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Abstract

The genome from Neurospora crassa presented three open reading frames homologous to the genes coding for human AIF
and AMID proteins, which are flavoproteins with oxidoreductase activities implicated in caspase-independent apoptosis. To
investigate the role of these proteins, namely within the mitochondrial respiratory chain, we studied their cellular
localization and characterized the respective null mutant strains. Efficiency of the respiratory chain was analyzed by oxygen
consumption studies and supramolecular organization of the OXPHOS system was assessed through BN-PAGE analysis in
the respective null mutant strains. The results demonstrate that, unlike in mammalian systems, disruption of AIF in
Neurospora does not affect either complex I assembly or function. Furthermore, the mitochondrial respiratory chain
complexes of the mutant strains display a similar supramolecular organization to that observed in the wild type strain.
Further characterization revealed that N. crassa AIF appears localized to both the mitochondria and the cytoplasm, whereas
AMID was found exclusively in the cytoplasm. AMID2 was detected in both mitochondria and cytoplasm of the amid mutant
strain, but was barely discernible in wild type extracts, suggesting overlapping functions for the two proteins.
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Introduction

Mitochondria are regarded as the powerhouse of the cell

producing the high levels of ATP required for life and death [1,2].

Accordingly, mitochondrial dysfunction has been implicated in

several human pathologies, including neurodegenerative disorders,

cardiac dysfunction, diabetes and inflammatory diseases [3–6].

Mitochondria energy production is accomplished through a

series of complexes present in the inner mitochondrial membrane

that carry along oxidative phosphorylation and are thus known as

OXPHOS complexes, of which type I NADH:ubiquinone

oxidoreductase or complex I is the largest and most complex

one [7,8]. Complex I, composed of up to 45 subunits in mammals,

couples electron transfer from NADH to ubiquinone with proton

pumping across the inner mitochondrial membrane contributing a

great deal to the proton motive force that will be used for ATP

synthesis [9,10]. In contrast, many organisms are known to

contain highly branched mitochondrial respiratory chains encom-

passing type II NAD(P)H dehydrogenases that bypass complex I

transferring electrons to ubiquinone in a rotenone-insensitive

manner [11,12].

Type II NAD(P)H dehydrogenases, also referred to as

alternative dehydrogenases, are single polypeptides with FAD or

FMN as prosthetic group that catalyze the oxidation of cytosolic or

matrix NAD(P)H without proton translocation [13]. Alternative

dehydrogenases, described in bacteria, protozoa, plants and fungi,

have been proposed to be energy conservation bypasses and to

provide plasticity under adverse environmental conditions,

although their precise physiological relevance remains unclear

[14,15,12].

Mitochondria are also known to contain other FAD-containing

oxidoreductases, namely the apoptosis inducing factor (AIF) and

the apoptosis-inducing factor-homologous mitochondrion-associ-

ated inducer of death (AMID) [16,17], which have been assigned

key roles in caspase-independent apoptosis. The human AIF has

been identified as a mitochondrial mediator of caspase-indepen-

dent apoptosis by translocating to the nucleus upon an apoptosis

insult where it leads to chromatin condensation and large-scale

DNA fragmentation [18,19]. This ubiquitous 67 kDa protein

encoded by a nuclear gene contains an amino-terminal mito-

chondrial localization signal (MLS), which is removed upon

import into the mitochondria yielding the mature 62 kDa protein

[20] and two nuclear localization signals (NLS) [21]. The C-

terminal domain of AIF shares significant homology with

oxidoreductases found in other vertebrates, plants and fungi,

and indeed AIF has been characterized as a NAD(P)H

oxidoreductase capable of generating superoxide anion [22].

Furthermore, AIF deficiency in mouse and human cells was found

to hamper oxidative phosphorylation, specifically through an effect

in the biogenesis and/or maintenance of respiratory complex I,

and to a lower extent complex III, resulting in decreased

respiratory activity [23]. However, AIF oxidoreductase activity is

independent of its apoptogenic function and despite playing a role
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in OXPHOS, AIF has not been shown to be a part of the

respiratory chain [22,23].

