when the reaction time was
shortened, the yield of the desired product 3a was decreased (entry 12). Moreover, we
observed a decline of the yield of the target product when 5 mol% and 1 mol% of 2-
iodobenzoic acid 2a were used (entries 13–14). Thus, 10 mol% of 2-iodobenzoic acid 2a
is the most suitable for the reaction. Other iodine reagents 2 were found less efficient
(entries 1, 15–18).

Having in hand optimal reaction conditions, we performed the catalytic intramolecular
cycloaddition of various alkyne- or alkene-tethered aldoximes 1 under optimized condi-
tions (Figure 2). It should be pointed out that all starting compounds can be prepared very
efficiently from the corresponding salicylaldehydes. It was found that the reaction is very
general both for alkene and acetylene-derived starting materials to form the corresponding
condensed heterocycles 3a–j. The structure of product 3c was established by X-ray crystal-
lography. The intramolecular cycloaddition of aldoximes 1a–j containing electron-donating
or electron-withdrawing groups in the molecule afforded the desired products 3a–j in up
to a 91% yield. Furthermore, this catalytic system was also effective in the reaction of
alkene-tethered aldoximes 1k–s, and the desired isoxazoline-fused cyclic products 3k–s
were obtained in up to a 90% yield. In comparison with other approaches [37,40,70] to the
synthesis of fused isoxazoles and isoxazolines, our method is robust, affords comparable or
higher yields of desired products, is easy to perfrom and does not require the use of excess
oxidant or heating for the generation of intermediate–nitrile oxides. In addition, especially



Molecules 2022, 27, 3860 3 of 13

interesting is the possibility to perform the reaction with internal alkyne 1t or alkenes 1u,v.
The respective products 3t–v were isolated in 40–90% yields.

Table 1. Optimization of the catalytic intramolecular cycloaddition of aldoxime 1a a.
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a Reaction conditions: Aldoxime 1a (0.20 mmol, 1 equiv.), iodine reagent 2 (10 mol%) and p-toluenesulfonic acid
(0–20 mol%) with m-CPBA (0.30 mmol, 1.5 equiv.) stirred in solvent (2 mL) at room temperature for 12–24 h.
b Yield of product 3a determined from 1H NMR spectra of the reaction mixture (using as 1,2-dibromoethane as an
internal standard) are shown (numbers in parentheses show an isolated yield of 3a). c Aldoxime 1a was detected
from the reaction mixture. d TfOH was used instead of p-TsOH·H2O. e Reaction time was 12 h. f 5 mol% were
used. g 1 mol% were used.

To explore the mechanism of this reaction, several control experiments have been per-
formed (Figure 3, and see the Supporting Information for details: Scheme S1, Figures S1 and S2).
The key point of the reaction is the generation of the active hypervalent iodine species,
which mediates an intermediate formation. The treatment of 2a and m-CPBA in the
presence of p-toluenesulfonic acid produced hydroxy(aryl)iodonium tosylate [71], the for-
mation of which was confirmed by ESI mass spectrometry and 1H NMR spectroscopy
(see Supporting Information for details: Scheme S1, Figure S1). Although the similar
hydroxy(aryl)iodonium species is instantaneously formed from m-CPBA and 2a in the
absence of p-toluenesulfonic acid, this species is immediately converted to 2-iodosylbenzoic
acid (IBA 4), which cannot be applied for the intramolecular cycloaddition of aldoxime 1a
(Table 1, entry 10 and Figure 3, reaction (a)). Therefore, it was expected that p-toluenesulfonic
acid would play a very significant role in the generation and supply of the active species.
Actually, the reaction of 1a with 4 in the presence of a catalytic amount of p-toluenesulfonic
acid produced the desired compound 3a in a 79% yield (reaction (b)). At the same time,
we suggested that the active species can be formed with the 3-chlorobenzoic acid, which
is produced during the oxidation of 2-iodobenzoic acid by m-CPBA. The addition of
3-chlorobenzoic acid instead of p-toluenesulfonic acid has not yielded 3a, and 1a was
recovered from the reaction mixture (reaction (c)). These results indicate that the presence
of a catalytic amount of p-toluenesulfonic acid in this reaction is sufficient to work in the
reaction systems as well as contribute significantly to the formation of the active species.
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The reaction proceeds only in the case of the stronger acid p-TsOH (pKa = −2.8), but not
3-chlorobenzoic acid (pKa = 3.8). Additionally, we have found that the reaction of protected
oxime 5 under optimized conditions did not yield the desired product 3a (reaction (d)),
and the starting compound 5 was recovered from the reaction mixture. This experiment
confirms a ligand exchange of hypervalent iodine species with aldoxime and subsequent
nitrile oxide formation [62].
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Figure 2. Catalytic intramolecular cycloaddition of aldoximes 1 a,b. a Reaction conditions: Aldoxime 1
(0.20 mmol, 1 equiv.), 2a (10 mol%) and p-toluenesulfonic acid (20 mol%) with m-CPBA (0.30 mmol,
1.5 equiv.) stirred in dichloromethane (2 mL) at room temperature for 24 h. b Isolated yields of 3.
c The yield of 3a is given for 1 g scale reaction.



