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Abstract

This paper proposed a method to update the on-line health reference baseline of the On-

Board Engine Model (OBEM) to maintain the effectiveness of an in-flight aircraft sensor

Fault Detection and Isolation (FDI) system, in which a Hybrid Kalman Filter (HKF) was

incorporated. Generated from a rapid in-flight engine degradation, a large health condition

mismatch between the engine and the OBEM can corrupt the performance of the FDI.

Therefore, it is necessary to update the OBEM online when a rapid degradation occurs, but

the FDI system will lose estimation accuracy if the estimation and update are running simul-

taneously. To solve this problem, the health reference baseline for a nonlinear OBEM was

updated using the proposed channel controller method. Simulations based on the turbojet

engine Linear-Parameter Varying (LPV) model demonstrated the effectiveness of the pro-

posed FDI system in the presence of substantial degradation, and the channel controller

can ensure that the update process finishes without interference from a single sensor fault.

Introduction

Because fault diagnostics are crucial for flight safety[1], several effective sensor FDI approaches

have been developed recently[2, 3], such as fault detection observer in Takagi–Sugeno’s form,

a bank of neural networks and so on. However, these approaches did not address how to main-

tain effectiveness when abrupt degradation occur. As engine output deviations increase due to

the progression of health degradation, it becomes difficult to distinguish the presence of faults

from the health degradation through an observation of the engine outputs. As a result, an

inflight diagnostic system loses its effectiveness. Accurate online estimation is critically impor-

tant, Zou et al. designed a multi-time-scale observer to realize accurate online state estimation

for some types of nonlinear singularly perturbed systems[4]. To ensure accurate online estima-

tion, the FDI system must be able to resist in-flight abrupt degradation and sensor fault.

A bank of Kalman filters was used to achieve engine sensor and actuator fault detection

applied to a steady-state engine [5, 6]. However, it had limitations in an environment where

various elements (such as the fuel input, health or flight condition) are changing (i.e., in the

state transfer process). HKF is composed of a nonlinear on-board engine model (OBEM) and
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piecewise linear state-space models which include Kalman gain matrices. Because of this inte-

gration, the in-flight diagnostic system does not need to deal with engine health degradation

and control input changes by itself. HKF possesses the numerical robustness of the piecewise

linear Kalman filter approach and also the nonlinear estimation capability of the constant gain

extended Kalman filter approach, therefore HKF can improve the estimation accuracy[7, 8].

The utilization of the nonlinear OBEM allows the reference health baseline of the in-flight

diagnostic system to be updated to the degraded health condition of the engines through a rel-

atively simple process. Without the health baseline update, any in-flight diagnostic system will

lose its diagnostic effectiveness as the real engine degrades over its lifetime [9].

Kobayashi proposed that if the OBEM could track the engine health condition, the effec-

tiveness of fault detection could be maintained. A method was developed to update the OBEM

off-line [10]. The off-line OBEM-updating algorithm cannot ensure the accurate online state

estimation when rapid degradation occurs.

The rapid degradation of an aeroengine can be caused by many factors. High-condensed

sand or salt will accelerate the fan or the compressor degradation, while tropical heat will accel-

erate the turbine degradation [10]. The damage from foreign objects occurs primarily to the

fan and other front parts of the aeroengine. The extent of the damage can be determined by

the geometry, angle of impact, hardness, relative speed, etc. of the objects [11]. Volcanic ash

might severely affect the hot sections of the aeroengine while producing no visible damage to

the cooler portions in front of the engine, and ash ingestion could lead to a substantial compo-

nent degradation[12]. When the OBEM was updated off-line, a mismatch between the OBEM

and the actual engine still existed in flight because of the rapid degradation. Therefore, it is

necessary to update the OBEM on-line.

To update the OBEM on-line, several approaches have been proposed recently [13–15].

Volponi presented an enhanced self-tuning on-board real-time model (eSTORM) to track the

health deterioration of the aeroengine [16]. Simon et al. presented a real-time self-tuning

model for engine performance monitoring and fault diagnosis [17, 18]. In those technologies,

the following question remained: how to protect the OBEM updating procedure itself from a

sensor fault.