AMID was characterized as an inducer of a novel caspase-

independent apoptotic pathway [17]. Indeed, the human protein

of about 40 kDa appears to be cytoplasmic and unlike AIF, AMID

does not translocate to the nucleus during apoptosis despite

inducing similar apoptotic effects on nuclear chromatin

[24,25,17]. AMID has since been characterized as a novel p53-

responsive death effector (PRG3) involved in the regulation of

tumorigenesis upon findings of down regulation in a plethora of

tumors [26]. With FAD-binding motifs in its N-terminal, AMID

was found to be a flavoprotein with NADPH oxidoreductase

activity independent of the apoptosis-inducing function and

capable of binding DNA non-specifically [27].

In Saccharomyces cerevisiae, the internal alternative dehydrogenase

NDI1 was identified as the yeast AMID homologue, capable of

inducing apoptosis upon over expression in yeast, leading to

typical apoptotic features like DNA fragmentation, chromatin

condensation, increased ROS production and MOMP (mitochon-

drial outer membrane permeabilization) [28]. Additionally, an

AIF orthologue was also shown to induce apoptosis in yeast,

displaying typical nuclear translocation and death executing

features upon apoptotic stimuli, although partially dependent on

caspase activity [29]. In contrast, Aspergillus nidulans presents an

AIF homologue highly expressed in farnesol-induced apoptosis

that does not translocate to the nucleus upon cell death [30].

Interestingly, in the same study, the external NADH dehydroge-

nase NdeA was also shown to be up regulated upon farnesol

(FOH) treatment. Dinamarco and colleagues have since shown

that A. nidulans AifA plays a role in complex I function and that the

mutant strain displays decreased resistance to FOH. Furthermore,

the authors suggest that alternative dehydrogenases may play a

specific role in FOH-induced cell death, possibly to overcome

accumulation of ROS generated by complex I [31].

In Neurospora crassa, three genes were identified with recognized

homology to AIF and AMID proteins, and the respective mutant

strains have been shown to display different sensitivities to drug-

induced apoptosis [32]. Specifically, our group has shown that

whereas aif displays increased resistance to phytosphingosine

(PHS), the amid strain is more sensitive. A putative anti-apoptotic

role for AMID in N. crassa was suggested, despite the possibility

that the AMID homologue in Neurospora could in fact be the

other uncharacterized AMID-like protein [32].

Herein, we aimed to further characterize AIF and AMID

proteins in N. crassa, specifically to understand their role in the

fungal mitochondrial respiratory chain.

Results

N. crassa depicts three AIF-like proteins
The genes coding for putative oxidoreductases belonging to the

protein family of apoptosis-inducing factors AIF, AMID and

AMID2 were identified in a BLAST search of the genomic

database of the Neurospora Sequencing Project at the Whitehead

Institute/MIT Center for Genome Research (www.genome.wi.

mit.edu) using the previously characterized S. cerevisiae AIF protein

sequence as query [29]. All three genes belong to linkage group

VII, AIF is composed of 2 exons encoding a polypeptide of 612

amino acids, AMID is composed of five exons encoding a

polypeptide of 434 aminoacids and AMID2 is composed of five

exons encoding a polypeptide of 447 aminoacids. The predicted

molecular masses of AIF, AMID and AMID2 are 65.5 kDa,

46.9 kDa and 48.3 kDa, respectively. Figure 1A depicts an

alignment of the deduced primary sequences of all three proteins,

revealing the conserved pyridine dinucleotide-binding motifs

characteristic of NAD(P)H alternative dehydrogenases also present

in AIF-like proteins [33]. Interestingly, Neurospora AIF presents

residues involved in Rieske iron sulfur cluster coordination

previously reported for other AIF-like proteins [34,35] and, of

the three proteins, it is the only one with a predicted mitochondrial

targeting sequence (Fig. 1A). Likewise, the human AIF homologue

depicts a MLS whereas the human AMID has been described as

devoid of such signaling sequences [21,25]. More so, the N. crassa

proteins present recognized homology to human AIF suggesting

that they represent the fungus AIF-like homologues. We

performed an alignment of mammalian AIF and AMID sequences

with alternative dehydrogenase and AIF-like sequences from fungi

and the resulting dendogram revealed that the Neurospora

alternative dehydrogenase NDE3 [36] appears to be closer to

Neurospora AIF and AMID proteins than to the remaining

alternative dehydrogenases (Fig. 1B). Furthermore, sequence

alignment analysis revealed a higher degree of homology between

NDE3 and AIF than between NDE3 and NDE2 Neurospora

proteins (data not shown).

Overall, it appears that the N. crassa members of the AIF family

share the general characteristics of the human homologues.