Molecules 2022, 27, 3860 5 of 13

Molecules 2022, 27, x FOR PEER REVIEW 5 of 14 
 

 

To explore the mechanism of this reaction, several control experiments have been 
performed (Figure 3, and see the Supporting Information for details: Scheme S1, Figures 
S1 and S2). The key point of the reaction is the generation of the active hypervalent iodine 
species, which mediates an intermediate formation. The treatment of 2a and m-CPBA in 
the presence of p-toluenesulfonic acid produced hydroxy(aryl)iodonium tosylate [71], the 
formation of which was confirmed by ESI mass spectrometry and 1H NMR spectroscopy 
(see Supporting Information for details: Scheme S1, Figure S1). Although the similar hy-
droxy(aryl)iodonium species is instantaneously formed from m-CPBA and 2a in the ab-
sence of p-toluenesulfonic acid, this species is immediately converted to 2-iodosylbenzoic 
acid (IBA 4), which cannot be applied for the intramolecular cycloaddition of aldoxime 1a 
(Table 1, entry 10 and Figure 3, reaction (a)). Therefore, it was expected that p-toluenesul-
fonic acid would play a very significant role in the generation and supply of the active 
species. Actually, the reaction of 1a with 4 in the presence of a catalytic amount of p-tol-
uenesulfonic acid produced the desired compound 3a in a 79% yield (reaction (b)). At the 
same time, we suggested that the active species can be formed with the 3-chlorobenzoic 
acid, which is produced during the oxidation of 2-iodobenzoic acid by m-CPBA. The ad-
dition of 3-chlorobenzoic acid instead of p-toluenesulfonic acid has not yielded 3a, and 1a 
was recovered from the reaction mixture (reaction (c)). These results indicate that the pres-
ence of a catalytic amount of p-toluenesulfonic acid in this reaction is sufficient to work in 
the reaction systems as well as contribute significantly to the formation of the active spe-
cies. The reaction proceeds only in the case of the stronger acid p-TsOH (pKa = −2.8), but 
not 3-chlorobenzoic acid (pKa = 3.8). Additionally, we have found that the reaction of pro-
tected oxime 5 under optimized conditions did not yield the desired product 3a (reaction 
(d)), and the starting compound 5 was recovered from the reaction mixture. This experi-
ment confirms a ligand exchange of hypervalent iodine species with aldoxime and subse-
quent nitrile oxide formation [62]. 

 
Figure 3. Control experiments. 

Based on these control experiments and the related reactions of hypervalent io-
dine(III) compounds [37,59,69,70,72,73], we proposed the reaction mechanism (Figure 4). 
Hydroxy(aryl)iodonium tosylate 6 plays the role of the active species. It is produced by 
the reaction of p-toluenesulfonic acid with 4, which is generated from m-CPBA and 2a. 
The intermediate 6 reacts with aldoxime 1 via the ligand exchange reaction to produce 
iodonium intermediate 7. Next, nitrile oxide 8 is formed by the elimination of 2a and p-

Figure 3. Control experiments.

Based on these control experiments and the related reactions of hypervalent iodine(III)
compounds [37,59,69,70,72,73], we proposed the reaction mechanism (Figure 4). Hy-
droxy(aryl)iodonium tosylate 6 plays the role of the active species. It is produced by
the reaction of p-toluenesulfonic acid with 4, which is generated from m-CPBA and 2a.
The intermediate 6 reacts with aldoxime 1 via the ligand exchange reaction to produce
iodonium intermediate 7. Next, nitrile oxide 8 is formed by the elimination of 2a and
p-toluenesulfonic acid. Subsequent intramolecular cycloaddition results in the desired
isoxazole derivatives 3. Finally, the regenerated 2a reacts with m-CPBA to continue the next
catalytic reaction cycle.
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3. Materials and Methods
3.1. General Experimental Remarks

All commercial reagents were ACS grade reagents and used without further purifica-
tion from freshly opened containers. All solvents were distilled prior to use. Melting points
were determined in an open capillary tube with Buchi M-580 melting point apparatus.
Infrared spectra were recorded as ATR on a P Agilent Cary 630 FT-IR spectrophotometer.
NMR spectra were recorded on a Bruker BioSpin NMR spectrometer at 400 or 600 MHz



Molecules 2022, 27, 3860 6 of 13

((1H NMR), 101 or 150 MHz (13C NMR), 376 MHz (19F NMR)). Chemical shifts are re-
ported in parts per million (ppm). High-resolution mass spectrometry measurements were
performed using a Shimadzu LCMS-9030 Q-TOF mass spectrometer, coupled with LC-30
UHPLC system. X-ray crystal analysis was performed by Rigaku XtaLAB Synergy, single
source at home/near, HyPix using CuKα radiation (λ = 1.54184 Å) at 105 K. Please see the
supporting information or the cif file for more detailed crystallography information. The
(E)-2-(Prop-2-yn-1-yloxy)benzaldehyde O-methyl oxime 5 was prepared according to the
reported procedure [74].

