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A new method for automated sleep stage scoring of polysomnographies is proposed

that uses a random forest approach to model feature interactions and temporal effects.

The model mostly relies on features based on the rules from the American Academy

of Sleep Medicine, which allows medical experts to gain insights into the model. A

common way to evaluate automated approaches to constructing hypnograms is to

compare the one produced by the algorithm to an expert’s hypnogram. However, given

the same data, two expert annotators will construct (slightly) different hypnograms due

to differing interpretations of the data or individual mistakes. A thorough evaluation of our

method is performed on a multi-labeled dataset in which both the inter-rater variability as

well as the prediction uncertainties are taken into account, leading to a new standard

for the evaluation of automated sleep stage scoring algorithms. On all epochs, our

model achieves an accuracy of 82.7%, which is only slightly lower than the inter-rater

disagreement. When only considering the 63.3% of the epochs where both the experts

and algorithm are certain, the model achieves an accuracy of 97.8%. Transition periods

between sleep stages are identified and studied for the first time. Scoring guidelines

for medical experts are provided to complement the certain predictions by scoring only

a few epochs manually. This makes the proposed method highly time-efficient while

guaranteeing a highly accurate final hypnogram.

Keywords: hypnogram analysis, sleep stage scoring, model uncertainty, inter-rater reliability, machine learning,

polysomnography

1. INTRODUCTION

In polysomnographic (PSG) recordings, physiological signals like the electroencephalogram (EEG),
the electromyogram (EMG), the electrooculogram (EOG), heart activity (ECG), and the patient’s
breathing pattern are measured over an entire night to assess sleep disorders such as sleep apnea
or insomnia. The first step in making a final diagnosis is to construct the hypnogram, which is a
leveled graph showing the sleep stage in function of time. Sleep stage scoring is often performed
manually by clinical experts following rules determined by the American Academy of Sleep
Medicine (AASM). By these rules, the PSG is divided into 30-s sequential windows starting from
the beginning of the PSG. Each window, called an epoch, should be annotated by one out of five
sleep-wake stages (W, N1, N2, N3, or R) (1).

Each of these sleep-wake stages has its own characteristics. The wakefulness stage (W) has in
general a high EMG value, dominating alpha (8–13 Hz) and beta (14–35 Hz) waves in the EEG
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signal and can also be detected by the presence of eye blinks. The
four remaining sleep stages are divided in two groups the REM
stage R and the non-REM stages N1, N2, and N3. The former is
characterized by rapid eyemovements (REMs) in the EOG signal.
The non-REM stage are divided in three categories fromN1 (light
sleep) to N3 (deep sleep). The correct category can be derived
based on the presence of specific patterns in the data such as slow
eye movements in N1, K-complexes and sleep spindles in N2 and
slow EEG waves in N3. A complete overview can be found in the
AASM guidelines (1).

Recently, multiple approaches have been proposed that
apply machine learning to analyze the collected data and
automatically construct a hypnogram. A wide range of
classification techniques has been used such as deep learning (2,
3), support vector machines (4, 5), or random forests (6–
9). Furthermore, the studies can be differentiated based
on the considered physiological signals, with the majority
focusing on EEG while others only use ECG or EOG.
However, only a few approaches have attempted to combine
all the information collected in a PSG (10). Overviews of
these methods can be found in (10) and in (11). Most
models are trained on either the raw signal data or on a
complex set of features extracted from the time and frequency
domain where commonly used techniques include empirical
mode decomposition (8), singular value decomposition (9)
and wavelet-based features (7). These approaches have two
drawbacks. First, the complexity of the feature set and models
makes sleep lab technicians hesitant to use these methods in
practice. Second, if the technicians report a specific violation of
one of the AASM guidelines, it is not straightforward to know
how to improve the model when using black-box models or
complex features.

This paper proposes a three step approach to automated
hypnogram construction. The first step constructs a set of base
features that focus on ensuring interpretability. Some of them,
such as the occurrence of rapid eye movements (REMs) or sleep
spindles, are derived from the EEG, EOG, and EMG signals based
on the AASM guidelines whereas others have a straightforward
medical interpretation such as the heart rate and body position.
The second step derives a new feature set by computing the
conditional probability of each base feature given the sleep
stage. Experts can still verify whether this new set of features
is meaningful from a medical point of view. In the last step, a
random forest classifier combines all features within an epoch,
together with information from consecutive epochs to predict
the sleep stage. This corresponds largely to the human way of
scoring which increases a medical expert’s confidence in the
model. Moreover, this classifier allows estimating the posterior
probabilities for each sleep stage and hence, the uncertainty of
the prediction.

Validating automatic hypnogram analyses is often performed
by comparing the predicted hypnogram to an expert’s scoring.
The confusion matrix, as well as derived values such as the
accuracy, kappa value or F1-value, can be reported (11). However,
studies have shown that the inter-rater agreement is often
below 85% as experts may make mistakes or have differing
interpretations (12, 13). Alas, current studies do not consider

inter-rater variability when evaluating algorithms for automating
hynogram construction.

In this paper, a traditional evaluation of our proposed
algorithm on a large single-scored dataset is performed.
Afterwards, the influence of the inter-rater variability on the
performance evaluation is analyzed on multi-labeled PSGs.
Stephansen et al. proposed a hypnodensity visualization that
shows the mutual disagreement between human experts (14).
This can then be compared visually to the posterior probabilities
of the sleep stages. However, the paper lacks an extensive
quantitative evaluation and does not specify how to handle
uncertain predictions. In contrast, this paper performs an
evaluation that considers both the inter-rater variability and the
prediction uncertainty. Moreover, it proposes guidelines to help
medical experts interpret the algorithm’s results in a manner
that will allow them to efficiently verify uncertain predictions by
providing a minimal number of manual labels.