To update the OBEM on-line, this paper proposes a new method that can be free from

sensor fault and accommodate rapid degradation. However, the HKF will estimate incor-

rectly if the estimation and updating are running simultaneously (this will be explained in

detail below). To solve this problem, a logic channel controller is designed. The proposed

sensor FDI system is composed of a logic channel controller, a bank of HKFs, and a nonlin-

ear OBEM.

In the following subsections of this paper, the design approach of an improved sensor FDI

system based on updating the OBEM on-line is described. In this approach, a logic channel

controller is designed and analysed in detail. Then, the design method is applied to an aircraft

turbojet engine, and the performance of the proposed system is evaluated. The last part is the

conclusion.

Improved sensor fdi system based on updating the obem on-line

Sensor fault detection system based on a hybrid Kalman filter structure

In this paper, an improved sensor FDI is established based on a nonlinear component-level

engine model [19]. This nonlinear model is a single-spool turbojet engine model. The OBEM

used in the FDI is a physics-based nonlinear model designed to run in real time. In order to

compute Kalman gain matrices, the piecewise linear state-space models are derived off-line

from the OBEM at the nominal health baseline. By a two-step perturbation linearization

Aircraft engine sensor fault diagnostics using an on-line OBEM update method
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method [19], the nonlinear engine model can be linearized as:

(
D _xðtÞ ¼ ADxðtÞ þ BDuðtÞ þ LDhðtÞ þ GDzðtÞ

DymðtÞ ¼ CDxðtÞ þ DDuðtÞ þMDhðtÞ þHDzðtÞ
ð1Þ

where x represents the variable states of the engine, ym represents the measured output pa-

rameters, and u is the control input of the engine. The augmented variable h represents the

performance degradation factor, also called the health parameter. The vector z represents the

measured parameters that define the flight condition, such as the altitude and Mach number.

The matrices A, B, C, D, L, M, G and H are the corresponding state-space matrices that can be

obtained from a partial derivative method [20, 21].

In order to estimate Δh via Δym, state variable model in Kalman filter should be augmented

(
D _xaug ¼ AaugDxaug þ BaugDuþ v

Dy ¼ CaugDxaug þ DaugDuþ w
ð2Þ

where Dxaug ¼
Dx

Dh

" #

, Aaug ¼
A L

0 0

" #

, Baug ¼
B

0

" #

, Caug = [CM], Daug = D. w represents

white process noise and v represents white measurement noise After optimal estimating by

Kalman filter, Eq (2) can be obtained

(
D _bxaug ¼ AaugDbxaug þ BaugDuþ KðDym � DbymÞ

Dbym ¼ CaugDbxaug þ DaugDu
ð3Þ

where K is Kalman gain matrix which obtained from Riccati equation[9].

This paper proposes an FDI combined with a group of HKFs. An HKF is composed of a

nonlinear OBEM and piecewise linear state-space models which include Kalman gain matri-

ces. The OBEM receives the estimated health condition off-line as a reference to minimize the

deviation of the measured outputs between the OBEM and the actual engine.

The outputs of OBEM are:

(
_xOBEM ¼ f ðxOBEM;

bhref ; u; zÞ

yOBEM ¼ gðxOBEM;
bhref ; u; zÞ

ð4Þ

Vector bhref represents the health condition reference baseline that feeds into the OBEM. It

is traditionally calculated based on the post-flight data [7], which is an off-line method. This

paper proposes an on-line method to update reference baseline bhref .

The HKF replaces the performance baseline of a linear Kalman filter with the outputs of the

OBEM [7]. By integrating the OBEM and linear state-space matrices, the following HKF is

formed:

(
D _bxaug ¼ AaugDbxaug þ Kðym � bymÞ

bym ¼ CaugDbxaug þ yOBEM
ð5Þ

where Dbxaug ¼
Dbx

Dbh

" #

, Dbx ¼ bx � xOBEM , Dbh ¼ bh � bhref , bym ¼ Dbym þ yOBEM . The control com-

mand inputs and associated matrices Baug and Daug in Eq (3) do not appear in Eq (5) since the

effect of control command inputs is accounted for by the OBEM as seen in Eq (4).