3.2. General Cyclization Procedure of 2-Alkoxyaldoximes 1

The 2-Iodobenzoic acid 2a (5.0 mg, 0.020 mmol), m-CPBA (52 mg, 0.30 mmol) and p-
TsOH•H2O (7.6 mg, 0.040 mmol) were added to 2-alkoxybenzaldehyde oximes 1 (0.20 mmol)
in dichloromethane (2 mL). The reaction mixture was stirred at room temperature for
24 h. After the completion reaction, saturated NaHCO3 (15 mL), water (5 mL) and then
dichloromethane (3 mL) were added, and the mixture was extracted with dichloromethane.
The organic layer was dried with MgSO4 and concentrated under reduced pressure. Purifi-
cation by column chromatography (hexane-CH2Cl2 = 3:1) afforded the pure product 3.

4H-Chromeno [4,3-c]isoxazole (3a) [37]: Reaction of (E)-2-(prop-2-yn-1-yloxy)benzaldehyde
oxime 1a (34 mg, 0.20 mmol) according to the general procedure afforded 32 mg (94%) of
product 3a, isolated as yellowish oil; IR (ATR) cm−1: 3118, 3059, 2921, 2866, 1614, 1470, 1360,
1213, 1109, 765, 743; 1H NMR (400 MHz, CDCl3): δ 8.21 (t, J = 1.2 Hz, 1H), 7.88 (dd, J = 7.6,
1.6 Hz, 1H), 7.40–7.32 (m, 1H), 7.10–7.05 (m, 1H), 7.02 (dd, J = 8.2, 1.0 Hz, 1H), 5.24 (d,
J = 1.2 Hz, 2H); 13C NMR (101 MHz, CDCl3): δ 155.0, 153.8, 150.8, 132.3, 124.7, 122.6, 118.0,
114.1, 111.3, 61.5; HRMS (ESI-positive mode): calcd for C10H8NO2 [M + H]+, 174.0550,
found, 174.0550.

Large scale reaction for preparation of 4H-Chromeno [4,3-c]isoxazole (3a) [37]: Reac-
tion of (E)-2-(prop-2-yn-1-yloxy)benzaldehyde oxime 1a (1000 mg, 5.71 mmol) according to
the general procedure afforded 951 mg (96%) of product 3a, isolated as yellowish oil.

8-Fluoro-4H-chromeno [4,3-c]isoxazole (3b): Reaction of (E)-5-fluoro-2-(prop-2-yn-1-
yloxy)benzaldehyde oxime 1b (38 mg, 0.20 mmol) according to the general procedure
afforded 32 mg (84%) of product 3b, isolated as colorless solid: mp 103.0–104.2 ◦C; IR (ATR)
cm−1: 3126, 3074, 2933, 1624, 1478, 1243, 1172, 1107, 783, 740; 1H NMR (400 MHz, CDCl3):
δ 8.24 (t, J = 1.1 Hz, 1H), 7.56 (dd, J = 8.0, 2.8 Hz, 1H), 7.11–7.03 (m, 1H), 6.99 (dd, J = 9.0,
4.6 Hz, 1H), 5.23 (d, J = 1.1 Hz, 2H); 13C NMR (101 MHz, CDCl3): δ 157.9 (d, 1JCF = 242.3 Hz),
153.6 (d, 4JCF = 2.5 Hz), 151.1, 151.1 (d, 4JCF = 2.4 Hz), 119.4 (d, 3JCF = 8.1 Hz), 119.2 (d,
2JCF = 23.8 Hz), 114.9 (d, 3JCF = 9.2 Hz), 111.3, 110.9 (d, 2JCF = 24.8 Hz), 61.6; 19F NMR
(376 MHz, CDCl3): δ -120.1; HRMS (ESI-positive mode): calcd for C10H7FNO2 [M + H]+,
192.0455; found, 192.0456.

8-Chloro-4H-chromeno [4,3-c]isoxazole (3c) [75]: Reaction of (E)-5-chloro-2-(prop-2-yn-
1-yloxy)benzaldehyde oxime 1c (41 mg, 0.20 mmol) according to the general procedure
afforded 29 mg (71%) of product 3c, isolated as colorless solid: mp 127.1–128.7 ◦C (lit. [75];
122.0 ◦C); IR (ATR) cm−1: 3116, 3072, 2920, 1611, 1469, 1355, 1212, 1127, 1083, 766, 742; 1H
NMR (400 MHz, CDCl3): δ 8.24 (t, J = 1.2 Hz, 1H), 7.85 (d, J = 2.8 Hz, 1H), 7.30 (dd, J = 8.8,
2.8 Hz, 1H), 6.97 (d, J = 8.8 Hz, 1H), 5.25 (d, J = 1.2 Hz, 2H).; 13C NMR (101 MHz, CDCl3): δ
153.4, 153.1, 151.2, 132.1, 127.6, 124.4, 119.5, 115.3, 111.1, 61.7; HRMS (ESI-positive mode):
calcd for C10H7