AIF and AMID oxidoreductases are distributed between
mitochondria and the cytoplasm

We next determined the localization of the Neurospora AIF

homologues through Western blot analysis of subcellular fractions

isolated from cellular extracts grown under normal vegetative

conditions. The respective deficient mutant strains, aif, amid and

amid2, resulted from gene replacement by homologous recombi-

nation with the hph gene that confers resistance to hygromycin

[37]. Overall, no significant growth or developmental phenotypes

were observed in any of the strains as determined by phenotypic

analyses of growth rates, asexual spore formation and sexual

reproduction (data not shown). Specific polyclonal antisera against

each protein were produced and subsequently used in Western

blot analysis with the respective knock-out strains as negative

controls. The amid2 mutant strain is a heterokaryon where three

adjacent genes, including amid-2, were deleted due to inaccurate

annotation. Thus, to ensure that FGSC#12511 conidia were

deficient in amid-2, all experiments were performed in mycelium

grown in the presence of hygromycin. As depicted in Fig. 2A, AIF

was found mainly in the cytoplasm but it was also consistently

detected in purified mitochondria, though in smaller amounts.

Indeed, AIF was identified as a band with the expected molecular

weight present in mitochondria (M) and cytoplasm (PMS-Post

mitochondrial supernatant) from the wild type, which disappeared

in extracts from the aif mutant. Additionally, the mitochondrial

14 kDa subunit of complex I, the cytoplasmic AMID (see Fig. 2C)

and the nuclear FKBP50 proteins were used as controls. This was

a surprising result given that AIF has been described as a

mitochondrial protein that translocates to the nucleus upon

apoptotic insults [18]. To confirm that AIF is indeed mitochon-

drial, crude mitochondria were separated on a linear sucrose

density gradient (30 to 60%). The resulting fractions were analyzed

by western blotting with antisera against AIF, the mitochondrial

marker 14 kDa subunit of complex I [38] and the FKBP50 protein

[39]. AIF was identified solely in the fractions containing

mitochondria, as determined by the peaking of the 14 kDa

protein (Fig. 2B). Although a small portion of the mitochondrial

marker was detected on the top fraction we suggest that it results

from organelle rupture during cell disruption. Antibodies against

the cytoplasmic protein GAPDH and the ER protein FKBP22

Apoptosis-Related Oxidoreductases from N.crassa

PLoS ONE | www.plosone.org 2 March 2012 | Volume 7 | Issue 3 | e34270



were found not to peak with the mitochondrial marker, confirming

the purity of the fractions (data not shown).

Interestingly, AMID2 was almost undetectable in wild type

extracts of N. crassa, but was clearly visible in both the

mitochondria and the cytoplasm of the Neurospora amid mutant,

suggesting overlapping functions for AMID and AMID2 in the

fungus (Fig. 2C). In contrast, AMID localized exclusively to the

cytoplasm of N. crassa, in agreement with other reports suggesting a

cytoplasmic localization for AMID proteins [25].

Thus, we conclude that AIF-like oxidoreductases in Neurospora

are distributed in mitochondria and cytoplasm as reported for

other organisms, although the double localization suggests a

fungal-specific role for AIF.

Disruption of AIF or AMID does not affect complex I
activity

AIF is regarded as playing a key role in the mitochondrial

respiratory chain, mainly in the assembly and function of complex

I [23]. Thus, to assess the role of AIF and AMID in Neurospora

mitochondria, we analyzed the efficiency of respiration by either

mutant through oxygen consumption measurements (Table 1).

The oxidation rates of matrix NADH (generated by pyruvate/

malate) can be attributed to either complex I or to the internal

alternative dehydrogenase NDI1, and are rotenone-sensitive or -

insensitive, respectively. Accordingly, matrix NADH activities

inhibited by rotenone in mitochondria from either mutant did not

differ significantly from those of the wild type strain, suggesting

that in contrast to the mammalian situation, deficiency of AIF in

N. crassa does not affect complex I activity. In addition, our results

suggest that AMID also does not affect complex I functioning,

which is consistent with its cytoplasmic localization. The

remaining rotenone-insensitive matrix NADH activity was also

not significantly different between mutant and wild type strains

(Table 1).

