
RESEARCH ARTICLE

Assessing the geographic specificity of pH

prediction by classification and regression

trees

Jacob EgelbergID
1*, Nina Pena2, Rachel Rivera2, Christina Andruk3

1 Department of Biochemistry, Northeastern University, Boston, Massachusetts, United States of America,

2 Department of Science, New Rochelle High School, New Rochelle, New York, United States of America,

3 Department of Biology, Iona College, New Rochelle, New York, United States of America

* jake1egelberg@gmail.com

Abstract

Soil pH effects a wide range of critical biogeochemical processes that dictate plant growth

and diversity. Previous literature has established the capacity of classification and regres-

sion trees (CARTs) to predict soil pH, but limitations of CARTs in this context have not been

fully explored. The current study collected soil pH, climatic, and topographic data from 100

locations across New York’s Temperate Deciduous Forests (in the United States of Amer-

ica) to investigate the extrapolative capacity of a previously developed CART model as com-

pared to novel CART and random forest (RF) models. Results showed that the previously

developed CART underperformed in terms of predictive accuracy (RRMSE = 14.52%) when

compared to a novel tree (RRMSE = 9.33%), and that a novel random forest outperformed

both models (RRMSE = 8.88%), though its predictions did not differ significantly from the

novel tree (p = 0.26). The most important predictors for model construction were climatic

factors. These findings confirm existing reports that CART models are constrained by the

spatial autocorrelation of geographic data and encourage the restricted application of rele-

vant machine learning models to regions from which training data was collected. They also

contradict previous literature implying that random forests should meaningfully boost the

predictive accuracy of CARTs in the context of soil pH.

Introduction

Soil pH mediates provisional and regulatory service availability

Soil pH, the concentration of hydrogen ions in a sample of soil, affects many critical biogeo-

chemical processes. These biogeochemical processes drive plant growth and diversity, which

are supporting ecosystem services that sustain provisioning services (food, water, lumber, and

fuel output) and regulating services (air quality, climate, erosion, and water purification) [1, 2].

Soil pH affects the metabolic quotient qCO2, which measures organic substrate uptake by

soil microbes [3]. In low pH soils, higher metabolic quotients indicate increased substrate utili-

zation by microbes (due to more costly maintenance of internal pH) and reduced carbon
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availability for plant growth [4, 5]. Conversely, more neutral pH soils experience less substrate

depletion and are characterized by higher plant biomass [4]. Plant biomass is further impacted

by the pH-dependent leaching of dissolved organic carbon (DOC) and dissolved organic nitro-

gen (DON) [6, 7]. DOC and DON influence growth elements such as soil nutrient retention

and turnover, soil structure, moisture retention and availability, degradation of pollutants, car-

bon sequestration, and soil resilience [8]. Soil pH also affects the growth of microbial and fun-

gal communities that regenerate plant-limiting soil nutrients, as well as the efficiency of

extracellular microbial enzymes [9–14].

Factors affecting soil pH

Soil pH is moderated by an array of ecological factors that are defined by local climates and

topographies. Climatic factors include annual temperature range, warmest quarter precipita-

tion, average annual precipitation, and average annual temperature [15, 16]. Topographic fac-

tors include elevation, slope, topographic wetness index, valley depth, channel network,

ruggedness, aspect, moisture, silt content, carbon contents, plan curvature, profile curvature,

stream power index, length-slope factor, volumetric water content, and parent materials [15–

20].

The relevance of these factors to soil pH varies by geographic region. In southwestern

China, differences in elevation explain at most 0.02% (R2 = 0.0002) of the variance in soil pH

[15], whereas they explain up to 25% (R2 = 0.25) on the Tibetan Plateau [17] and 9% (R2 =

0.09) in the Tianton National Forest [19]. Similarly, slope in southwestern China can only

explain 2% (R2 = 0.02) of fluctuations in soil pH, whereas in northeast Colorado it accounts

for approximately 50% (R2 = ~0.5) of fluctuations in pH [15, 20]. Similar disparities are

observable for every climatic and topographic factor.

pH prediction by machine learning

Because of the major role soil pH plays in shaping plant growth and diversity, an awareness of

soil pH is crucial to determine the potential benefits of ecosystem provisioning and regulating

services. In this respect, a model capable of accurately predicting soil pH from easily accessible

data would provide a much-needed scientific tool for later studies. This model could be uti-

lized for improving current understandings of environmental homeostasis and the identifica-

tion of ecosystems rich with resources required for agricultural production.