35ClNO2 [M + H]+, 208.0160; found, 208.0160.
8-Bromo-4H-chromeno [4,3-c]isoxazole (3d) [76]: Reaction of (E)-5-bromo-2-(prop-2-yn-

1-yloxy)benzaldehyde oxime 1d (50 mg, 0.20 mmol) according to the general procedure
afforded 37 mg (74%) of product 3d, isolated as yellowish solid: mp 120.2–120.9 ◦C (lit. [76],
118.0–119.0 ◦C); IR (ATR) cm−1: 3112, 3067, 2922, 1607, 1464, 1353, 1210, 1128, 758; 1H NMR
(400 MHz, CDCl3): δ 8.24 (t, J = 1.0 Hz, 1H), 8.00 (d, J = 2.6 Hz, 1H), 7.44 (dd, J = 8.8, 2.6 Hz,
1H), 6.91 (d, J = 8.8 Hz, 1H), 5.25 (d, J = 1.0 Hz, 2H).; 13C NMR (101 MHz, CDCl3): δ 153.9,
152.9, 151.2, 135.0, 127.3, 119.9, 115.7, 114.8, 111.0, 61.6; HRMS (ESI-positive mode): calcd
for C10H7

79BrNO2 [M + H]+, 251.9655; found, 251.9650.
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6,8-Dibromo-4H-chromeno [4,3-c]isoxazole (3e): Reaction of (E)-3,5-dibromo-2-(prop-2-
yn-1-yloxy)benzaldehyde oxime 1e (66 mg, 0.20 mmol) according to the general procedure
afforded 53 mg (80%) of product 3e, isolated as yellowish solid: mp 149.0–150.0 ◦C; IR (ATR)
cm−1: 3138, 3123, 3065, 2919, 1597, 1450, 1375, 1217, 1117, 787, 749.; 1H NMR (400 MHz,
CDCl3): δ 8.28 (t, J = 1.2 Hz, 1H), 7.97 (d, J = 2.2 Hz, 1H), 7.73 (d, J = 2.2 Hz, 1H), 5.37 (d,
J = 1.2 Hz, 2H).; 13C NMR (101 MHz, CDCl3): δ 152.6, 151.6, 150.8, 137.7, 126.5, 116.6, 114.8,
113.0, 110.8, 62.5.; HRMS (ESI-positive mode): calcd for C10H6

79Br2NO2 [M + H]+, 329.8760;
found, 329.8755.

8-Nitro-4H-chromeno [4,3-c]isoxazole (3f): Reaction of (E)-5-nitro-2-(prop-2-yn-1-yloxy)
benzaldehyde oxime 1f (44 mg, 0.20 mmol) according to the general procedure afforded
40 mg (91%) of product 3f, isolated as colorless solid: mp 221.7–222.1 ◦C; IR (ATR) cm−1:
3090, 2948, 1620, 1582, 1528, 1507, 1475, 1340, 1226, 1129, 749.; 1H NMR (400 MHz, CDCl3):
δ 8.81 (d, J = 2.6 Hz, 1H), 8.41–8.27 (m, 1H), 8.24 (dd, J = 9.2, 2.6 Hz, 1H), 7.13 (d, J = 9.2 Hz,
1H), 5.43 (d, J = 1.2 Hz, 1H).; 13C NMR (101 MHz, CDCl3): δ 159.5, 152.2, 151.9, 142.6, 127.5,
120.9, 118.8, 113.9, 110.2, 62.6.; HRMS (ESI-positive mode): calcd for C10H7N2O4 [M + H]+,
219.0400; found, 219.0399.

8-Methyl-4H-chromeno [4,3-c]isoxazole (3g) [39]: Reaction of (E)-5-methyl-2-(prop-2-yn-
1-yloxy)benzaldehyde oxime 1g (37 mg, 0.20 mmol) according to the general procedure
afforded 30 mg (81%) of product 3g, isolated as yellowish solid: mp 103.6–105.2 ◦C (lit. [39];
103.0–104.0 ◦C); IR (ATR) cm−1: 3101, 3060, 2920, 1620, 1577, 1487, 1460, 1359, 1212, 1130,
783, 745; 1H NMR (400 MHz, CDCl3): δ 8.19 (t, J = 1.2 Hz, 1H), 7.69 (d, J = 2.0 Hz, 1H), 7.16
(dd, J = 8.2, 2.0 Hz, 1H), 6.92 (d, J = 8.2 Hz, 1H), 5.21 (d, J = 1.2 Hz, 2H), 2.34 (s, 3H); 13C
NMR (101 MHz, CDCl3): δ 154.0, 152.9, 150.7, 133.0, 132.1, 124.8, 117.7, 113.8, 111.5, 61.4,
20.8.; HRMS (ESI-positive mode): calcd for C11H10NO2 [M + H]+, 188.0706; found, 188.0708.