Moreover, the rates of oxygen consumption upon addition of

exogenous NADH or NADPH were also comparable in the

mutant and wild type strains, suggesting that deficiency of AIF or

AMID does not hinder the activity of external NAD(P)H

dehydrogenases (Table 1; data not shown). Interestingly, these

Figure 1. Apoptosis-related oxidoreductases from N. crassa. (A) Sequence alignment of deduced proteins. Identical amino acid residues
present in at least two of the proteins are shown on a grey background. Amino acid regions containing the three G residues within conserved
dinucleotide-binding motifs are depicted in a box. The residues involved in Rieske iron sulfur cluster coordination are shown in bold. Predicted
mitochondrial pre-sequence is italicized. Gene locus numbers for AMID, AMID2 and AIF sequences are NCU06061.5, NCU12058.5 and NCU05850.5,
respectively. (B) Dendrogram of AIF-like oxidoreductases and type II NAD(P)H:quinone oxidoreductases. Tree production was performed
using Clustal X based on an amino acid sequence alignment of the proteins from eukaryotic organisms. The sequences used in neighbor-joining and
respective abbreviations are listed in Table 3.
doi:10.1371/journal.pone.0034270.g001
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results also provide evidence that mitochondrial AIF is not a

member of the Neurospora respiratory chain and corroborates our

report that the entry point of electrons into the respiratory chain is

identified in the fungus [36].

To further characterize the effect of disrupting AIF homologues

in the Neurospora mitochondrial respiratory chain we evaluated

the supramolecular organization of the OXPHOS system by

electrophoretic analyses (Fig. 3A). Mitochondrial proteins from

each strain were solubilized with the non-ionic detergent digitonin

and resolved by BN-PAGE. We could detect the same respiratory

complexes and supercomplexes upon Coomassie blue and in-gel

NADH/NBT activity staining in all strains, indicating that AIF

and AMID do not interfere with the assembly of respiratory chain

complexes in N. crassa. Furthermore, we confirmed complex I

integrity in aif and amid mutant strains by Western blot analyses

with specific antisera against a series of complex I subunits

(Fig. 3B).

Overall our results suggest that absence of AIF-like proteins in

Neurospora mitochondria does not hamper complex I activity

under normal vegetative conditions. More so, AIF or AMID,

despite being recognized as oxidoreductases, do not appear to

function in the mitochondrial respiratory chain in N. crassa,

suggesting an independent yet uncharacterized oxidoreductase

activity.

Genetic interactions between alternative NAD(P)H
dehydrogenases and AIF-like oxidoreductases

The mitochondrial respiratory chain of N. crassa has been

characterized as highly branched with four alternative dehydro-

genases bypassing the activity of complex I [11]. The identification

Figure 2. Localization of N. crassa AIF and AMID proteins. (A)Total cellular extracts (TE), cytoplasm (PMS) and mitochondria (M) from the wild
type (wt) and aif were separated by SDS-PAGE and analyzed by Western blotting with antisera against AIF and AMID. (B) Mitochondria from wt and aif
strains were fractionated upon centrifugation on a 30–60% (w/w) sucrose density gradient and analyzed by Western blotting with antibodies as
indicated on the left. (C) As described above TE, PMS and M from wt and the indicated mutant strains were analyzed with antisera against AMID and
AMID2. Antisera against FKBP50 [51] and the 14 kDa subunit of complex I [39] were used as purification controls.
doi:10.1371/journal.pone.0034270.g002

Table 1. Enzymatic activities of mitochondria from AIF-like
mutant strains.

wt amid aif

NADH:HAR reductase (arbitrary units) 0.5960.18 0.4160.14 0.6360.16

NADH oxidase nmol O2/min/mg 95.1623.4 77.0658.0 52.2621.5

Malate:O2 nmolO2/min/mg (rotenone
sensitive)

25.169.0 37.4616.1 32.869.3

Malate:O2 nmolO2/min/mg (rotenone
insensitive)

19.265.1 12.062.5 11.262.5

All activities shown were completely inhibited by antimycin A in wild type and
mutant strains. Their values represent the mean values 6 S. D. obtained from at
least three different mitochondrial preparations.
doi:10.1371/journal.pone.0034270.t001