The main contributions of this work are

1. A newmethod to predict the hypnogram that identifies epochs
where the algorithm is unsure about its prediction.

2. Guidelines for medical experts to efficiently verify the
uncertain predictions.

3. A new state-of-the art quantitative evaluation of the algorithm
which takes into account both the prediction uncertainty as
well as the uncertainty of the expert’s labels.

2. MATERIALS AND METHODS

This section consists out of three parts. In the first part, the used
datasets are described. The second section contains a description
of the proposed model for automated sleep stage scoring. The last
section contains information on the prediction certainties and
how to use them in a real-life medical setting.

2.1. Data
Two PSG datasets are used: a single-scored and a multi-scored
dataset. The single-scored dataset contains 5884 PSGs from 10
medical centers in Belgium, the Netherlands and Austria where
each PSG is scored by one expert. Patients were monitored in
the centers on suspicion of both breathing and non-breathing
sleep disorders such as apnea, insomnia, restless legs syndrome
or narcolepsy. The average age of the patients was 49.1 years (std.
15.8). Patients under the age of 1 were excluded, as well as multi-
sleep latency tests and PSGs lasting less than 1 h. Patients were not
excluded based on their pathologies or medication use such that
the dataset is representative for the entire population of patients
examined in the medical centers.

The dataset is divided into a training, validation and test set
such that there are an equal number of PSGs in each set. The
training set is used to learn the parameters of the emissionmodels
and the random forest classifier discussed in section 2.2. The
validation set was used to select appropriate hyperparameters
for the model. Finally, a large, independent test set containing
2,461,303 labeled epochs remains, which is used in the evaluation
discussed in section 3.
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FIGURE 1 | Example of a hypnogram scored by an expert.

The multi-scored dataset contains only 50 PSGs (71,195
labeled observations) from a single center where each PSG is
scored multiple times: 5 PSGs are scored by four clinical experts,
22 by five experts, 22 by six experts and the remaining 2 PSGs are
scored by seven experts. Very few datasets exist that have been
labeled by multiple due to time cost associated with collecting
the annotations. The average age of the patients was 48.3 years
(std. 17.5). The multi-scored dataset serves only as a test set
to further evaluate the model learned from the single-scored
training set. Hence, all results in this paper are validated on an
independent dataset.

2.2. Automated Hypnogram Model
Each PSG is partitioned into 30-s non-overlapping windows
called epochs (1). The goal of automated hypnogram analyses
is to predict the sleep stage for each epoch. The hypnogram
itself is a graph, showing the sleep stage as a function of time
in which epochs with sleep stage R are typically highlighted.
Figure 1 shows an example of a hypnogram.

Our method to predict the hypnogram consists out of four
steps. First, features based on the AASM guidelines (e.g., the
number of REMs or sleep spindles) are extracted in each epoch.
Second, the emissions, which are the conditional probabilities
of the features given a certain sleep stage, are modeled. The
emissions are a feature-construction step that makes the relation
between the initial features and the sleep stages explicit. Third,
these emissions are normalized. Fourth, the hypnogram is
constructed combining information across multiple epochs.
Next, each step will be further elaborated.

2.2.1. Feature Extraction
The AASM describes rules to score the sleep stage in each epoch
based on information from EEG, EOG, and EMG signals. The
detection of the features described in the AASM, as well as some
additional features is discussed in this section. Table 1 provides
an overview of the considered features per signal type and also
includes which sleep stages each features may be indicative of.

The dominant frequency of the EEG signal is probably the
most important characteristic of a sleep stage. Therefore, the

power of the EEG signal is calculated in four frequency bands
(delta: 0–2.5 Hz, theta: 2.5–6.8 Hz, alpha: 6.8–14 Hz, beta: 14–
35 Hz). Notice that the frequency bands deviate slightly from
the definitions in the AASM guidelines. These four powers are
combined in a single feature, the Odds Ratio Product (ORP),
which is an indication for sleep stage W (15). ORP features are
obtained for the other four sleep stages in an analogous manner.

Sleep spindles are trains of sinusoidal waves in the 11–16 Hz
frequency range (often 12–14 Hz) that last more than 0.5 s (1).
The sixth feature is the number of spindles in each epoch which is
obtained using an unsupervised spindles detection method. The
method first partitions the signal into segments based on zero-
crossings. Next, a factor is derived for each segment based on its
duration d and maximum amplitude a that indicates how likely
it is that the segment is a part of a spindle. The wave’s frequency f
can be expressed as 1/2d. For each segment, a frequency score sf
is defined which is equal to 1 if the segment’s frequency is between
12 and 14 Hz, and linearly decreases to 0 at frequencies of 10.5
and 16 Hz:

sf (x) =



















2
3 (x− 10.5) if 10.5 ≤ x < 12

1 if 12 ≤ x < 14

1− 1
2 (x− 14) if 14 ≤ x < 16

0 else.

(1)

Similarly, an amplitude score sa, which peaks at 4 µV , expresses
whether the segment’s amplitude is expected for a spindle:

sa(x) =











1
4x if 0 ≤ x < 4

1− 1
8 (x− 4) if 4 ≤ x < 12

0 else

(2)

The frequency of the spindle should be rather constant for
multiple segments and hence, the variance of the frequency
should be low. Combining all three conditions, a segment is likely
to belong to a spindle if the spindle factor

var({fi|j− 5 ≤ i ≤ j+ 5})

sf (fi)sa(ai)
(3)
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TABLE 1 | Table summarizing all features per signal.

Signal Feature Feature description Indicating

EEG

ORPW, ORPN1, Sleep stage likeliness based on the EEG powers W/N1

ORPN2, ORPN3, ORPR in the δ, θ ,α and β bands, see (15) N2/N3/R

Spindle
Number of trains of sinusoidal waves

N2
(11–16 Hz range) lasting more than 0.5 s.