4H-Benzo [5,6]chromeno [4,3-c]isoxazole (3h) [77]: Reaction of (E)-2-(prop-2-yn-1-yloxy)-
1-naphthaldehyde oxime 1h (45 mg, 0.20 mmol) according to the general procedure af-
forded 30 mg (67%) of product 3h, isolated as yellowish solid: mp 175.0–176.0 ◦C (lit. [77];
180.0–181.0 ◦C); IR (ATR) cm−1: 3107, 2924, 2870, 1591, 1519, 1443, 1357, 1221, 1119, 770,
748; 1H NMR (400 MHz, CDCl3): δ 9.05 (d, J = 8.0 Hz, 1H), 8.27 (t, J = 1.2 Hz, 1H), 7.87–7.83
(m, 1H), 7.83–7.79 (m, 1H), 7.68–7.62 (m, 1H), 7.49–7.43 (m, 1H), 7.20 (d, J = 8.8 Hz, 1H), 5.33
(d, J = 1.2 Hz, 2H); 13C NMR (101 MHz, CDCl3): δ 154.9, 154.6, 149.7, 133.0, 130.2, 129.8,
128.5, 128.5, 126.5, 125.0, 118.7, 111.9, 108.0, 61.5.; HRMS (ESI-positive mode): calcd for
C14H10NO2 [M + H]+, 224.0706; found, 224.0704.

9-Chloro-4H-chromeno [4,3-c]isoxazole (3i): Reaction of (E)-2-chloro-6-(prop-2-yn-1-
yloxy)benzaldehyde oxime 1i (42 mg, 0.20 mmol) according to the general procedure
afforded 37 mg (88%) of product 3i, isolated as colorless solid: mp 100.5–101.0 ◦C; IR (ATR)
cm−1: 3100, 2926, 1600, 1454, 1406, 1364, 1219, 1151, 1099, 780, 742; 1H NMR (400 MHz,
CDCl3): δ 8.30 (t, J = 1.2 Hz, 1H), 7.30–7.24 (m, 1H), 7.17 (dd, J = 8.0, 1.2 Hz, 1H), 6.98 (dd,
J = 8.0, 1.2 Hz, 1H), 5.21 (d, J = 1.2 Hz, 2H).; 13C NMR (101 MHz, CDCl3): δ 156.4, 152.9,
150.6, 132.5, 131.8, 124.6, 116.7, 114.4, 112.2, 61.3; HRMS (ESI-positive mode): calcd for
C10H7

35ClNO2 [M + H]+, 208.0160; found, 208.0164.
6-Chloro-4H-chromeno [4,3-c]isoxazole (3j): Reaction of (E)-3-chloro-6-(prop-2-yn-1-

yloxy)benzaldehyde oxime 1j (42 mg, 0.20 mmol) according to the general procedure
afforded 36 mg (86%) of product 3j, isolated as colorless solid: mp 112.3–113.3 ◦C; IR (ATR)
cm−1: 3119, 2923, 1605, 1467, 1433, 1355, 1222, 1145, 1085, 786, 734; 1H NMR (400 MHz,
CDCl3): δ 8.27 (t, J = 1.2 Hz, 1H), 7.80 (dd, J = 8.0, 1.6 Hz, 1H), 7.44 (dd, J = 8.0, 1.6 Hz,
1H), 7.02 (t, J = 8.0 Hz, 1H), 5.37 (d, J = 1.2 Hz, 2H).; 13C NMR (101 MHz, CDCl3): δ 153.4,
151.2, 150.7, 132.7, 123.1, 122.8, 115.6, 111.0, 62.3; HRMS (ESI-positive mode): calcd for
C10H7

35ClNO2 [M + H]+, 208.0160; found, 208.0161.
3a,4-Dihydro-3H-chromeno [4,3-c]isoxazole (3k) [37]: Reaction of (E)-2-(allyloxy)benzaldehyde

oxime 1k (35 mg, 0.20 mmol) according to the general procedure afforded 28 mg (80%) of
product 3k, isolated as pale solid: mp 59.7–61.0 ◦C (lit. [37] 60–61 ◦C); IR (ATR) cm−1: 3075,
2995, 2933, 2880, 1607, 1467, 1458, 1228, 1155, 760; 1H NMR (400 MHz, CDCl3): δ 7.79 (dd,
J = 8.0, 1.6 Hz, 1H), 7.39–7.30 (m, 1H), 7.03–6.97 (m, 2H), 6.95 (dd, J = 8.4, 1.2 Hz, 1H),
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4.75–4.64 (m, 2H), 4.14–4.04 (m, 1H), 4.01–3.86 (m, 2H); 13C NMR (101 MHz, CDCl3): δ
155.7, 152.9, 132.6, 125.8, 122.0, 117.5, 113.1, 70.7, 69.4, 46.0; HRMS (ESI-positive mode):
calcd for C10H10NO2 [M + H]+, 176.0706; found, 176.0710.