Aircraft engine sensor fault diagnostics using an on-line OBEM update method
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The HKF in the LPV form[8] is:(
Dbx

Dbh

2

4

3

5 ¼
AðrÞ LðrÞ

0 0

2

4

3

5
bx � xOBEM

bh � bhref

2

4

3

5þ KðrÞðym � bymÞ

bym ¼ CðrÞ MðrÞ
� �

bx � xOBEM

bh � bhref

2

4

3

5þ yOBEM ð6Þ

where ρ is the parameter vector of the system that is not known in advance but can be mea-

sured or estimated in real-time, and where K(ρ) is the Kalman filter gain

KðρÞ ¼ PðρÞCðρÞTR� 1 ð7Þ

and P(ρ) is the solution to the Riccati equation

AðρÞPðρÞ þ PðρÞATðρÞ� PðρÞCðρÞTR� 1CðρÞPðρÞ þ Q ¼ 0 ð8Þ

The process noise diagonal matrix Q is related to the process noise column vector, and the

measurement noise diagonal matrix R is related to the measurement noise vector [22].

Therefore, ðxOBEM; yOBEM;
bhref Þ becomes the performance baseline of the HKF’s estimation,

in which xOBEM, yOBEM, bhref are the baseline state variables, baseline outputs, and the health

baseline, respectively.

An HKF does not need data training in advance to adapt to different situations, and its struc-

ture is simple [10], as shown in Fig 1. The OBEM is a baseline model, the measured outputs of

the OBEM are used as the baseline measured outputs of the Kalman filter, and the engine per-

formance factors can be estimated on-line by deviations in the measured outputs. The health

baseline is updated through a relatively simple procedure by feeding the estimated health degra-

dation values into the OBEM. Because of this hybrid structure, the in-flight diagnostic system

does not need to deal with engine health degradation and control input changes by itself, there-

fore HKF can improve the estimation accuracy of the FDI system in the state transfer process.

The conventional structure for the sensor FDI method using a bank of traditional linear Kal-

man filters(LKFs) is shown in Fig 2 [6]. To improve the estimation performance under dynamic

conditions, an HKF is incorporated into the proposed structure, as shown in Fig 3. Two inputs

to the bank of HKFs are the engine output signals (ym) and the OBEM output signals (yOBEM),

while two inputs to the bank of LKFs are the engine output signals (ym) and the control com-

mands (u). The effect of the control command inputs is accounted for by the OBEM.

Each HKF estimates the health parameter using n-1 sensors and n-1 OBEM outputs. In other

words, the ith HKF uses the sensor subset yi
m that excludes the ith sensor, and the OBEM output

subset yi
OBEM that excludes the ith OBEM output. The OBEM outputs are a one-to-one match to

the sensor signals. The ith OBEM output subset yi
OBEM acts as the baseline outputs of the ith HKF.

The HKF performs better than the LKF, and these different performances result from their

different structures. The LKF combines a piecewise linear engine model with a single Kalman

gain matrix computed at a single operating point [23]. However, HKF incorporates a nonlin-

ear OBEM to provide the baseline outputs, which can vary with different control commands

and flight conditions, as shown in Eq (4) and Eq (5).

The differences between LKF and HKF are as followings. The control inputs and environ-

mental inputs will bring parameter variations. In HKF, those variations are provided by

OBEM while in LKF those variations are computed by filter itself. LKF needs to estimate the

Aircraft engine sensor fault diagnostics using an on-line OBEM update method
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variation of outputs caused by health degradation, control inputs and environmental inputs,

while HKF only needs to estimate the variation of outputs caused by health degradation.

The fault detection approach used for the bank of HKFs is composed of two steps. The first

step is to compute the weighted sum of squared residual (WSSR) from the sensor measure-

ments and the Kalman filter estimates as follows:

ei ¼ by
i
m;HKF � yi

m ð9Þ

WSSRi ¼Wi
rðe

iÞ
T
ðSiÞ

� 1ei ð10Þ

Si ¼ diag½si�
2

ð11Þ

Wr
i ¼ ½yi

OBEM
�
� 2

ð12Þ

Fig 1. Structure of HKF.

doi:10.1371/journal.pone.0171037.g001

Fig 2. Structure of bank of LKFs.

doi:10.1371/journal.pone.0171037.g002

Aircraft engine sensor fault diagnostics using an on-line OBEM update method
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where by i
m;HKF is the sensor estimate generated by the ith HKF, σi represents the standard devia-

tion of the ith sensor-subset, and Wr
i is the weighting factor.