Figure 3. Analysis of mitochondrial OXPHOS complexes and
complex I composition of N. crassa wild type and AIF-like
mutants. Mitochondrial proteins from wild type, aif, amid and amid2
strains were resolved by BN-PAGE, stained with Coomassie blue (A –
upper panel) or NADH/NBT activity (A – lower panel), and by SDS-PAGE
immunoblot probed with antisera against the indicated subunits of
complex I (B). OXPHOS complexes and supercomplexes are indicated
on the left side of panel A [59,60].
doi:10.1371/journal.pone.0034270.g003
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of three more genes encoding putative oxidoreductases envisages

significant genetic interactions between themselves and with the

alternative dehydrogenases that may provide clues as to their

function in Neurospora. Thus, we found it appropriate to assess

the expression profile of alternative dehydrogenases and AIF-like

genes in the different mutant strains (Fig. 4). We decided not to

include amid2 in the expression profile study because, as stated

before, it is a heterokaryotic strain with consequent heterogeneity

in gene content. Each gene expression profile was evaluated in

both early and late exponential phases of growth as we have

previously demonstrated that expression of genes encoding

mitochondrial respiratory enzymes varies widely depending on

the stage of growth [36]. In addition, we have previously provided

evidence that among mitochondrial NAD(P)H dehydrogenases,

complex I (nuo-51 transcript) appears to be the most abundant and

that, with the exception of nde-3, genes encoding these enzymes are

significantly downregulated from early to late exponential stage of

growth [36,40]. Herein, we show that AIF-like encoding genes are

also downregulated from early to late exponential stage of growth,

suggesting that the early exponential stage of growth in

Neurospora is a period of soaring transcription events. Clearly,

and corroborating the phylogenetic analysis depicted in Fig. 1B,

the two classes of genes compensate among themselves. An

analysis of the expression profiles in the various mutant strains

provides evidence that there is an overall compensation concern-

ing alternative dehydrogenases. Likewise, aif, amid and amid-2

appear up regulated in each other mutant strains suggestive of

overlapping roles and compensatory regulation mechanisms.

Interestingly, expression of AIF-like encoding genes appears

significantly up regulated in a triple mutant devoid of NDI1,

NDE1 and NDE2 (Fig. 4), although we were not able to associate

this increase with an obvious phenotype. Our most striking result

concerns the expression of nde-3. Indeed, its expression does not

appear to be regulated according to the remaining NAD(P)H

dehydrogenases since we could not detect any expression variation

in the respective respiratory mutants. In contrast, we observed a

robust increase in the expression pattern of nde-3 in aif and amid

mutants, suggesting that NDE3 may be functionally redundant to

AIF-like proteins. More so, these results once again corroborate

the phylogenetic analysis depicting NDE3 as clustering with AIF

and AMID proteins rather than with alternative NAD(P)H

dehydrogenases (Fig. 1B).

Discussion

AIF is nowadays regarded as a key player in both life and death

exerting roles in a plethora of signal transduction pathways in the

mitochondria and nucleus, respectively [41,19,21]. Within the last

decade a number of AIF homologues, including AMID proteins,

have been identified and characterized in various model organisms

[42]. The fact that they present homology to NAD(P)H

dehydrogenases with recognized function in the mitochondrial

respiratory chain prompted us to search for AIF-like proteins in

the Neurospora genome.

The N. crassa genome depicts three sequences presenting

recognized homology to AIF and AMID proteins as well as to

NAD(P)H oxidoreductases. The phylogenetic analysis revealed

that the two families of enzymes separate into two distinct

branches, encompassing members of either NAD(P)H dehydroge-

nases or of AIF-like proteins from a number of organisms,

including N. crassa and Homo sapiens. Our most striking result

concerns the clustering of NDE3 with AIF-like proteins rather

than with NAD(P)H dehydrogenases. Interestingly, upon genetic

profiling in several mutant strains, it was also clear that while genes

encoding the remaining alternative dehydrogenases become up

regulated under each other deficiencies, nde-3 expression is

relatively stable in the majority of respiratory mutant strains

tested. Rather, we could detect a robust increase in nde-3 transcript

in the aif and amid mutant strains, suggesting a putative

compensatory role for NDE3 yet uncharacterized. More so, we

have previously characterized NDE3 as localized to both the

mitochondria and the cytoplasm, although we have not yet

dissected the functional relevance of this localization [36]. Given

its similarity to AIF-like proteins we are tempted to speculate that

NDE3 may play important roles in programmed cell death.

Indeed, the alternative dehydrogenase NDI1 has already been

described as the AMID homologue in S. cerevisiae, displaying

similar apoptotic features of human AMID when over expressed

[28].