Spindle density Average number of spindles per epoch in a PSG

EOG

REM
Number of conjugate, irregular, sharply peaked

W, R
eye movements with an initial deflection < 0.5 s.

REM density Average number of REMs per epoch in a PSG.

SEM
Number of conjugate, regular sinusoidal

N1
eye movements with initial deflection > 0.5 s.

SEM density Average number of SEMs per epoch in a PSG.

EMG EMG background
Average over all EMG signals after filtering

W, R
the intentional movements.

ECG Heart rate Quantile of the average heart rate in the PSG. W, N3*

SaO2
SaO2 average Average oxygen saturation. W, R*

SaO2 variance Variance of the oxygen saturation. W*, N3*, R

Position Position change Indicator for a change in body position. W

Sound snores Number of snores W*

A description is given as well as the sleep stage in which the feature is expected to be high. Stages for which the feature is expected to be low are indicated with an *.

is low where fi is the frequency and ai is the amplitude in the i-th
segment. Spindles are predicted for sequences of segments that
have low spindle factors for at least 0.5 s.

As a seventh EEG feature, the spindle density, the average
number of spindles per epoch, is computed for each PSG. This
value might vary substantially among patients and hence, is
needed to interpret whether a certain number of spindles is high
for the examined patient. This will be explained in the next
section on the emissions.

In addition to the seven EEG features, four features are
derived from the EOG signal. These are the number of slow
eye movements (SEMs) and the number of rapid eye movements
(REMs), as well as their averages in the entire PSG which
are calculated in an analogous manner as the spindle density.
SEMs are sinusoidal movements where the initial deflection
takes more than 0.5 s. These are typical in sleep stage N1.
REMs are faster and more sharply peaked, and they suggest
R sleep or a patient in sleep stage W who is looking around.
The SleepRT software (OSG bv, Micromed Group, Kontich,
Belgium) is able to detect both REMs and SEMs as half waves
satisfying particular conditions. These REM and SEM densities
are used since they can reveal important patient-dependent
effects: An increased REM density is, for example, common
for depressed patients while antidepressant drugs may suppress
REMs (16, 17).

Only one EMG feature is derived which is the average
background EMG over all chin and leg sensors. Hereto, a
bandstop filter is used to filter out electric hum. Afterwards,
a bandpass filter is applied and the morphological opening is
calculated for each epoch to get the background EMG, which
is the EMG expressing the muscle tonus without the tension
related to activities such as swallowing, talking or other body
motions (18). Median centering over the entire PSG is used such
that epochs with background EMG higher than 1 point out an
elevated EMG. This feature is often high in stage W and low
in stage R.

Besides EEG, EOG, and EMG signals, most PSGs contain
additional information that, while not used by the AASM
manual for sleep scoring, can nevertheless be informative for
constructing the hypnogram. They will now be discussed briefly.

The heart rate decreases from wakefulness to deep sleep but
increases during R sleep (19). Because heart rate is highly person
dependent, the quantile of the epoch’s heart rate in the entire PSG
is used as a feature instead of the heart rate itself.

A sensor measuring the body position is used to indicate five
labels (standing, belly, back, left, and right). Although standing
seems a strong indication that the patient is awake, this is in our
data often not the case due to measurement errors. However, if
a transition from lying down to standing up is observed, this is
a more accurate predictor for sleep stage W. A binary feature
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indicating the epochs with such a transition in body position
is used.

During R sleep, the strength of some of the breathing-related
muscles decreases (20). This may be the reason why the average
oxygen saturation is lower in R sleep than in non-R sleep. This
hypoxia can occur due to apnea or hypopnea which also result in
high variance of the oxygen saturation. On the other hand, when
the subject is awake, the oxygen saturation level is rather high and
constant (20). The mean and variance of the oxygen saturation
level are therefore very informative for the sleep stage and are
also used. Finally, the presence of snores can be used which are
determined by analyses of the microphone signal.

2.2.2. Emission Models
This section describes how to transform the features based on
the AASM guidelines into a new feature set called emissions,
representing the conditional probabilities of the feature values
given the sleep stage s. This intermediate step helps make relation
between the initial features and sleep stages clear. Furthermore,
linking the initial features to the sleep stages allows investigating
which features are informative on their own and which features
should be combined, whether extra preprocessing is useful or
how to deal with the patient-dependency of some features.
Since experts can interpret these emission probabilities, they can
provide advice to help solve these challenges. Moreover, experts
can verify that the obtained emissions are meaningful from a
medical point of view.

Let f = {f1, . . . , fm} be the set allm feature values in an epoch.
The emissions ei,s are defined for a subset x of f and are given by

ei,s(x) =
1

cx
p(x|s) (4)

with p a probability density function and cx a normalization
constant. The subset x often contains only one feature such as
for the heart rate or EMG background. For sleep spindles, REMs
and SEMs, the number of events is modeled simultaneously with
the density value which allows interpreting the number of events
per patient. Finally, the mean and average oxygen saturation
are modeled together since their interaction is important to
determine the sleep stage, an insight which is based on medical
knowledge provided by experts.

This section discusses estimating p(x|s) while the subsequent
section discusses how to normalize these probabilities. The
emission models are time independent: the probability of
observing a set of feature values given a sleep stage does not
depend on the position of the epoch in the PSG. The AASM
guidelines also makes this assumption.

The number of snores and the indicator for body position
change are discrete features such that the probability density
function in Equation (4) is replaced by a probability mass
function. The maximum likelihood estimate of this function is
equal to the normalized histogram of the feature values in the
training data. The number of REMs, SEMs, and spindles are also
discrete but highly patient-dependent. Therefore, they need to be
handled differently in order to avoid weakening the relationship
between the feature and the emission values, which would in turn
make it more difficult to distinguish among sleep stages.