The second step is to compare the residuals with the pre-established detection thresholds to

detect a sensor fault. The logic of this fault detection and estimated information selection is

designed as shown in Fig 4. It is assumed that only one of the sensors will fail at a time. The

likelihood of multiple simultaneous failures is considerably low [5]. The threshold is discussed

in Kobayashi’s paper [5].

Fig 3. Structure of the bank of HKFs.

doi:10.1371/journal.pone.0171037.g003

Fig 4. Logic of fault detection and estimated information selection.

doi:10.1371/journal.pone.0171037.g004
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The values of the WSSRs will move towards zero given the absence of a degradation and a

fault [24]. When the ith sensor is faulty, although the ith HKF will be free from a faulty sensor

signal, the rest of the filters will be influenced. Hajiyev et al. proposed that the statistics of a

faulty sensor would have a greater deviation than those of the other sensors [25]. From the

residual computational equations, the ith WSSR will be lower than the threshold, whereas the

remaining n−1 residuals are higher than the threshold. Therefore, the faulty sensor can be

located by Fault Detection Logic. Because the ith filter is able to estimate accurately, a set of

accurate performance parameters can be obtained. If none of the n sensors are faulty, all filters

can estimate accurately because they all use non-corrupted information. The Estimated Infor-

mation Selection Logic can obtain estimated information accurately.

The bank of LKFs and the bank of HKFs are both able to estimate the variations of the health

parameters for a single component degradation under the steady-state condition [5]. Because

the HKF highly improves the estimation accuracy of the FDI system in the state transfer process

[9], the HKF is incorporated in the proposed system. In combination with the selection logic,

the bank of HKFs can provide accurate health information under the sensor fault or engine-

state transfer conditions, which is the premise for an on-line update to the OBEM.

Design of a logic channel controller for an on-line update to the OBEM

This paper assumes the absence of engine component faults or other faults of the engine itself,

and therefore, only single sensor fault and rapid degradation are dealt with here. Incipient

health degradation can be dealt with in the same method as rapid degradation.

Purposes. Updating the OBEM on-line is an effective approach to maintain the effective-

ness of in-flight diagnostics for an aged engine [17]. However, there is a problem with this

updating process. Updating the OBEM requires the HKFs’ estimated health information, which

in turn is based on the outputs of the OBEM. The HKF estimation will lose its accuracy when

the OBEM is updated simultaneously with the estimation. In other words, once the OBEM

begins updating, the HKF should not use the OBEM’s outputs as a computation baseline until

the OBEM is completely updated. Some actions must be taken to resolve this problem.

There are two process channels in the FDI system, as shown Fig 5. One is the estimation

channel, which uses the deviation between the baseline outputs provided by the OBEM and

the engine outputs to estimate the health information by a bank of HKFs. The other one is the

updating channel, which filters the correct health information to update the health baseline of

the OBEM, which OBEM then will generate new outputs.

The design goals of the logic channel controller are as follows:

1. Under incipient or slow health degradation conditions, the system runs in the estimation

process channel. If the real engine suffers a rapid degradation, the channel will be switched

Fig 5. Two channels of processes which should not run simultaneously.

doi:10.1371/journal.pone.0171037.g005
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to the updating channel, and then OBEM will reach the same degraded state as the real

engine.

2. These two process channels are separated by the logic channel controller and will not dis-

turb each other.

3. Regardless of whether there is a single sensor fault or not, the degradation can be estimated

in real-time and the OBEM can be updated on-line.

Overall structure. The overall structure of the logic channel controller is shown in Fig 6.

The logic of fault detection and estimated information selection, called selection logic for

short, is shown in Fig 5. In the switch, the following two alternative channels are provided: one

is marked as “a” and represents the estimation channel; the other one is marked as “b”. When

the channel selection module selects the “b” channel, bhref will be updated at the same time, and

then the system will proceed in the updating channel.

The algorithm of the channel selection module is shown in Fig 7, where λh is the threshold

of the health parameter deviation. Kobayashi et al. divided the health condition mismatch into

four levels, which range from 1% to 5% [7]. Because 5% is the maximum degree of degradation

and 1~2% is relatively common in practical application, we chose 2.5% to be the threshold in

this algorithm. The channel selection module has two types of switch commands.

(1) “Estimate to update” switch

The channel selection module has two input sets, the first of which is the difference between

the estimated health information (bh) and the current health information baseline (bhref ). The

degradation of the engine is unidirectional.