In this study we established the localization of AIF and AMID

proteins in Neurospora, and both AIF and AMID2 were found to

display double localization patterns. Interestingly, both proteins

were found in the cytoplasm and mitochondria of Neurospora,

despite that only AIF depicts a recognized MLS signal. Moreover,

although AIF was found mainly in the cytoplasm, the identifica-

tion of AIF as a mitochondrial protein in our study corroborates

recent reports by a Neurospora mitochondrial proteomic study

[43]. However, we were unable to clearly determine its

mitochondrial topology, and thus we cannot discard the possibility

that AIF may just be attached to mitochondria. In the fungus

Podospora anserina two AIFs have been reported, one localized to the

mitochondria and another one to the cytoplasm [35]. Thus, it is

conceivable that the single N. crassa AIF may have double

localization to fulfill independent functions. As far as AMID

proteins are concerned, much controversy has surrounded their

localization. In fact, AMID has been described as being associated

to the outer mitochondrial membrane [17] or localized to the

cytoplasm [44]. In our study, AMID was found exclusively in the

cytoplasm, consistent with more recent reports [25], whereas

AMID2 was found to localize to both the mitochondria and the

cytoplasm. Strikingly though, AMID2 was mostly undetectable in

wild type extracts and appeared significantly up regulated in the

amid mutant strain, suggesting overlapping functions of the two

proteins. Indeed, gene expression profiling revealed that Neuros-

pora aif, amid and amid-2 transcripts become up regulated in each

other mutant strains corroborating functional redundancy among

the genes.

Previous reports have awarded AIF a specific role in the

mitochondrial respiratory chain, specifically AIF deficiency was

found to compromise oxidative phosphorylation by hindering

complex I assembly and/or function and to a lower extent

complex III [23]. Furthermore, both AIF and AMID proteins

have been described as possessing oxidoreductase activity [22,27].

Our results demonstrate that neither AIF nor AMID deficiency

compromises mitochondrial respiratory activity in N. crassa.

Figure 4. Expression profile of NAD(P)H oxidoreductases in N. crassa strains. Total RNA was prepared from wild type and mutant strains
mycelia grown to early exponential phase (black, 12–16 h) or to late exponential phase (gray, 20–24 h). Expression of the indicated genes was
quantified by RT-PCR using the primer combinations depicted in Table 2. Relative expressions were obtained per mg cDNA and are depicted as
relative to wt. Data are expressed as the means 6 S. D. of two independent experiments. Statistical significance was calculated with ANOVA followed
by Tukey’s Post Hoc test (*, p,0.05; **, p,0.01).
doi:10.1371/journal.pone.0034270.g004
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Indeed, respiration driven by cytosolic or matrix substrates did not

differ significantly in either mutant when compared to the wild

type strain, providing evidence that neither AIF nor AMID belong

to the mitochondrial respiratory chain. More so, complex I

assembly and supramolecular organization within the respiratory

chain was similar in all strains.

In conclusion, we have provided evidence for the existence of

AIF and AMID homologues in N. crassa that display characteristics

of mammalian AIF-like proteins. However, AIF appears doubly

localized to the mitochondria and cytoplasm, which may fulfill a

fungal specific role. Furthermore, our results suggest that the

alternative dehydrogenase NDE3 is a putative AIF-like gene.

Unlike previous reports [23,31,35] disruption of AIF-like proteins

in N. crassa does not affect the assembly and function of the

mitochondrial respiratory chain.

Characterization of the roles played by N. crassa AIF and AMID

homologues in programmed cell death will provide important

insights regarding fungal specific mechanisms of cell death while

laying the foundation for apoptosis research. More so, it will be

extremely valuable to dissect the relationship between redox

activity, respiratory chain and programmed cell death.

Materials and Methods

N. crassa strains and manipulations
Wild type N. crassa (FGSC#2489) and mutant strains aif

(FGSC#11900), amid (FGSC#12090) and amid2

(FGSC#12511) were obtained from the Fungal Genetics Stock

Center (FGSC) [45]. Strains with mutations in the respiratory

chain dehydrogenase genes ndi-1, nde-1, nde-2 and nde-3 have been

previously described [46–48,36]. Double and triple mutants were

obtained through genetic crosses between single mutants. General

manipulation of Neurospora strains was performed according to

standard procedures [49].