This can be solved by modeling the number of REMs x itself
and the REM density ρ simultaneously. The density function for
the REM distribution is

p(x, ρ|s) =
1

c

ax,s

ax,s + ρ−bx,s
for x ∈ {0, . . . , 3}, s ∈ S (5)

with parameters ax,s and bx,s, normalization constant c and S =

{W,N1,N2,N3,R} the set of sleep stages. The number of REMs
is truncated at 3 to guarantee a stable result. The parameters can
be optimized using amaximum likelihood approach on a training
set. Similarly, the appropriate density function for the number of
SEMs is

p(x, ρ|s) =
1

c
eax,seρbx,s for x ∈ {0, 1}, s ∈ S . (6)

The density of the number of spindles is given by a negative
binomial distribution with mean equal to aρb and variance equal
to aρb + cρd. The four model parameters can again be optimized
based on a training set.

The EMG background is a continuous feature of which the
distribution can be fitted well with

p(x|s) =

{

xas

c if x < 1
x−bs

c if x ≥ 1
(7)

with

c =
1

as + 1
+

1

1− bs
, (8)

as > −1 and bs < 1 to guarantee normalization. The density
peaks at 1, which corresponds to the median value, and decreases
to zero by a power law.

The two remaining distributions are the joint distribution of
the mean and variance of the oxygen saturation and the joint
distribution of the heart rate and heart rate change. Both are
two-dimensional and continuous which makes it hard to fit a
parametric density model. Different non-parametric models can
be used such as kernel density estimators.

The set of emissions contains 60 features for each epoch which
can all be interpreted by human experts as each one corresponds
to a feature-stage pair in which high values correspond to a
posterior distribution which is higher than the prior. Take for
example an EMG background value which is twice that high than
the median EMG. The emission related to the stage W is then
equal to 0.32 which is much higher than the R-emission which
is only 0.05 stating that it is more likely to observe a high EMG
when the patient is awake. This is a very intuitive and easy to
verify statement for medical experts. In a similar way, it can, for
example, be verified that a lot of spindles lead to a higher N2
emission or that the presence of SEMs increases the N1 emission.

2.2.3. Normalization
The magnitude of the conditional probabilities p(x|s) is highly
dependent on p(x). Therefore, low values indicate that the
observed value x is rare instead of being informative about
how likely a sleep stage is. The normalization constant cx
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in Equation (4) is set to p(x) to filter out this effect. As a
consequence, it holds for all x that.

∑

s∈S

ei,s(x) = 1. (9)

2.2.4. Sleep Stage Classification
Given a training set T = {(xi, si) for i ∈ 0, . . . , n} with feature
vectors xi and sleep stages si, a random forest (RF) classifier is
learned to predict s from x. An RF is an ensemble of decision
trees, where each tree is learned on a bootstrap sample of T

(i.e., by sampling n examples with replacement from T ). Each
decision tree recursively partitions the sample space into cells
until a stopping criterion is met. Let Cx be the cell containing
observation x, then the predicted class probability ps(x) of x for
class s is equal to the fraction of training instances of class s in Cx:

ps(x) =
|{(xi, si) ∈ T |xi ∈ Cx, si = s}|

|{(xi, si) ∈ T |xi ∈ Cx}|
. (10)

Averaging the predictions made by each tree in the ensemble
yields the final predicted class probabilities of the random forest.
The predicted sleep stage corresponds to the stage with highest
predicted probability:

ŝ = argmax
s∈S

ps(x) (11)

For the automated hypnogram analysis, only considering the
vector of emissions et = [ei,s|∀i,∀s ∈ S] as the input features
to the random forest is insufficient. First, the AASM states that
the sleep stage in some epochs depend on the previous epoch.
Second, basing the prediction on data of a single epoch would
make the prediction very sensitive to noise. Therefore, two extra
vectors are added as input to the random forest: the forward
probabilities αt−1 and the backward probabilities βt+1. These
contain respectively estimates of the sleep stage distribution in
the previous epoch based on the information up until that epoch;
and estimates of the sleep stage distribution in the next epoch
based on the information from that epoch onward. Both are
calculated iteratively.

The forward probability αt(st) is the probability of sleep stage
labels st in epoch t given all emissions up to epoch t:

αt(st) = P(st|e1 : t) =
∑

st−1∈S

P(st|st−1, e1 : t)P(st−1|e1 : t) (12)

with e1 : t = {e1, . . . , et}. Assuming conditional independence

P(st|st−1, e1 : t) = P(st|st−1, et) (13)

and assuming that each sleep stage is independent of
future emissions

P(st−1|e1 : t) = P(st−1|e1 : t−1) (14)

it holds that

αt(st) =
∑

st−1∈S

P(st|st−1, et)αt−1(st−1) (15)

for t ∈ 1, . . . , n. The probabilities P(st|st−1, et) can be estimated
analogous to Equation (10) with x = (st−1, et). The forward
probabilities αt = [αt(st)|∀s ∈ S] can then be calculated
iteratively with α0(s) the probability of a PSG starting in stage s.

The vector of backward probabilities β t = [βt(st)|∀s ∈ S] can
be calculated in an analogous manner by using only information
from future epochs:

βt(st) = P(st|et : n) =
∑

st+1∈S

P(st|st+1, et)βt+1(st+1). (16)

The predicted sleep stages can now be obtained from the random
forest classifier with input feature vector in epoch t equal to

xt = [αt−1, et ,β t+1]. (17)

2.3. Prediction Certainties
Automated sleep stage scoring is a useful tool for clinical experts
to speed up the analysis of PSGs. However, this analysis will never
perform perfectly in all circumstances as the data is often noisy,
sensors can fail or rare pathologies can be misinterpreted. In
these cases, the analysis should indicate for which predictions
it is uncertain and also list the possible sleep stages. Thus, the
algorithm can alert the human expert who can then closely
examine and label these epochs manually.