8-Fluoro-3a,4-dihydro-3H-chromeno [4,3-c]isoxazole (3l): Reaction of (E)-2-(allyloxy)-5-
fluorobenzaldehyde oxime 1l (39 mg, 0.20 mmol) according to the general procedure
afforded 33 mg (85%) of product 3l, isolated as colorless solid: mp 145.3–146.4 ◦C; IR (ATR)
cm−1: 3063, 2932, 2884, 1614, 1481, 1459, 1301, 1235, 1171, 1121, 741; 1H NMR (400 MHz,
CDCl3): δ 7.44 (dd, J = 8.2, 3.0 Hz, 1H), 7.08–7.00 (m, 1H), 6.91 (dd, J = 9.0, 4.6 Hz, 1H),
4.74–4.63 (m, 2H), 4.10–4.01 (m, 1H), 3.98–3.85 (m, 2H); 13C NMR (101 MHz, CDCl3): δ 157.3
(d, 1JCF = 242.1 Hz), 152.5 (d, 4JCF = 2.4 Hz), 151.9 (d, 4JCF = 1.9 Hz), 119.9 (d, 2JCF = 24.1 Hz),
118.9 (d, 3JCF = 8.1 Hz), 113.7 (d, 3JCF = 8.8 Hz), 111.2 (d, 2JCF = 24.4 Hz), 71.0, 69.4, 45.6; 19F
NMR (376 MHz, CDCl3) δ -121.0.; HRMS (ESI-positive mode): calcd for C10H9FNO2 [M +
H]+, 194.0612; found, 194.0605.

8-Chloro-3a,4-dihydro-3H-chromeno [4,3-c]isoxazole (3m) [37]: Reaction of (E)-2-(allyloxy)-
5-chlorobenzaldehyde oxime 1m (42 mg, 0.20 mmol) according to the general procedure
afforded 34 mg (81%) of product 3m, isolated as colorless solid: mp 129.7–130.1 ◦C (lit. [37]
129–130 ◦C); IR (ATR) cm−1: 3038, 2923, 2873, 1610, 1474, 1443, 1226, 1132, 734; 1H NMR
(400 MHz, CDCl3): δ 7.76 (d, J = 2.6 Hz, 1H), 7.28 (dd, J = 9.1, 2.6 Hz, 1H), 6.90 (d, J = 9.1 Hz,
1H), 4.75–4.65 (m, 2H), 4.11–4.02 (m, 1H), 3.98–3.85 (m, 2H); 13C NMR (101 MHz, CDCl3):
δ 154.1, 152.0, 132.4, 127.0, 125.1, 119.0, 114.3, 71.0, 69.4, 45.5; HRMS (ESI-positive mode):
calcd for C10H9

35ClNO2 [M + H]+, 210.0316; found, 210.0319.
8-Bromo-3a,4-dihydro-3H-chromeno [4,3-c]isoxazole (3n) [37]: Reaction of (E)-2-(allyloxy)-

5-bromobenzaldehyde oxime 1n (51 mg, 0.20 mmol) according to the general procedure
afforded 41 mg (80%) of product 3n, isolated as colorless solid: mp 126.7–127.8 ◦C (lit. [37]
125.0–127 ◦C); IR (ATR) cm−1: 2985, 2924, 2870, 1603, 1474, 1436, 1206, 1131, 728; 1H NMR
(400 MHz, CDCl3): δ 7.92 (d, J = 2.4 Hz, 1H), 7.41 (dd, J = 8.8, 2.4 Hz, 1H), 6.85 (d, J = 8.8 Hz,
1H), 4.77–4.66 (m, 2H), 4.11–4.03 (m, 1H), 3.98–3.85 (m, 2H).; 13C NMR (101 MHz, CDCl3):
δ 154.6, 151.9, 135.3, 128.2, 119.4, 114.9, 114.3, 71.0, 69.4, 45.5; HRMS (ESI-positive mode):
calcd for C10H9

79BrNO2 [M + H]+, 253.9811; found, 253.9812.
8-Nitro-3a,4-dihydro-3H-chromeno [4,3-c]isoxazole (3o) [37]: Reaction of (E)-2-(allyloxy)-

5-nitrobenzaldehyde oxime 1o (44 mg, 0.20 mmol) according to the general procedure
afforded 35 mg (80%) of product 3o, isolated as colorless solid: 220.0–221.0 ◦C (lit. [37]
215.0–217.0 ◦C); IR (ATR) cm−1: 3071, 3022, 2923, 1608, 1576, 1513, 1454, 1342, 1232, 1127,
839, 745; 1H NMR (400 MHz, CDCl3): δ 8.72 (d, J = 2.8 Hz, 1H), 8.21 (dd, J = 9.2, 2.8 Hz, 1H),
7.08 (d, J = 9.2 Hz, 1H), 4.87–4.76 (m, 2H), 4.22–4.14 (m, 1H), 4.05–3.94 (m, 2H).; 13C NMR
(101 MHz, CDCl3): δ 159.8, 151.1, 142.4, 127.4, 122.1, 118.5, 113.5, 71.3, 70.0, 45.0.; HRMS
(ESI-positive mode): calcd for C10H9N2O4 [M + H]+, 221.0557; found, 221.0553.