Because the degradation value is always growing with the flight time, the difference grows

as well. Therefore, if bh � bhref � lh, the “estimate” to “update” switch will be triggered. Other-

wise, the health baseline of the OBEM will maintain the current value.

Fig 6. The overall structure of logic channel controller.

doi:10.1371/journal.pone.0171037.g006

Aircraft engine sensor fault diagnostics using an on-line OBEM update method
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(2) “Update to estimate” switch

Whether to output an “update to estimate” command depends on the second input set,

which are the outputs of the OBEM(yOBEM) and the engine outputs(ym). Depending on the

engine states, two methods can be chosen for this decision-making.

Two types of engine states will be discussed. First, under steady states, the OBEM receives a

new health baseline and its outputs gradually become stable. The estimation process will con-

tinue when the outputs of the OBEM become stable. Second, under transient states, the OBEM

outputs should become nearly equal to the engine outputs, at which time the updating process

is finished, and the channel can be switched back to the estimation process channel. The

engine outputs here exclude the faulty sensor signal that is isolated by the FDI logic. While the

second method for switch decision-making is also applicable to steady states, the first method

is not applicable to transient states. However, the first method costs less effort than the second

one in practical applications.

Note that updating the process channel does not mean simply feeding the real-time filters’

estimated health information into the OBEM. The right choice is to save the value of the health

information provided by the selection logic at the moment the “a” to “b” switch occurs, then

feed that value into the OBEM as a new health baseline. This new health baseline should main-

tain its value until the next “a” to “b” switch occurs.

Isolation of the two channels. When the updating process begins, the estimation of the

Kalman filter will be inaccurate until the updating process finishes. Because the two channels

have to be isolated, it would be perfect if the estimation could be “paused” when the updating

channel is working. However, the Kalman filter does not have an inherent pause function. The

switch in Fig 6 can solve this issue.

According to Eq (6), the computation of the Kalman filter is based on the difference

between two inputs, namely the difference between yOBEM and ym. After the switch, the differ-

ence is between ym and ym, and therefore, the difference is changed to zero, and the estimation

value of the augmented state variables Dbh will also be changed to zero. As line No. 2 in Fig 7

shows, if bh � bhref exceeds the threshold, the switch will be triggered. Once the switch is trig-

gered, the health baseline would be replaced by the new estimated value. However, the estima-

tion will be incorrect if the update and the estimation are run simultaneously. In the proposed

system, the mathematical expressions in Fig 8 show that when the updating process begins,

bh � bhref will become zero. Because this zero value will never exceed threshold when the update

begins, the switch will not be triggered, and then the current health information baseline will

Fig 7. The algorithm of channel selection module.

doi:10.1371/journal.pone.0171037.g007

Aircraft engine sensor fault diagnostics using an on-line OBEM update method
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not be replaced by the incorrectly estimated health information. This is the purpose of the

“pause” function. When the update begins, the values of the estimated state variables are zeros,

then the estimation process can be approximately regarded as being “paused” by the switch.

When switched back to a new estimation process channel, the bank of HKFs will receive the

two original inputs again to continue an accurate estimation process. With the two separated

channels, the OBEM update can finish without the corruption of the estimation process, and

each estimation process can more accurately estimate based on the updated baseline outputs.

When the update is complete, the estimated health condition becomes the new reference base-

line for the in-flight diagnostic system. The update time is very short, around a few tenths of a

second. Compared with the time of the estimation and updating processes, the cruise time is

extremely longer. The updating process costs even less time than the estimation. This in-flight

channel-switching cycle can be periodically repeated, and then the OBEM can be updated on-line.

The OBEM proposed in this paper is different from the on-board model in previous studies

due to the following two main differences: (1) the nonlinear on-board model is updated with

this new channel controller method and (2) the channel controller can protect the update pro-

cess of the OBEM from sensor fault.

Simulation results

The performance of the proposed sensor FDI system based on an on-line OBEM update is

evaluated by applying it to the engine model simulation.