The predicted class probabilities obtained from the random
forest in Equation (10) are a first indication of how certain the
model is in its prediction. For example, the model is more certain
if pŝ(x) is much higher than the probabilities associated with
all other classes whereas it is less certain if two classes have
similar probabilities. To help the human experts to interpret these
probabilities, they are transformed into three categories. The
first contains the epochs where the prediction is certain and no
manual check is needed. The second category indicates situations
where the algorithm assigns similar probabilities to two sleep
stages. In this case, both possible sleep stages are given along
with their corresponding likelihoods. Practical scoring guidelines
will be provided such that a human expert can annotate large
periods of uncertainty by scoring only a few epochs. The third
category identifies a small number of epochs where the algorithm
is highly uncertain. This categorization allows obtaining an
accurate hypnogram while only requiring experts to manually
score a limited number of epochs.

In order to obtain these categories, the prediction probabilities
are transformed using three steps: smoothing, exclusion of
unlikely classes and normalization. Each of themwill be discussed
in more detail in the next paragraphs. This section will be
concluded with the practical scoring guidelines to score the
epochs in the second category in an optimal way.

2.3.1. Smoothing
Transitions between sleep stages are often not sharply defined.
For example, the dominating EEG frequency usually changes
gradually and hence, the probability of going from one sleep stage
to another should evolve gradually too. Therefore, smoothing
seems to be an appropriate first step. However, an exception is
when a patient suddenly wakes up for a short period, which can
happen, for example, due to environmental noise, apnea or body
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motion. In these cases, sudden jumps in prediction probabilities
should not be smoothed. Similarly, short transitions to N1
are possible when arousals appear. Therefore, the prediction
certainties of sleep stage W and N1 are only smoothed if the
reduction of the value is smaller than one third meaning that
small fluctuations are smoothed while large increases in the
W and N1 probabilities are not. For N2, N3, and R, sharp
transitions are not expected, so smoothing is always performed.
The smoothing is done by a moving average with a window size
equal to 3 epochs. The transformation becomes:

p′s(xt) =







1
3 (ps(xt−1)+ ps(xt)+ ps(xt+1)) if s ∈ {N2, N3, R} or

ps(xt)

p′s(xt)
> 2

3

ps(xt) else.

(18)

2.3.2. Exclude Low Scores
Low, non-zero prediction probabilities are very common when
using random forests because a probability of 0 is only predicted
if for every tree in the random forest, no training instances of a
class fall in the cell of the partition. However, if the probability
associated with a class is sufficiently small compared to the
probability of another class, there is no doubt between these sleep
stages and the prediction probability of the unlikely class can be
set to zero. As a threshold, a ratio of 1/3 is taken, so if there is a
class that is at least 3 times more likely, the probability of the class
will be set to 0:

p′′s (xt) =

{

0 if ∃s̃ ∈ S : 3p′s(xt) ≤ p′s̃(xt)

p′s(xt) else.
(19)

2.3.3. Normalization
As a last step, the transformed prediction certainties are
normalized such that they can be interpreted as probabilities:

p∗s (xt) = p′′′s (xt) =
p′′s (xt)

∑

s̃∈S p′′s̃ (xt)
. (20)

This step concludes the transformation. For simplicity, the result
after the transformations will be denoted as p∗s (xt).

2.3.4. Practical Scoring Guidelines
By design, the transformed class probabilities are zero for unlikely
classes. This enables categorizing epochs by the prediction
certainty based on the number of classes for which p∗s (xt) is non-
zero: if there is one class with p∗s (xt) equal to 1, it is a certain
prediction which should not be verified; if there are more than 2
classes with non-zero p∗s (xt), the algorithm is not sure at all about
its prediction and a manual scoring is necessary. The case where
there are exactly 2 non-zero classes deserves more attention.

In this case, it can also be argued that all these epochs
should be checked manually since there is doubt. However, this
is often not the case because the value of p∗s (xt) contains a
lot of information which can be used to reduce the required
manual effort. To see why, consider two common cases. The first
common pattern is a transition between two stages, let say N2 and
N3. Here, there is a period predicted as N2, followed by a period
where the likelihood of N2 decreases while N3 increases followed

by a period where N3 is predicted. While the period where the
model is uncertain can be rather long, only the transition needs
to be determined. The AASM rules determine that an epoch is N3
if at least in 20% of the epoch there is slow-wave activity. If such
an epoch is observed, it can be assumed that all future epochs will
be N3 too since p∗N3(xt) is increasing. If the epoch does not meet
the N3 criterion, it is N2 as are all previous epochs. Consequently,
only a very limited number of epochs should be checked in order
to label the entire transition period.

A second common pattern also starts in N2 followed by a
period of doubt between N2 and N3 but ends with a period
of N2. In this case, the experts can verify the epochs where
the probability of N3 is maximal. If it is judged that this is
still N2, the entire period can be labeled as N2. If these epochs
are labeled as N3, the steps from the previous example can be
repeated to find the transition point. Therefore, also this period
of uncertainty can often be labeled entirely based on labeling a
small number of epochs by exploiting the information obtained
from the model. Real-life examples will be shown in the section
on hypnodensity graphs.

2.3.5. Expert’s Uncertainty
Besides uncertainty on the algorithm’s prediction, there is also
uncertainty on the expert’s label. A measure for this uncertainty
can be obtained for epochs which are scored by multiple experts.
Let stj be the label of rater j in epoch t. Define ρs(xt) as the fraction
of experts scoring epoch t as s:

ρs(xt) =
1

mt

mt
∑

j=0

δstj ,s (21)

with

δa,b =

{

0 if a 6= b,

1 if a = b
(22)

and mt the number of raters who scored epoch t. This value can
be interpreted such as ps(xt): a higher value indicates a higher
certainty on class s. The maximum value over all sleep stages is
denoted as ρs̄(xt), in analogy to pŝ(xt).