8-Methyl-3a,4-dihydro-3H-chromeno [4,3-c]isoxazole (3p) [70]: Reaction of (E)-2-(allyloxy)-
5-methylbenzaldehyde oxime 1p (38 mg, 0.20 mmol) according to the general procedure
afforded 31 mg (82%) of product 3p, isolated as yellowish solid: 140.7–141.8 ◦C (lit. [70]
142 ◦C); IR (ATR) cm−1: 3058, 2995, 2915, 2875, 1606, 1484, 1229, 1133, 744; 1H NMR
(400 MHz, CDCl3): δ 7.60 (d, J = 2.2 Hz, 1H), 7.14 (dd, J = 8.4, 2.4 Hz, 1H), 6.85 (d,
J = 8.4 Hz, 1H), 4.76–4.62 (m, 2H), 4.11–4.01 (m, 1H), 3.99–3.84 (m, 2H), 2.30 (s, 3H).; 13C
NMR (101 MHz, CDCl3): δ 153.7, 153.1, 133.6, 131.4, 125.6, 117.3, 112.7, 70.7, 69.4, 46.1, 20.6;
HRMS (ESI-positive mode): calcd for C11H12NO2 [M + H]+, 190.0863; found, 190.0869.

3a,4-Dihydro-3H-benzo [5,6]chromeno [4,3-c]isoxazole (3q) [37]: Reaction of (E)-2-(allyloxy)-
1-naphthaldehyde oxime 1q (45 mg, 0.20 mmol) according to the general procedure afforded
28 mg (62%) of product 3q, isolated as yellowish solid: 75.0–75.8 ◦C (lit. [37] 78–80 ◦C);
IR (ATR) cm−1: 3052, 2999, 2935, 2879, 1621, 1578, 1512, 1440, 1227, 1123, 747; 1H NMR
(400 MHz, CDCl3): δ 9.03 (dd, J = 8.8, 1.0 Hz, 1H), 7.85–7.75 (m, 2H), 7.65–7.57 (m, 1H),
7.48–7.39 (m, 1H), 7.11 (d, J = 9.2 Hz, 1H), 4.82–4.75 (m, 1H), 4.75–4.68 (m, 1H), 4.25 (dd,
J = 8.8, 1.0 Hz, 1H), 4.17–4.05 (m, 1H), 3.94 (dd, J = 12.7, 8.0 Hz, 1H).; 13C NMR (101 MHz,
CDCl3): δ 155.8, 153.3, 133.6, 130.6, 129.4, 128.7, 128.5, 126.7, 124.9, 118.3, 106.2, 69.6, 69.3,
47.1; HRMS (ESI-positive mode): calcd for C14H12NO2 [M + H]+, 226.0863; found, 226.0862.
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9-Chloro-3a,4-dihydro-3H-chromeno [4,3-c]isoxazole (3r): Reaction of 2-(allyloxy)-6-chloro
benzaldehyde 1r (42 mg, 0.20 mmol) according to the general procedure afforded 35 mg
(83%) of product 3r, isolated as colorless solid: 145.2–145.8 ◦C; IR (ATR) cm−1: 3091,
2986, 2932, 2871, 1588, 1482, 1442, 1228, 1178, 1149, 726; 1H NMR (400 MHz, CDCl3): δ
7.25–7.19 (m, 1H), 7.08 (dd, J = 7.8, 1.1 Hz, 1H), 6.88 (dd, J = 8.4, 1.1 Hz, 1H), 4.72–4.64
(m, 2H), 4.14–4.04 (m, 1H), 4.01–3.88 (m, 2H); 13C NMR (101 MHz, CDCl3): δ 156.7, 151.3,
133.2, 131.8, 123.9, 116.1, 112.7, 69.9, 69.0, 46.4; HRMS (ESI-positive mode): calcd for
C10H9

35ClNO2 [M + H]+, 210.0316; found, 210.0320.
6-Chloro-3a,4-dihydro-3H-chromeno [4,3-c]isoxazole (3s): Reaction of 2-(allyloxy)-3-chloro

benzaldehyde 1s (42 mg, 0.20 mmol) according to the general procedure afforded 36 mg
(86%) of product 3s, isolated as colorless solid: mp 104.7–105.5 ◦C; IR (ATR) cm−1: 3073,
2988, 2929, 2867, 1600, 1468, 1438, 1230, 1145, 1079, 727; 1H NMR (400 MHz, CDCl3): δ
7.72 (dd, J = 8.0, 1.6 Hz, 1H), 7.42 (dd, J = 7.6, 1.6 Hz, 1H), 6.98–6.92 (m, 1H), 4.89–4.81 (m,
1H), 4.81–4.69 (m, 1H), 4.23–4.10 (m, 1H), 4.04–3.90 (m, 2H).; 13C NMR (101 MHz, CDCl3):
δ 152.3, 151.3, 132.8, 124.3, 122.6, 122.2, 114.8, 71.0, 70.0, 45.6; HRMS (ESI-positive mode):
calcd for C10H9