Due to the multivariable and nonlinear factors influencing soil pH, recent research has

turned to machine learning techniques for developing pH prediction models [21–24]. Specifi-

cally, classification and regression trees (CARTs) have been applied to ecological datasets [15,

22, 25–27]. CARTs are decision trees that utilize a series of (typically binary) data splits to pre-

dict categories or values [28].

But traditional limitations of CARTs, such as overfitting, have not been explored in the con-

text of pH prediction. Neither have random forests (RFs), which are known to improve upon

the predictive capacity of CART models [21]. RFs are comprised of many discrete CARTs and

better predictions by averaging those of each individual regression tree. Further, RFs counter

overfitting by merging traditional bootstrapping with elements of randomization during tree

construction [22, 24, 29].

Aim of the current study

We hypothesized that (a) Zhang et al.’s CART model would exhibit geographic specificity as a

result of overfitting and (b) pH prediction by a novel RF would be more accurate than pH pre-

diction by a novel CART. Regarding (b), we expected the accuracy of a novel CART’s pH

PLOS ONE Limitations of pH prediction by machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0255119 August 11, 2021 2 / 15

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0255119


predictions to approximate that of Zhang et al.’s CART model in their region of study and

exhibit a similar % RRMSE of 6.9.

Our study objectives were to (a) test for geographic specificity by applying a CART model

that was developed by Zhang et al. [15] in southwestern China’s humid subtropical hilly

regions to data from New York’s Temperate Deciduous Forests, (b) compare the usefulness of

CART and RF models at predicting soil pH, and (c) better understand the climatic and topo-

graphic factors that influence soil pH at different sites.

Materials and methods

Study area

The study area was located in New York State in the United States of America and spanned

approximately 65,000 km2 across four forested New York State subregions: Hudson Valley,

Saratoga, Central Leatherstocking, and Finger Lakes (Fig 1). We randomly selected 25 state

parks within the study area. Soil samples were collected at four random locations within each

park resulting in 100 total pH measurements. Locations for soil pH testing were determined

by partitioning each park into 10 equally sized subsections and selecting four at random [30].

Soil pH across the study area ranged between five and seven (S2 File).

Soil pH testing

For pH measurement, approximately 100g of surface soil was collected from each sampling

location and diluted with 130mL of deionized H2O. The mixture was vigorously inverted and

rotated before being let to sit for 10 minutes until solutes sufficiently dissolved. pH was

assessed with four-squared plastic pH test strips [32]. This protocol was adapted from [33].

Plastic pH test strips were an appropriate tool for pH measurement in the current context.

Previous literature reports that, in moderately acidic solutions, four-squared pH test strips

Fig 1. Study area. Points indicate state parks where samples were collected. Republished from [31] under a CC BY

license, with permission from ZeeMaps, original copyright 2005.

https://doi.org/10.1371/journal.pone.0255119.g001
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exhibit positive predictive and negative predictive values greater than 95% and exceed 90%

sensitivity and specificity [34]. Soil pH values observed in this study fall within this moderately

acidic range, reaching five at the lowest and seven at the highest (S2 File).

Topographic and climatic data

Topographic and climatic data for pH testing locations was gathered from gridded 90m × 90m

Digital Elevation Models (DEM) and the WorldClim database, respectively, using the System

for Automated Geoscientific Analysis (SAGA) version 7.6.2 [35–38]. Computational restric-

tions required that model grids be clipped to +0.001˚ and -0.001˚ of their original size in the

longitudinal and latitudinal directions prior to basic terrain analysis of sampling locations.

Topographic factors analyzed include elevation, slope, topographic wetness index (TWI), val-

ley depth, channel network, and terrain ruggedness index (TRI). Climatic parameters analyzed

include annual temperature range (ATR), precipitation of the warmest quarter (PWQ), mean

annual precipitation (MAP), and mean annual temperature (MAT). Factors were selected

according to those in Zhang et al. [15].