Disagreement between experts can have multiple causes, some
of which are intrinsic to the data such as noise, others which are
just due to human errors or misinterpretations. It is often difficult
to make a distinction between these two categories. However,
an expert’s opinion which clearly deviates can be assumed to
be individual mistakes. This is similar in spirit to the approach
taken in Equation (19) which excluded unrealistic classes. There,
it is assumed that if there is a stage which is at least three times
more likely than another stage, the unlikely stage can be ignored.
Therefore, Equations (19) and (20) are applied on ρs(xt). The
notation ρ∗

s (xt) denotes the transformed values. So, besides the
uncertainty of the predicted label pŝ(xt), the uncertainty of the
expert’s label ρs̄(xt) can also be quantified for epochs which are
scored multiple times. However, it should be taken into account
that the number of labels is often rather small such that only a
very rough estimate is obtained.
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TABLE 2 | Confusion matrix for the single-scored dataset, including row and column totals, comparing the experts’ sleep stages to the predicted sleep stages.

Algorithm

W N1 N2 N3 R

Expert W 19.5 1.0 1.0 0.0 0.4 21.9

N1 2.0 2.8 3.0 0.0 0.9 8.7

N2 0.9 1.1 33.8 2.0 1.3 39.1

N3 0.1 0.0 3.5 12.3 0.0 15.9

R 0.4 0.3 1.5 0.0 12.1 14.3

22.9 5.2 42.8 14.3 14.7

3. RESULTS

A standard evaluation of an automated sleep stage model
consist of a comparison of the automated hypnogram with a
single expert’s hypnogram. The results of this analysis and the
shortcomings are discussed in section 3.1. From section 3.2
onward, the multi-scored dataset is used. First, the inter-rater
reliability is calculated which gives a general indication on the
trustworthiness of the expert’s labels. The relation between ps(xt),
ρs(xt) and the accuracy will be investigated in the section 3.3.
A visual comparison between the uncertainties by hypnodensity
graphs will follow next. A numerical analysis of the accuracy
based on the obtained uncertainties follows in the last section.

3.1. Single-Scored Dataset
A comparison of the automated hypnogram with a single expert’s
hypnogram is the most common evaluation method used in
automatic sleep stage scoring. A similar analysis is done on the
first dataset containing 1961 PSGs. The confusion matrix can
be seen in Table 2. This matrix C contains in the cell Css̃ the
percentage of epochs for which the expert indicates sleep stage
s while the predicted sleep stage is s̃:

Css̃ =
1

n

n
∑

t=0

δst ,sδŝt ,s̃ (23)

with st the expert’s label in epoch t and ŝt the predicted sleep stage.
The accuracy, the fraction of epochs for which the predicted sleep
stage correspond to the expert’s label, is equal to 80.5%. It is
easily verified that this corresponds with the sum of the diagonal
element in the confusion matrix. Almost half of the mistakes are
confusions between N1 and N2 (4.1%) or between N2 and N3
(5.0%). Also a W-N1 mistake seems to appear regularly (3.0%).
From the row and column totals, showing the distribution over
the sleep stages for the true and predicted labels, it seems that
N2 is predicted 3.7% too often, while N1 is under predicted
by 3.5%. Cohen’s kappa is equal to 0.734 which is often seen
as substantial (21). However, from this dataset, it is impossible
to determine which fraction of this disagreement is caused by
incorrect predictions and which fraction is due to mistakes from
the experts, or whether there are epochs for which multiple sleep
stages are acceptable, depending on the expert.

TABLE 3 | Percentage of epochs per sleep stage in a weighted pairwise

comparison between experts.

W N1 N2 N3 R

W 15.2 2.4 1.0 0.0 0.3

N1 4.0 4.5 0.0 1.4

N2 38.1 4.7 1.4

N3 12.7 0.0

R 14.1

3.2. Inter-rater Reliability
Let n be the number of epochs and let stj be the label of scorer j
in epoch t. Denoting the number of experts which labeled epoch
t by mt , a confusion matrix between two or more experts can be
calculated by taking the average pairwise agreement between the
mt experts in each epoch:

Css̃ =
1

n

n
∑

t=0

1
(mt
2

)

∑

j 6=k

δstj ,sδstk ,s̃. (24)

Notice that this is a weighted confusion matrix with weights
chosen such that each epoch is equally important, regardless of
the number of human annotators. Since the order of the experts is
unimportant, Css̃ and Cs̃s can be combined in one cell. The result
for the multi-labeled dataset is shown in Table 3.

The inter-rater reliability (IRR) is a general measure for the
similarity between the labels given by human experts and is
defined as the fraction of epochs in which two human experts
agree. Hence, it is comparable to the accuracy when comparing
automated labels with expert’s labels. Therefore, the IRR can be
calculated as

IRR =
∑

s∈S

Css. (25)

This value is 84.1%, which corresponds with values found in
literature. However, all experts are from the same hospital.
Therefore, it can be expected that the cross-center IRR could even
be lower.

The IRR can now be compared to the accuracy on this multi-
scored dataset. Again, the weights of the confusion matrix are
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TABLE 4 | Weighted confusion matrix of experts’ labels compared to algorithm’s prediction.