Production of antibodies
The aif and amid full-length cDNAs and a 0.8 kb fragment of

amid-2 were amplified from the N. crassa M2 cDNA library by

PCR (Polymerase chain reaction) using the specific primers: aif

(59–GAATTCGATGACATCCATGATTGCACTGC–39 and

59–GAATTCGTCATCAAAAA GGCAGGTGAATGG–39);

amid (59– GGATCCGATGGGATCTATTGCCGTTG –39 and

59–GGATCCCGCCAATGCCTTCAAAGATG–39); amid-2 (59–

GGATCCAATGGCTTG CGACCTCAAGG–39 and 59–

GGATCCCCGCACTGCCACTGTTTATAAG–39). The PCR

products were cloned in the pCR 2.1-TOPO vector (Invitrogen),

digested with BamHI (amid and amid-2) or EcoRI (aif) and subcloned

into the pQE31 or pET28b expression vectors, respectively. The

AIF, AMID and AMID2 proteins were thus expressed in

Escherichia coli as fusion proteins containing an N terminal His-

Tag. After purification the recombinant protein was used to

generate rabbit polyclonal antisera [50]. Antisera against FKBP50

[51] and several subunits of complex I were used as previously

described [52,39].

Preparation of total extracts, purified mitochondria and
cytoplasm

N. crassa hyphae were homogenized with a grinding mill and the

resulting suspension was saved as total extracts. The obtained

homogenate was differentially centrifuged from which we obtained

Table 2. PCR oligonucleotide sequences.

Gene
Product

N. crassa Accession
Number Oligonucleotide Sequence

ndi-1 NCU00153 F-GCCAACGCCAACGCCGATTC
R-GTAGGCACCGCAAGCAATGACAAG

nde-1 NCU05225 F-GACGCCCGCCAGATCCGCAACAAG
R-CCCGCCGCCGCAGACGACAAAG

nde-2 NCU11397 F-GGAGCCCATCCGCACCATTCTG
R-CAGCACCGACACCAACCACCAG

nde-3 NCU09447 F-TCGTCATTCTCGGCGGCAACC
R-CGGCAAGAGGTCAGGATGGATCAG

amid NCU06061 F-TCAAGCGGTGCGGTGGTGCCATG
R-CCTCGCCCGATGACACGCCGTTTG

amid-2 NCU12058 F-GAGCGACTGAGCGAGATCATCAAG
R-CCCTCCACCACACTCCCATCC

aif NCU05850 F-TCAACACCACGACGGGCGATATTG
R-CCACCACCGACAACAACCACTCTG

nuo-51 NCU04044 F-TGAACGCCACCGCTGCCTACATC
R-GCTGGTCTCCTCGCCGCACAC

actin NCU04173 F-GGCATCACACCTTCTACAACGAG
R-ATGTCAACACGGGCAATGGC

F-forward; R-reverse.
doi:10.1371/journal.pone.0034270.t002

Table 3. Type II NAD(P)H:quinone oxidoreductases and AIF-
like oxidoreductases used in the dendogram of Fig. 1B.

Abbreviation Protein ID in NCBI Species

HsAIF NP_004199 Homo sapiens

HsAMID AAM77596 H. sapiens

MmAIF AAD16435 Mus musculus

MmAMID CAM22220 M. musculus

NcAIf XP_959841 Neurospora crassa

NcAMID XP_959824 N. crassa

NcAMID2 XP_001728525 N. crassa

NcNDI1 XP_956666 N. crassa

NcNDE1 XP_961885 N. crassa

NcNDE2 XP_959008 N. crassa

NcNDE3 XP_958599 N. crassa

PaAIF1 XP_001906597 Podospora anserina

PaAIF2 XP_001903634 P. anserina

PaAMID1 XP_001905330 P. anserina

PaAMID2 XP_001905548 P. anserina

PaPRG-3 XP_001905340 P. anserina

PaNDI1 XP_001907841 P. anserina

PaNDE1 XP_001906747 P. anserina

PaNDE2 XP_001907894 P. anserina

ScAIF NP_014472 Saccharomyces cerevisiae

ScNDI1 NP_013586 S. cerevisiae

ScNDE1 NP_013865 S. cerevisiae

ScNDE2 NP_010198 S. cerevisiae

YlNDE1 XP_503592 Yarrowia lipolytica

YlNDE2 XP_505856 Y. lipolytica

ID-identification; NCBI-National Center for Biotechnology Information.
doi:10.1371/journal.pone.0034270.t003
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a pellet (crude mitochondria) and a supernatant fraction