Model parameters

Regression trees were generated with the R package ‘rpart’ [39, 40]. To counter overfitting,

trees were pruned with 10-fold cross validation (xval) and data partitioning was ceased for

nodes containing fewer than 20 observations (minsplit). Random forests were generated with

the R package ‘randomForest’ [39, 41]. In accordance with existing literature [42], the follow-

ing parameters were set for model optimization: 1000 regression trees comprised the random

forest (ntree); a minimum of 1 observation (nodesize) in each node was required for data

splits; a maximum of 36 nodes (maxnodes) was permitted to constitute the forest

(maxnodes ¼ Quantity of Observations
3

); the quantity of predictors randomly sampled from during tree

construction (mtry) was tuned to minimize the model MSE; and, the seed was generated ran-

domly (seed = 27137). R Code is available on GitHub [43].

Statistical analysis

Spearman correlation tests were performed to determine the strength of monotonic associa-

tions between pH and each predictor [44]. P values produced by Spearman correlations were

Bonferroni-corrected to adjust for multiple hypothesis testing [45, 46] and set the global type I

error rate at 0.05 (α = 0.05). A correlation was considered strong if |ρ|>0.7, moderate if 0.5<|

ρ|<0.7, weak if 0.3<|ρ|<0.5, and nonexistent or very weak if 0<|ρ|<0.3 [47]. Two-tailed Wil-

coxon Rank Sum tests were employed to quantify statistically significant differences (α = 0.05)

between predicted pH values and measured pH values [48, 49]. Relative Root Mean Square

Error (RRMSE) values were used to compare CART and RF model accuracies. RRMSE values

were calculated as the square root of the average squared difference between actual pH values

(y) and predicted pH values (ŷ), divided by the average of the actual pH values (�y) [1]. RRMSE

was interpreted according to previous literature [50]. Specifically, prediction accuracy was

considered “excellent” when RRMSE<10%, “good” when 10%<RRMSE<20%, fair when

20%<RRMSE<30%, and poor when 30%<RRMSE.

RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðyi � ŷlÞ

2

n

r

�y
½1�

Topographic and climatic variable importance to pH prediction was measured by CART
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Variable Importance (CVI) for CARTs and % IncMSE for RFs. CVI was assessed for a predic-

tor by summing the goodness of split (GOS) measures for each split for which it was the pri-

mary predictor (PP) and goodness of split multiplied by adjusted agreement (AA) for each

split for which it was a surrogate predictor (SP) [2] [51]. Percent IncMSE was calculated for

each predictor by subtracting MSE0 from MSEj, dividing by MSE0, and multiplying by 100 [3],

where MSE0 is the MSE of the RF model and MSEj is the MSE of the RF model after the ran-

dom permuting of predictor values [52].

CART Variable Importance ¼ SGOSPP þ SGOSSP � AA ½2�

%IncMSE ¼
MSEj � MSE0

MSE0

� 100 ½3�

Larger relative CVI and % IncMSE values indicate greater variable importance to pH

prediction.

Model generation and statistical analysis were conducted in R version 4.0.0 [39]. Predic-

tions by Zhang et al.’s CART model were calculated manually in Microsoft Excel.

Results

Descriptive statistics

Sampling location elevation ranged from 2m above sea level to 547m and averaged 190.5m,

with land sloping between 0˚ and 44.7˚. Precipitation and temperature measurements were

similarly variable; precipitation measured between 870mm and 1292mm and temperature

between 4.4˚C and 11.36˚C. Additional statistics are available in Table 1 and S2 File.

Spearman correlation tests provided the strength of the monotonic association between cli-

matic and topographic variables and soil pH (Table 2). Bonferroni-adjusted p values were ref-

erenced to determine significance. There were moderate, significant, and negative associations

between Mean Annual Precipitation (MAP) and soil pH (ρ = -0.51; p<0.001), and Precipita-

tion of the Warmest Quarter (PWQ) and soil pH (ρ = -0.51; p<0.001). Weak significant asso-

ciations were observed between soil pH and Slope (ρ = -0.31; p = 0.017) and soil pH and

Terrain Ruggedness Index (TRI) (ρ = -0.33; p = 0.008). All other associations were nonexistent

or very weak.

Table 1. Descriptive statistics for topographic and climatic factors across study area.