The engine model used in this paper is a nonlinear simulation of a single-spool turbojet

engine that is in an LPV structure [26]. This engine model has been constructed as a Compo-

nent Level Model (CLM), which consists of the major components of an aircraft engine. The

CLM represents the highly complex engine physics and is designed to run in real time. The

schematic configuration of this turbojet engine is shown in Fig 9, which includes the aeroen-

gine compressor (AC), combuster, aeroengine turbine (AT), and the other components. The

AC and the AT are on the same shaft driven by the rotor. Meanwhile, the degradation of

engine performance is modelled using adjustments to the efficiency or to the flow coefficient

scalars of the AT and the AC. These scalars representing the component performance deterio-

ration are the health parameters.

The nonlinear engine model is used to represent both the actual engine and the OBEM in

the subsequent sections [9]. The engine model representing the actual engine operates under

Fig 8. Two channels separated by the switch.

doi:10.1371/journal.pone.0171037.g008

Aircraft engine sensor fault diagnostics using an on-line OBEM update method
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the given health conditions, and its flight condition is specified by the three environmental

parameters listed in Table 1. Symbols of the single-spool turbojet engine are listed in Table 2.

The OBEM operates under the estimated health conditions that are fed in by the designed

logic channel controller, and its flight conditions are specified by the following three measured

parameters: Tamb, Pamb, and Tinlet. From these three measurements, the OBEM calculates the

altitude and Mach number from the standard day condition. The actual engine and the OBEM

receive the same control commands.

To show the variations of health parameters directly, the degradation coefficient (DC) of

the health parameters is used to represent the ratio of the degraded health parameters to the

nominal health parameters. For example, the DC of EAT is shown in the following equation,

where E means effectiveness and F means flow capacity:

DCEAT
¼ EAT ;degradation=EAT ;nominal ð13Þ

The augmented state variables of the HKFs are xaug ¼ ½N DCEAC
DCFAC

DCEAT
DCFAT �

T
.

One steady state point of the aeroengine is x=9545.0344. The matrices are

Aaug ¼

� 21:1653 � 1:2796� 105 3373:7314 � 1:4379� 105 1:7702� 105

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;

Caug ¼

1 0 0 0 0

25:3890 2375:0619 � 41329:9975 304:7110 59877:1873

1:62� 10� 2 85:1299 � 0:7910 6:91� 10� 2 0:9505

4:6977 539:7504 � 7796:3228 1800:6119 � 24654:1862

� 0:1345 108:4028 252:7247 108:4922 607:8732

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

:

Fig 9. Schematic configuration of single-spool turbojet engine.

doi:10.1371/journal.pone.0171037.g009

Table 1. Engine model variables.

State variables N

Sensors N, P2, T2, P4 and T4

Health parameters AC efficiency, AC flow capacity, AT efficiency, AT flow capacity

Actuator Fuel flow

Environmental Parameters Altitude, Mach number, Ambient temperature

doi:10.1371/journal.pone.0171037.t001
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Table 2. Symbols of the single-spool turbojet engine.

Symbols and meaning

N rotor speed

P2 compressor exit pressure

P4 turbine exit pressure

Pamb Ambient pressure

T2 compressor exit temperature

T4 turbine exit temperature

Tamb Ambient temperature

Tinlet engine inlet temperature

doi:10.1371/journal.pone.0171037.t002

Fig 10. Comparison of the estimated value of DCEAC
.

doi:10.1371/journal.pone.0171037.g010
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The values of Q and R are set to Q = 1e−5I5×5, R = 1e−5I5×5, and the gain matrix K is com-

puted from the above matrices. The values of Q and R are discussed in reference [8].

K ¼

881:8709 9:4691 � 206:4104 � 16:0700 � 753:1645

� 2:5862 1:0425 28:0233 1:5390 14:3022

0:1614 � 22:0515 0:4475 � 22:4373 3:1739

� 2:8263 0:3575 � 14:5982 3:2577 27:7157

� 0:1454 22:6363 � 0:6387 � 21:9864 1:9410

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

Another steady-state point is x = 10899.1825, and the matrices are

Aaug ¼

� 27:3637 � 1:6636� 105 10749:4758 � 1:9200� 105 2:4374� 105

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;

Fig 11. Comparison of the estimated value of DCEAT
.

doi:10.1371/journal.pone.0171037.g011
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Caug ¼

1 0 0 0 0

31:3143 3723:0690 � 58091:4895 150:8606 84875:8452

1:79� 10� 2 108:5529 � 0:2007 0:1227 0:1587

6:4111 947:7220 � 12163:7968 3244:5356 � 36750:4900

� 0:1296 134:7593 282:5733 137:3763 619:3872

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

:

The values of Q’ and R’ are set to Q’ = 1e−5I5×5, R’ = 1e−5I5×5, and the gain matrix K is com-

puted from the above matrices.