(cytoplasm), as previously described [53]. Mitochondria were

purified by density gradient centrifugation upon layered on top of

a step gradient made of 50% sucrose (7 ml), 40% sucrose (2 ml)

and 30% sucrose (2 ml) in 10 mM Tris, pH 7.5 according to

standard procedures (FGSC;http://www.fgsc.net/

neurosporaprotocols/vm%20vacuole%20procedure.pdf). For

fractionation of mitochondria a linear 30–60% (w/w) sucrose

density gradient was subjected to centrifugation at 40 0006g for

2 h. One-milliliter fractions were collected from the bottom

(fraction 1) to the top (fraction 10).

Oxygen consumption
N. crassa mitochondria were prepared as previously described

[53]. Respiration was measured polarographically with a Clark-

type oxygen electrode (Hansatech) at 25uC in a total volume of

1 ml. Mitochondrial assays contained 0.5–1 mg of protein, 0.3 M

sucrose, 10 mM potassium phosphate (pH 7.2), 5 mM MgCl2,

1 mM EGTA, 10 mM KCl, 4 mM carbonyl cyanide m-chlor-

ophenylhydrazone and 0.02% (w/v) BSA. The reactions were

initiated by the addition of either 1 mM NADH or 1 mM

NADPH. Internal respiratory activities were assayed in reaction

medium containing 1 mM NAD+ and 5 mM pyruvate and were

started upon addition of 10 mM malate.

Rotenone and antimycin were added to final concentrations of

20 mM and 0.2 mg/ml respectively. Integrity of mitochondria was

assessed through the measurement of cytochrome c oxidase (EC

1.9.3.1) and malate dehydrogenase (EC 1.1.1.37) activities in the

absence and presence of Triton X-100 [47].

Blue Native-PAGE electrophoresis
Mitochondria from N. crassa strains were thawed on ice,

centrifuged at 10 000 g for 5 min and the resulting pellet was

suspended in solubilization buffer containing 50 mM NaCl,

50 mM imidazole/HCl (pH 7.0), 10% glycerol and 5 mM 6-

aminocaproic acid. Mitochondria were solubilized with digitonin

at a detergent/protein ratio of 4 g/g using a freshly prepared 10%

detergent solution. The samples were centrifuged at 10 000 g for

30 min upon 30 min incubation on ice. Each lane was loaded with

the mitochondrial extract containing 150 mg of protein prior to

solubilization. For BN-PAGE (Blue Native- polyacrylamide gel

electrophoresis), linear 4–13% gradient gels overlaid with a 3%

stacking gel were used. Upon electrophoresis, gels were stained

with either Coomassie blue or for NADH/NBT (Nitro-Blue

Tetrazolium) activity, as previously described [54].

Gene expression analysis by RT-PCR
Neurospora mycelium was grown to both early exponential (12–

16 h growth, about 3 g/l) and late exponential phases (20–24 h

growth, about 10 g/l) and total RNA was isolated with the Ilustra

RNAspin Mini kit (GE Healthcare), quantified with the ND 1000

spectrophotometer (Nanodrop) and subsequently used to produce

cDNA with SuperScript First-Strand Synthesis System kit

(Invitrogen) according to the manufacturer instructions. RT-

PCR (real time polymerase chain reaction) experiments were

performed in an iCycler iQ5 with SYBR Green Supermix kit (Bio-

Rad) using a 1/10 dilution of each cDNA, with annealing

temperatures set at 60uC. Specific oligonucleotide primers

(Table 2) were designed using the Beacon Designer program

(PREMIER Biosoft International). Expression of the actin gene

was measured in parallel assays to normalize the amount of cDNA

per assay and relative expressions were obtained per mg cDNA.

Two independent experiments were performed, each in triplicate.

Miscellaneous
The following techniques were performed according to standard

protocols: PCR and general cloning procedures [55], protein

determination [56], SDS-PAGE [57] and Western blot [58].

Statistical analysis
Statistical analyses were performed using One-way ANOVA

followed by Tukey’s Post Hoc test. Data are presented as the

means 6 S.D. of at least two independent experiments. A p

value,0.05 was considered significant.

Independent-Samples T test was used for comparison of two

means. p,0.05 (*), p,0.01(**).
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