Factors Minimum Maximum Mean Standard Deviation

Topographic Elevation 2 547 190.5 140.2

Slope 0 44.7 5.8 5.9

TWI 4.46 11.34 7.6 1.1

Valley depth 0 52 7.6 9.6

Channel network 0 546.48 182.1 140.5

TRI 0 46.77 6.7 6.1

Climatic ATR 35.1 41 36.8 1.2

PWQ 256 335 295.7 19.7

MAP 870 1292 1090.6 111.7

MAT 4.4 11.36 8.8 1.7

Abbreviations defined as follows: topographic wetness index (TWI), terrain ruggedness index (TRI), annual temperature range (ATR), precipitation of the warmest

quarter (PWQ), mean annual precipitation (MAP), and mean annual temperature (MAT). Reference S1 File for a definition of each factor.

https://doi.org/10.1371/journal.pone.0255119.t001
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Zhang et al.’s pH prediction CART model

In 2019, Zhang et al. developed a pH prediction CART model with topographic and climatic

data collected from a hilly region of southwestern China [15]. The current study adapted

Zhang et al.’s model to data collected within New York’s Temperate Deciduous Forests to

assess the geographic specificity of its pH predictions.

Zhang et al.’s model uniformly predicted New York Temperate Deciduous Forest soil pH

to be 5.43. For all sampling locations, factor values determinative of predicted pH in Zhang

et al.’s model measured consistently below or above its split cutoff values, despite variation

within factor data. ATR exceeded 28.85 degrees Celsius, elevation fell below 1297 meters, and

channel network values never equaled or surpassed 867.38 for all locations. Nevertheless,

Zhang et al.’s CART was ‘good’ at predicting Temperature Deciduous Forest soil pH (%

RRMSE = 14.53), although its predictions differed significantly from observed pH (p<0.001)

and it experienced an increase in error relative to its estimations in southwestern China (%

RRMSE = 14.53 as compared to % RRMSE = 6.9).

Novel pH prediction models and factor importances

For alternative Temperate Deciduous Forest pH estimations, novel CART and RF models

were generated. The novel CART model (Fig 2) ‘excellently’ predicted soil pH (%

RRMSE = 9.33) and predictions did not differ significantly from actual data (p = 0.77).

The novel RF model also ‘excellently’ predicted Temperate Deciduous Forest soil pH (Fig

3). The RF model’s pH estimations yielded a RRMSE 5% lower than that of the CART model

(% RRMSE = 8.88) and its predictions did not differ significantly from observed pH (p = 0.07)

or CART predictions (p = 0.26).

Plotting the mean squared error (MSE) of the RF model as individual decision trees were

recursively added to the ’forest’ demonstrates that n = 1000 trees was sufficient to minimize

model MSE (Fig 4).

For both novel models, climatic factors were more important to model construction than

topographic factors. The two most important factors for CART and RF model construction

were mean annual temperature(CVI = 7.5, % IncMSE = 0.092) and mean annual precipitation

(CVI = 7.21, % IncMSE = 0.052). The fourth most important factor for each model was also a

Table 2. Spearman correlations between factors and soil pH.

Factor ρ p value Adjusted p value

Topographic Elevation 0.2110 0.0351 0.3511

Slope -0.3096 0.0017 0.0172�

TWI 0.2943 0.0029 0.0295�

Valley depth -0.1644 0.1020 1.0000

Channel network 0.2224 0.0262 0.2617

TRI -0.3296 0.0008 0.0081�

Climatic ATR -0.1864 0.0633 0.6335

PWQ -0.5081 0.0000 0.0000�

MAP -0.5052 0.0000 0.0000�

MAT -0.2430 0.0149 0.1486

Abbreviations defined as follows: topographic wetness index (TWI), terrain ruggedness index (TRI), annual temperature range (ATR), precipitation of the warmest

quarter (PWQ), mean annual precipitation (MAP), and mean annual temperature (MAT).

�Statistically significant. Adjusted p values are Bonferroni-corrected.

https://doi.org/10.1371/journal.pone.0255119.t002
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Fig 2. Novel CART model predicting Temperate Deciduous Forest soil pH. See Table 1 for descriptions of all

variables.

https://doi.org/10.1371/journal.pone.0255119.g002

Fig 3. Predicted pH by the random forest for all sampling locations. Republished from [31] under a CC BY license,

with permission from ZeeMaps, original copyright 2005.

https://doi.org/10.1371/journal.pone.0255119.g003
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climatic factor, precipitation of the warmest quarter (CVI = 4.8, % IncMSE = 0.041). Addi-

tional factor importances are available in Table 3.