Algorithm

W N1 N2 N3 R

Expert W 14.7 1.0 1.0 0.0 0.5 17.2

N1 1.4 2.5 3.5 0.0 0.8 8.2

N2 0.6 0.7 39.4 2.3 0.9 43.9

N3 0.0 0.0 2.8 12.2 0.0 15.0

R 0.2 0.2 1.3 0.0 13.9 15.6

16.9 4.4 48.0 14.3 16.1

FIGURE 2 | Plot of the moving average of the accuracy (red), the experts’

certainty ρs̄(xt ) (blue), and the model certainty pŝ(xt ) (green) in function of the

rank of pŝ(xt ). The accuracy is given by the weighted agreement between the

predicted sleep stage and the experts’ labels with weights such that every

epoch contributes equally, independent of the number of experts’ labels.

chosen such that every epoch is equally important:

Css̃ =
1

n

n
∑

t=0

1

mt

mt
∑

j=0

δstj ,sδŝt ,s̃. (26)

The confusion matrix is shown in Table 4. The accuracy is
82.7% which is only 1.4% lower than the mutual agreement
between human experts. Therefore, the algorithm is only slightly
outperformed by human experts. Moreover, the same types of
mistakes is made which are mostly in between W-N1, N1-N2,
and N2-N3 suggesting that a large part of the disagreement
with the automated prediction is due to mutual disagreement
between experts.

3.3. Comparison Uncertainties
In the previous paragraph, the predicted sleep stage was
compared to the experts’ sleep stages. In this section, the relation
between the prediction certainty pŝ(x) and the certainty of the
experts’ labels ρs̄(x) is investigated. Figure 2 shows the moving

average with window size 1,000 of both uncertainties in function
of the rank of pŝ(x) revealing that low prediction certainties
correspond to epochs where the experts’ labels are less certain.
Hence, epochs with low prediction confidence might be hard
to score for human experts too. This can, for example, happen
for data that contains a lot of noise. On the other hand, for
epochs where the model is rather confident, ρs̄(x) is high as well
indicating agreement among the experts.

The same figure shows the moving average of the accuracy.
As desired, high prediction certainty corresponds to high
accuracy. It is observed that the prediction certainties are an
underestimation of the actual accuracy, calibration techniques
can be used to remove this difference. However, as discussed,
the ratio’s between the predicted class probabilities of all sleep
stages turns out to be more informative than the prediction
certainty alone.

3.4. Hypnodensity Graphs
A hypnodensity graph is a fuzzy hypnogram in which sleep
stages are visualized by stacked color bars with height equal
to the probability of the sleep stage (14). For the automatic
analysis, both ps(xt) and p∗s (xt) can be is visualized. In a similar
way, ρ∗

s (xt) can be used to indicate the agreement between
the experts. A comparison between all three hypnodensities for
one PSG is visualized in Figure 3 from which the similarity is
immediately obvious.

Although the plot of ps(xt) corresponds largely to the
hypnodensity of the experts, the drawbacks which were discussed
in section 2.3 are clearly visible: First of all the signal is rather
rough. Moreover, there are a lot of negligible effects visible such
as the short bumps in which pW(xt) and pN1(xt) are elevated
or pR(xt) which is only a few percent for a large part of the
PSG. These patterns do not have any influence on the final
prediction of the sleep stage and can make the interpretation of
the graph confusing. After all, it is not straightforward how to use
this information.

On the other hand, the graph of p∗s (xt) clearly indicates for
each epoch the possible sleep stages from which it is easy for
experts to obtain a final hypnogram. As already pointed out, three
main categories can be distinguished. For the majority of the
epochs, only one sleep stage remains. Between epoch 200 and 260,
there are three periods where there is uncertainty betweenN2 and
N3: in the first and third, there is doubt between the stages but the

Frontiers in Digital Health | www.frontiersin.org 9 July 2021 | Volume 3 | Article 707589

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Van der Plas et al. Evaluation of Automated Hypnogram Analysis

FIGURE 3 | Hypnodensity graphs showing the experts’ labels (A) as well as the algorithm’s posterior class probabilities before (B) and after the transformations (C).

Each color represents a sleep stage (W: yellow, N1: brown, N2: blue, N3: black, R: red).

algorithm predicts no transition to N3. All experts agree that both
periods should be N2. Using the practical guidelines, only one
epoch in each period should be scored to reach this insight. The
second period of doubt is a transition fromN2 to N3 in which the
transition point should be determined. The expert’s hypnodensity
indicates that this choice is expert dependent. However, each
expert can determine this point based on his own insight. The
last category of epochs, in which the algorithm is unsure, can
be observed in between epoch 500 and 550. These periods can
be checked manually but the periods are rather short and it is
therefore not an issue.

3.5. Accuracy Analysis
For both the algorithm and the experts, three categories are
defined that correspond to the level of certainty of the label.
Now, a comparison between both can be made. Table 5 gives an
overview of the results. For the majority of the epochs (63.3%),
both the algorithm and experts are certain, and hence only
indicate one sleep stage. Of course, it is desired that the predicted

TABLE 5 | Accuracy and fraction of epoch per category.

Experts Model Fraction epochs Accuracy

Certain Certain 63.3 97.8

Certain Doubt 19.1 95.0

Doubt Certain 4.7 91.5

Doubt Doubt 7.8 84.9

Uncertain 0.7

Certain/doubt Uncertain 4.3

The calculation of the accuracy measure is slightly modified for each category as
described in section 3.5.

sleep stage corresponds to the expert’s consensus. This is the
case for 97.8% of the epochs, so clear mistakes are made on just
over 2% of the epochs. This is substantially better than the initial
confusion matrix suggested and hence, demonstrates the need to
perform an evaluation on a multi-scored dataset.
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The second most common group contains epochs where the
experts are unanimous but the algorithm cannot decide between
two sleep stages. Here, a traditional accuracy measure would be
rather low (71.9%), as the model confidence indicates. However,
in this case it is mainly important that the experts can make the
correct decision based on the provided information. Hence, it is
required that one of the two suggested sleep stages corresponds
to the expert’s consensus. This is true for 95.0% of the epochs. For
simplicity, this measure is also called accuracy in Table 5. It can
be argued that the algorithm is unnecessary uncertain about its
prediction. However, the categories are rather arbitrary and that
the number of labels is limited. Therefore, one expert’s label can
change the category of an epoch.