K ¼

916:2049 9:1036 � 218:3181 � 10:8496 � 797:7607

� 2:1603 1:2187 28:1373 1:6213 14:1248

0:1287 � 22:0653 0:5316 � 22:3837 3:4339

� 2:4085 0:3876 � 14:3787 3:5329 27:8356

� 0:1508 22:6139 � 0:7627 � 21:9937 2:0696

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

Fig 12. Comparison of the estimated value of N.

doi:10.1371/journal.pone.0171037.g012
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A Kalman filter with LPV structure in the HKF can be constructed based on the family of linearization

data and functions between the elements of the matrices of the Kalman filter and the scheduling parame-

ter. The following simulations show how the method is applied to the aeroengine.

In this example, ρ = N is chosen to be the scheduling parameter in the LPV model, and

there would be functions between the family of N and the family of the elements of the matri-

ces at different steady-state points.

To prove that HKF can improve the estimation accuracy of the FDI system in state transfer

process, the following simulation is performed.

The simulation uses same model as the revised manuscript. It is conducted in transient

operating conditions. At t=0.5s, the fuel input would increase by 14%, which would cause aero-

engine acceleration. Then at t=1s, DCEAC
would decrease by 1%.

The bank of LKFs and the bank of HKFs are both able to estimate the variation of health

parameters in the situation of single component degradation in steady-state condition. However,

the design of LKF is not applicable to transient operating conditions. The degradation coefficient

of health parameter is shown in Fig 10 and Fig 11. In the dynamic process, the estimation

Fig 13. Comparison of the estimated value of T2.

doi:10.1371/journal.pone.0171037.g013
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accuracy of LKF would be even wrong, while the HKF would still remain its estimation accuracy.

The estimations of measured outputs are shown in Fig 12 and Fig 13. Obviously, the deviations

of N and T2 between LKF and engine are larger than those between HKF and engine.

The performance of the logic channel controller is evaluated under the steady-state condi-

tion, where the engine is suffering a single substantial component degradation. At t = 1s,

DCEAT
would decrease by 3%, and one of the sensors is failed at the same time. The variations

of the health parameters are a step input.

The complete channel-switching process is finished in the simulation time as shown in Fig

14. Here “1” represents the estimation channel and “-1” represents the updating channel. At

first, the system is running in a normal estimation process. When the switch is set to the “a”

port, the degradation of the engine is estimated by a bank of HKFs, and the residuals of each

HKF are computed. Suddenly, one of the engine sensors is failed. By analysing the residuals,

the selection logic can locate the faulty sensor, select the correctly estimated health informa-

tion, and feed this information to the channel selection module. At t=1.48 s, the difference

between this health information and the current health baseline of the OBEM is larger than

Fig 14. Channel switch signal (“1”: estimation channel; “-1”: updating channel).

doi:10.1371/journal.pone.0171037.g014
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the threshold, and therefore, the channel selection module detects a substantial component

degradation, and the “estimate to update” switch is triggered. Then, the health baseline of

the OBEM is updated by the health parameters estimated at the moment the switch occurs.

Meanwhile, the switch is now set to the “b” port, and the difference between the inputs of the

bank of HKFs is changed to zero, which means that the estimation process can be regarded as

paused and will not continue until the update process is completed. The “update to estimate”

switch of the channel selection module is triggered at t=2.08 s, which indicates that the update

is finished. The OBEM reaches the same state as the actual engine, and the switch in Fig 7 is set

back to the “a” port. The outputs of the updated OBEM and the sensor signals of the engine

are fed into the bank of HKFs to continue the estimation. The system goes back to the estima-

tion channel, and therefore, the OBEM has been successfully updated on-line.