Discussion

The current study investigated the extrapolative capacity of a previously developed CART

model as compared to novel CART and random forest models for soil pH prediction. We

Fig 4. Random forest model MSE by number of trees in the model (31).

https://doi.org/10.1371/journal.pone.0255119.g004

Table 3. Factor importances to CART and RF model construction.

Factors CVI % IncMSE

MAT 7.51 0.0921

MAP 7.212 0.0522

PWQ 4.804 0.0414

ATR 5.313 0.0296

Elevation 3.955/6 0.0453

Channel network 3.955/6 0.0245

TRI 0.427 0.0049

TWI N/A 0.0087

Slope N/A 0.0058

Valley depth N/A -0.00110

Abbreviations defined as follows: topographic wetness index (TWI), terrain ruggedness index (TRI), annual

temperature range (ATR), precipitation of the warmest quarter (PWQ), mean annual precipitation (MAP), and mean

annual temperature (MAT). Reference S1 File for a definition of each factor.
1,2,3,4,5,6,7,8,9,10Rankings of variable importance from most important (1) to least important (10).

https://doi.org/10.1371/journal.pone.0255119.t003
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found that a model developed with data from southwestern China had higher predictive error

when applied in our study region, supporting our first hypothesis regarding geographic speci-

ficity of CART models. A random forest model was not significantly more accurate at predict-

ing soil pH than a CART model, disagreeing with our second hypothesis regarding the

superiority of random forest models.

Geographic specificity

Previously, Zhang et al. [15] developed a classification and regression tree for pH prediction

with data from southwestern China. In the current study, the geographic specificity of

Zhang et al.’s model was assessed via its application to data from New York’s Temperate

Deciduous Forests. Relying on this data, the model suffered an increase in predictive error

from 6.9% RRMSE (in southwestern China) to 14.53% RRMSE (in New York), demonstrat-

ing its limited pH prediction ability in an alternative geographic region. When a novel

CART model was constructed using Temperate Deciduous Forest data, it predicted pH

more accurately than Zhang et al.’s model (% RRMSE = 9.33), demonstrating that CART

pH predictions are most accurate in the geographic area from which their training data is

sourced. As expected, the novel CART model predicted Temperature Deciduous Forest soil

pH with an accuracy approximately equal to that of Zhang et al.’s CART model in south-

western China. The novel CART % RRMSE in New York, 9.3, is nearly equal to Zhang

et al.’s CART RRMSE in China, 6.9.

Our approach of testing geography was novel and necessary to explore the limitations of

soil pH model extrapolation. The failure of Zhang et al.’s model to transfer to a novel geo-

graphic region may be due to spatial autocorrelation between factors affecting soil pH. Existing

literature documents that attributes close to one another in geographic space and time are sim-

ilar to one another in value [53]. As a result, the distribution of ecological data in a region is

different from the distribution in another and predictive models trained in one learn to fit its

distribution specifically [54–56]. Research seeking to improve the extrapolative and interpola-

tive abilities of ecological models has turned to accounting for spatial autocorrelation for this

reason; specifically, in the fields of biodiversity conservation [57]and pedometrics [58–61].

Future research can apply these concepts to soil pH prediction by further testing the limita-

tions of current models and identifying general rules that increase the likelihood of successful

model application to new regions.

CART vs. random forest models

We report that random forest models are not significantly more accurate at predicting soil pH

than CART models. This disagrees with previous research identifying weaknesses of CART

modelling relative to random forests [21, 55, 56, 62]. CART models are susceptible to overfit-

ting training data and fail to maximize predictive accuracy because of unavoidable skewness in

training data. Random forests, on the other hand, not only incorporate randomization and

bootstrapping into the construction of individual Categorization and Regression trees, but also

aggregate the output of many individual trees. These characteristics are thought to counter

overfitting and generally improve accuracy [22, 24, 29, 63–67]. The current study disagrees

with these findings in the context of soil pH prediction. We report that random forest models

are not meaningfully more accurate at soil pH prediction from topographic and climatic fac-

tors than individual classification and regression trees for our study region. The RF % RRMSE,

8.88, is approximately equal to the CART RRMSE, 9.33, and model predictions did not differ

significantly from one another (p = 0.26).
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Factors influencing soil pH

The second most important factor for both CART and RF model construction was the climatic

factor mean annual precipitation (MAP). MAP demonstrated relatively high and statistically

significant correlations with soil pH (ρ = -0.51, p<0.001). Precipitation of the warmest quarter

(PWQ) was the fourth most important factor to CART and RF model construction and also

exhibited a high and significant correlation with pH (ρ = -0.51, p<0.001).