If the experts offer two different opinions about the sleep
stage of an epoch, a prediction may be seen as accurate if it
corresponds to one of these opinions. This is the case for 91.5%
of the epochs that were predicted with high certainty. For the
epochs in which both the expert and the algorithm doubt between
two sleep stages, for 84.9% of the epochs they doubt between
the same stages. This is typical behavior when changing between
sleep stages, especially between N2 and N3, since this transition
is often rather gradual.

The last group of epochs are those where the algorithm cannot
determine the sleep stage (4.3% of the epochs) or where the
experts completely disagree (0.7% of the epochs). The first group
should be scored manually, but since this is a rather small group,
the manual analysis will still be fast. For the second group, it
is impossible to determine whether the predicted sleep stage is
correct, if such a stage already exists.

4. DISCUSSION

A new method to perform automated sleep stage scoring is
proposed that avoids constructing complex feature design, by
designing a feature set that is largely based on the AASM rules.
The relationship between the features and sleep stages ismodeled,
resulting in a new set of features, each indicating the likelihood
of the features for a specific sleep stage. This feature set has as
advantages that it is meaningful to medical experts and that gives
insight in the optimal preprocessing as well as on how to deal with
the patient-dependent nature of some features. A random forest
performs the final sleep stage prediction by considering features
extracted about the current epoch as well as the probabilities on
the sleep stages in neighboring epochs. The feature importance,
the fraction of decrease in impurity caused by a feature, shows the
high influence of the neighboring epochs: 45.6% for the previous
epoch and 35.6% for the next. The feature importance of the ORP
emissions are between 1.6 and 3.0%, while these are 2.5% for
REMs, 1.2% for sleep spindles and 0.8% for SEMs and for the
background EMG. The emissions not related to AASM features
have an even lower contribution.

Additionally to a sleep stage prediction, the random forest
returns the predicted class probabilities ps(xt) which contain
an indication of how certain the model is about its prediction.
Transformations of ps(xt) are proposed to help medical experts
interact with our method in a simple manner. Three levels for the
prediction certainty are identified: epochs where the prediction
certainty is high, epochs where the algorithm cannot decide

between two stages, and epochs where the algorithm is not able to
make an accurate prediction. The first set is by far the largest and
contains 68.2% of the epochs. For these, no manual verification
is necessary since the accuracy is high. The second category
still contains 27.3% of the epochs. The transformed probabilities
p∗s (xt) can help human experts to score these periods with a small
amount of manual effort. After all, large periods of the PSG can
be identified based on a few labels. Transition periods between
N2 and N3 are a typical example of this category. The remaining
epochs which should be checked manually only comprise 4.3% of
the PSG.

This methodology is entirely in line with the AASM position
statement on artificial intelligence (AI) in sleep medicine (22)
which states that the inclusion of machine learning should be
approached cautiously and that manual sleep scoring of part
of the PSG may still be necessary. Furthermore, this statement
requires that AI programs for clinical use should be tested on an
independent set of patients. This set should be sufficiently diverse
to generalize to a heterogeneous patient population for which
the software is intended. Finally, they demand that the program
performs comparably to the agreement among experts.

Our paper meets these standards by performing two
evaluations. The first is an extensive comparison of the
automated hypnogram with an expert’s hypnogram on a single-
scored set of 1961 PSGs while the second evaluation is performed
on 50 PSGs which are each scored by multiple experts. The
single-scored set is representative of the patient population in
Belgian and Dutch hospitals as the data comes from 10 different
centers and is scored by a large group of different human experts.
Moreover, our study considers a diverse patient population since
there were no selection criteria used that are based on observed
diseases or medication use.

The evaluation on this single-scored dataset leads to a
confusion matrix from which the accuracy and κ-value, as well
as the types of mistakes, can be derived. The obtained accuracy
is equal to 80.5% with κ = 0.734. This is lower than some
accuracies reported in literature: (3) and (14) report an accuracy
of 87% using deep learning methods while (7) even reports an
accuracy of 91.5% using a random forest classifier. However, in all
these reported datasets, patients were excluded based on different
criteria which makes it impossible to compare the accuracies
across studies (23, 24). Moreover, the fact that certain types
of patients were excluded from these publicly available datasets
makes using them unsuitable.

Based on the first evaluation on the single-scored datasets,
it is still impossible to estimate the influence of the inter-rater
variability and hence, whether the algorithm is performing well
compared to human experts. Therefore, the second evaluation
method is introduced based on hypnograms scored by multiple
experts. The inter-rater reliability on the multi-labeled dataset
(84.1%) is barely higher than the comparison between the
algorithm and the expert’s hypnograms (82.7%). This suggests
that the algorithm reaches an almost human accuracy but due to
the inter-rater variability this is not clear from the accuracy value
itself. Studying the inter-expert variability, the epochs can be
categorized based on the level of agreement between the experts.
An accuracy of 97.8% is reached considering only epochs in
which both the experts and the algorithm are sure. This high
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level could never be obtained when validating on PSGs which are
only labeled by one annotator. Also when the model is unsure
about its prediction, the true sleep stage is still included in the
proposed options 95% of the time. When the experts are not
unanimous about the label, it is harder to define which results
are acceptable. Future work might focus on evaluation methods
in which experts can indicate more than one acceptable sleep
stage. This will give a more realistic view on the performance
of automated hypnogram models. Moreover, it can be a first
step toward new scoring protocols in which gradual transitions
between sleep stages are possible.

Our paper has the following three limitations: First, the
detection of the features from the AASM manual are based on
heuristics and are lacking a quantitative evaluation. Hence, the
detection might be suboptimal. Second, although our model was
evaluated on a diverse population, we were unable to verify that
it performs equally well for all types of patients since no data
about the patients’ diagnoses was available. Third, a comparison
with other models is hard since these models are evaluated
on different datasets with other inclusion criteria. Moreover,
their implementations are often not publicly available. These
limitation might be investigated further in future work.
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