35ClNO2 [M + H]+, 210.0316; found, 210.0313.
3-Phenyl-4H-chromeno [4,3-c]isoxazole (3t): Reaction of (E)-2-((3-phenylprop-2-yn-1-

yl)oxy)benzaldehyde oxime 1t (50 mg, 0.20 mmol) according to the general procedure
afforded 45 mg (90%) of product 3t, isolated as colorless solid: mp 156.0–157.0 ◦C; IR (ATR)
cm−1: 3059, 2924, 2875, 1612, 1577, 1474, 1446, 1420, 1375, 1299, 1221, 1101, 756, 744; 1H
NMR (400 MHz, CDCl3) δ 7.89 (dd, J = 7.8, 1.6 Hz, 1H), 7.65–7.59 (m, 2H), 7.54–7.43 (m, 3H),
7.39–7.33 (m, 1H), 7.11–7.05 (m, 1H), 7.03 (dd, J = 8.2, 1.0 Hz, 1H), 5.45 (s, 2H).; 13C NMR
(101 MHz, CDCl3) δ 161.7, 155.1, 154.7, 132.2, 130.3, 129.3, 127.4, 126.3, 124.5, 122.4, 117.8,
114.2, 106.7, 62.6; HRMS (ESI-positive mode): calcd for C16H12NO2 [M + H]+, 250.0863;
found, 250.0863.

3-Phenyl-3a,4-dihydro-3H-chromeno [4,3-c]isoxazole (3u) [37]: Reaction of (E)-2-(cinnamyl
oxy)benzaldehyde oxime 1u (51 mg, 0.20 mmol) according to the general procedure afforded
20 mg (40%) of product 3u, isolated as colorless solid: mp 151.9–152.9 ◦C (lit. [37] 156–158 ◦C);
IR (ATR) cm−1: 3037, 2999, 2927, 2884, 1600, 1467, 1454, 1233, 1218, 1119, 1032, 999, 754;
1H NMR (400 MHz, CDCl3): δ 7.77 (dd, J = 7.6, 1.6 Hz, 1H), 7.42–7.31 (m, 5H), 7.30–7.24
(m, 1H), 6.96 (t, J = 7.6 Hz, 1H), 6.88 (d, J = 8.4 Hz, 1H), 5.18 (d, J = 12.6 Hz, 1H), 4.58 (dd,
J = 10.4, 2.0 Hz, 1H), 4.17 (dd, J = 12.4, 10.4 Hz, 1H), 3.89–3.78 (m, 1H). 13C NMR (101 MHz,
CDCl3): δ 154.5, 152.3, 136.2, 131.6, 127.9, 125.6, 124.5, 120.9, 116.4, 112.1, 84.7, 68.0, 51.9;
HRMS (ESI-positive mode): calcd for C16H14NO2 [M + H]+, 252.1019; found, 252.1020.

2a,2a1,3,4,5,5a-Hexahydroxantheno [9,1-cd]isoxazole (3v) [37]: Reaction of (E)-2-(cyclohex-
2-en-1-yloxy)benzaldehyde oxime 1v (42 mg, 0.20 mmol) according to the general procedure
afforded 30 mg (70%) of product 3v, isolated as colorless solid: mp 104.7–105.5 ◦C (lit. [37]
103–104 ◦C); IR (ATR) cm−1: 2492, 2924, 2862, 1600. 1573, 1493,1458, 1380, 1344, 1319,
1292, 1264, 1227, 1207, 1158, 1113, 1029, 999, 901, 868, 840, 812, 754, 710, 649, 516, 450; 1H
NMR (600 MHz, CDCl3) δ 7.86 (dd, J = 7.8, 1.8 Hz, 1H), 7.37–7.30 (m, 1H), 7.00–6.96 (m,
1H), 6.94 (dd, J = 8.1, 0.9 Hz, 1H), 4.93 (m, 1H), 4.74 (m, 1H), 3.82 (m, 1H), 2.06–1.96 (m,
2H), 1.66–1.59 (m, 1H), 1.44–1.35 (m, 1H), 1.35–1.24 (m, 1H), 1.11–1.01 (m, 1H); 13C NMR
(151 MHz, CDCl3) δ 153.9, 153.6, 132.8, 125.4, 121.5, 118.1, 112.8, 80.3, 74.8, 47.4, 27.8, 27.2,
17.3; HRMS (ESI-positive mode): calcd for C13H13NO2 [M + H]+ calcd for C13H14NO2

+,
216.1025; found, 216.1021.

4. Conclusions

We have developed a reliable and efficient method for the synthesis of diverse fused
isoxazoles and isoxazolines via catalytic intramolecular oxidative cycloaddition of aldoximes
with the use of hypervalent iodine species. The reaction mechanism was studied in detail by
various spectroscopic methods and control experiments. It was found that the key intermedi-
ate is hydroxy(aryl)iodonium tosylate. This hypervalent iodine derivative is generated in
situ from 2-iodobenzoic acid and m-CPBA in the presence of p-toluenesulfonic acid.
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the generation of active species for intramolecular oxidative cycloaddition of aldoximes; Figure S2. 1H
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