These findings contrast with those of Zhang et al., who found that the annual temperature

range (ATR), terrain wetness index (TWI) and Melton ruggedness number were most impor-

tant to pH. These factors may have been more important in Zhang et al’s study due to their

analysis of a hilly region with much greater variability in elevation and slope than in the cur-

rent study. The standard deviation of elevation and slope observed here were 140m and 5.9˚,

less than the 254m and 8˚ observed by Zhang et al.

This interpretation is supported by previous literature. While global soil pH is highly influ-

enced by precipitation [68], regional heterogeneities can enhance the influence of other fac-

tors. In some regions, south-facing slopes tend to exhibit more basic soil pH than north-facing

slopes [69] and in others slope direction alone has no significant relationship to pH [70]. The

strength of the association between elevation and pH also varies by region, ranging from r =

-0.3 in a broadleaf forest [19] to r = -0.5 in a subtropical rainforest [17]. To this effect, Zhang

et al. reported a correlation between soil pH and elevation with r = -0.014 [15]. It is probable

that the unique topographical characteristics of Zhang et al.’s studied region, including its var-

ied elevation and slope, are responsible for their CART model’s emphasis on ATR, TWI and

Melton ruggedness.

In future model creation, swapping factors that exhibited weak or nonexistent correlations

to soil pH and that only minimally contributed to model construction with alternative topo-

graphic or climatic factors could improve predictive accuracy [24]. Previous literature has uti-

lized linear regression [71] or Boruta all-relevant variable selection for this purpose [54, 72].

Model construction from the minimal-optimal set of variables reduces overfitting and

increases interpretability [54].

Applications

Provisioning and regulating services are the most important ecosystem services for security,

the basic materials for a good life, and health (1). These services are provided for by supporting

services, such as plant growth and diversity, that are controlled by soil pH (2). In this way, the

ability to accurately predict global soil pH would expand the scientific knowledge of natural

environmental regulation and facilitate an increase in the efficiency of agricultural production.

These impacts could improve global living standards by countering climate change and miti-

gating world hunger.

Regarding climate change, soil carbon-sequestration by plant roots has been proposed as a

mechanism for extracting CO2 from the atmosphere [73]. However, the efficiency of root-

mediated carbon storage varies by plant species [74] whose optimal growth is influenced by

soil pH [75]. In this context, soil pH prediction models could be leveraged to identify ideal

growth regions for the large-scale breeding of carbon-sequestering plant species.

Regarding world hunger, carbon-sequestration in soil is also expected to improve crop

yields by replenishing historically depleted organic matter that is needed for plant growth [76].

Therefore, pH prediction models could inform agricultural workers about their ability to seed

carbon-sequestering plant species on their land, replenish their soil’s carbon content, and

improve their crop yields. Further, rice growth is highly pH-dependent [77] and many devel-

oping regions rely on rice to provide a large portion of their populations’ average caloric intake
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[78]. Soil pH prediction models could be used to discern areas naturally conducive to rice

growth and improve production. These concepts apply equally to other nourishing plant

species.

As shown here, the accuracy of pH prediction, and the ability to leverage pH for combating

climate change and world hunger, is influenced by the geographic specificity of predictive

models. Therefore, to fully realize the potential of natural soils, our study encourages research-

ers to restrict the extrapolation of predictive models to the regions from which their training

data was sourced.

Taken together, future research should seek to identify a combination of predictors that

explain a larger fraction of pH variance, to construct alternative CART and RF pH prediction

models for additional geographic regions, and to leverage these improved models for the seed-

ing of carbon-sequestering and nutrient-providing plant species.

Conclusions

Previous literature has established that CART modelling can be applied to soil pH prediction.

The current study sought to address the extrapolative capacity of Zhang et al.’s pH prediction

CART model in the Temperate Deciduous Forest relative to novel methods of pH prediction

in this region. Results indicated that Zhang et al.’s CART model experienced a reduction in

predictive accuracy when applied to data from the Temperate Deciduous Forest and was out-

performed by novel CART and RF models. We report that pH prediction models are most

accurate when applied to their training data’s geographic region, that RF modeling provides

no notable advantage over CART modeling in the realm of soil pH prediction, and that cli-

matic factors are useful for model construction.
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