As mentioned earlier, the sensor signal that is not used by a particular filter is the one being

monitored by that filter. WSSR1, WSSR2, WSSR3, WSSR4 and WSSR5 are the residuals gener-

ated by HKFs that monitor sensors N, P1, T2, P4 and T4, respectively. As shown in Fig 15,

WSSR1, WSSR2, WSSR3 and WSSR5 grow rapidly whereas WSSR4 remains nearly unchanged,

Fig 15. Values of WSSR with a fault in P4 sensor and DCEAC
decreased by 3%.

doi:10.1371/journal.pone.0171037.g015
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which indicates a fault in the aeroengine turbine outlet pressure sensor. As for the sudden fall

of all the WSSRs during the update, the reason is that while updating the channel, the differ-

ences between the two set of inputs of the HKF are set to zero, and therefore, zero is the value

of the residuals. The fault detection procedure is already completed in the first estimation pro-

cess, and therefore, it will not be affected.

In addition to locating the faulty sensor, the system can estimate the health parameters

accurately. After identifying the faulty sensor, the Kalman filter can generate estimated infor-

mation accurately, which is then selected and fed to the OBEM. The estimated health parame-

ters are shown in Fig 16 and Fig 17. There exists a sudden fall in the DCEAC
when the update

process begins for reasons that are presented below. To ensure the switch is not incorrectly

triggered, the logic controller sets the deviation (ym � bym in Eq (6)) to be zero during the

update process. However, the last instantaneous estimated Dbxaug is non-zero at the moment

the channel switches, and therefore, ym � bym is non-zero, which is why the sudden fall exists.

Once the switch is triggered, the two inputs of the HKF will be same because the initial input

yOBEM will be replaced by ym. In other words, the HKF will regard the OBEM to be exactly the

Fig 16. Estimation performance of OBEM on-line updating method (example of DCEAC
).

doi:10.1371/journal.pone.0171037.g016
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same as the actual engine with no deviation between them. The characteristic of the Kalman

filter is to fit the estimation value to the actual value, and the estimated deviation Dbxaug will

return to zero quickly, which is why the fall only occurs for a very short time. This fall does

matter because once the “estimate to update” switch is triggered; the new estimated health

information will be saved by the channel selection module. The health baseline of the OBEM

will maintain this new value during the update, and it will not be influenced by the following

estimation values until the update is completed.

If OBEM is not updated, the outputs of the OBEM will maintain their off-line set values,

which means the OBEM will not able to react to actual in-flight degradation. As shown in Fig

18 and Fig 19, the simulation result shows that the updated OBEM tracks the state of the actual

engine. Therefore, the channel controller can enable the OBEM to track the engine’s health

condition on-line. The steady‘-state error of N is 0.03%, and the steady-state error of T4 is

0.09%. The short delay is the time cost of the update, only a few tenths of a second, which is

significantly shorter than the engine running time, which is usually several hours for one flight.

The delay time can also be compared to the adjusting time of the Kalman filter. The adjusting

Fig 17. Estimation performance of OBEM on-line updating method (example of DCEAT
).

doi:10.1371/journal.pone.0171037.g017
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time of the Kalman filter is from the component degradation appears to it is detected by Kal-

man filter. Fig 16 shows the adjusting time of the Kalman filter is 0.47 s, and Fig 18 shows the

delay time is 0.44 s. The Kalman filter is a real-time estimator, and the delay is short. The

updating process costs even less time than the estimation. The sensor fault detection, which is

based on the estimation channel, will not be influenced because the estimation process and

updating process are separated by the channel controller.

Conclusions

1. The designed improved sensor fault detection and isolation system uses an on-line method

to update the health reference baseline of the on-board engine model. In this system, a

Hybrid Kalman Filter is incorporated to improve accuracy in the state transfer process, and

a logic channel controller is designed.

2. The results prove that the on-line update to the on-board engine model is protected by the

estimated information selection logic and the logic channel controller. If a sensor fault

Fig 18. N comparison between actual engine and updated OBEM.

doi:10.1371/journal.pone.0171037.g018
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occurs, the estimated information selection logic will approximate the correct information,

isolating the faulty signals. This accurate information is used by the channel controller to

update the reference baseline of the on-board engine model. Then, the on-board engine

model can generate new proper outputs to act as the estimation baseline of the HKF. The

updating and estimation processes are separated by a logic channel controller to protect the

updating process from a potential false estimation of the HKF.

3. Evaluations conducted under rapid degradation conditions demonstrate that the on-board

engine model can be updated on-line successfully to track the real engine health conditions,

which can maintain the effectiveness of the fault detection.
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