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Abstract: 4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an iron-dependent non-heme oxygenase
involved in the catabolic pathway of tyrosine, which is an important enzyme in the transformation of
4-hydroxyphenylpyruvic acid to homogentisic acid, and thus being considered as herbicide target.
Within this study, a set of multiple structure-based pharmacophore models for HPPD inhibitors were
developed. The ZINC and natural product database were virtually screened, and 29 compounds
were obtained. The binding mode of HPPD and its inhibitors obtained through molecular docking
study showed that the residues of Phe424, Phe381, His308, His226, Gln307 and Glu394 were crucial
for activity. Molecular-mechanics-generalized born surface area (MM/GBSA) results showed that
the coulomb force, lipophilic and van der Waals (vdW) interactions made major contributions
to the binding affinity. These efforts will greatly contribute to design novel and effective HPPD
inhibitory herbicides.

Keywords: HPPD inhibitors; pharmacophore model; molecule docking; molecular dynamics;
MM/GBSA

1. Introduction

In recent years, crops severely suffer from infestations of various weeds, and the weeds resistance
are increasing seriously [1]. The development of novel green herbicides with highly efficient,
eco-friendly, high crop selectivity while low toxicity has become urgent [2–4].

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is one of the most important herbicide target
enzymes [5]. It is an iron-dependent non-heme oxygenase involved in the catabolic pathway of tyrosine,
which catalyzes the transformation of 4-hydroxyphenylpyruvic acid (HPPA) to homogentisic acid
(HGA) [6–8]. HGA is a key precursor of plastoquinone and vitamin E, and they are essential elements
for the light-dependent reaction of photosynthesis. The inhibition of HPPD will lead to photodynamic
bleaching of the foliage and ultimately results in necrosis and death [9–12].

A total of 14 Arabidopsis thaliana HPPD (AtHPPD) were identified, uploaded and stored in the
protein database (RCSB PDB), including 11 protein–ligand complexes and 10 resolutions less than
three angstroms (Table 1). The 3D structures of HPPD show that all of them share the same 2-His-1-Glu
facial triad [13]. In the co-crystallized HPPD inhibitor complexes, Fe2+ coordination is achieved by two
His amino acids and one Glu amino acid and the β-keto–enol structure of the pyrazole or triketone
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inhibitors [14–16]. The π–π interactions between the phenylalanine and the aromatic moiety of the
inhibitors play a key role in the stability of the complex [17–19].

Pharmacophore model is a powerful tool for hit lead compounds in medicinal chemistry [20].
Molecular mechanics generalized born surface area (MM/GBSA) is the most well-known method
of binding free energy, which was used to assess docking poses, determine structural stability and
predict binding affinities [21]. Increasing studies have made major breakthroughs in HPPD design
through the use of computational chemistry. A virtual screening based on a pharmacophore model
and molecular docking was successfully constructed for screening potential HPPD inhibitors [22,23].
A detailed experimental and computational study have shown that the slow-binding inhibition kinetics
of 5CTO, 5DHW and 5YWG, which enabled the rational design of new effective HPPD-targeted drugs
or herbicides with longer target residence time and improved performance [24]. Fu et al. successfully
constructed a virtual screening based on a pharmacophore model, and then used molecular docking
to discern interactions with key residues at the active site of HPPD and identified potential HPPD
inhibitors [25]. He et al. summarized the structure of HPPD, inhibitors binding sites, mode of action
and their metabolites were [26]. All of these provided clear and solid insights in HPPD and its inhibitors
interaction and contributed to design novel and effective HPPD inhibitory herbicides. In this study,
a series of structure-based pharmacophore models for HPPD inhibitors were generated and used to
virtual screening ZINC and Natural Product database. Molecular docking, molecular dynamics (MD)
simulations and molecular-mechanics-generalized born surface area (MM/GBSA) calculation were
applicated to illustrate the detailed binding modes of potential inhibitors with HPPD. The virtual
filtered strategy is shown in Figure 1.

Table 1. Structural information of published Arabidopsis thaliana HPPD (AtHPPD) crystals.

Ref. PDB ID Resolution (Å) Ligand Metal Ion Released

[27] 1TFZ 1.80 DAS869 Fe 2004
[27] 1TG5 1.90 DAS645 Fe 2004
[27] 1SQD 1.80 - Fe 2004
[28] 1SP9 3.00 - Fe 2004
[29] 5XGK 2.60 HPPA Fe 2018
[30] 6ISD 2.40 sulcotrione Co 2018
[30] 5YWG 2.60 mesotrione Co 2019
[30] 6J63 2.62 NTBC Fe 2019
[31] 5YWH 2.72 Y13508 Fe 2019
[32] 5YWI 2.58 NTBC Co 2019
[33] 5YWK 2.80 benquitrione-methyl Co 2019
[30] 5YY6 2.40 benquitrione Co 2019
[34] 6JX9 1.80 Y17107 Co 2020
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2. Results

2.1. Pharmacophores for Virtual Screening

The multiple pharmacophore combination screening method has a higher effective hit rate for active
compounds than the single pharmacophore screening. The receptor-based multiple pharmacophore
combination screening method is more reliable and helpful for the identification research of potential
HPPD inhibitors. The above-mentioned final set pharmacophores were constructed as shown in
Figure 2, and the virtual screening process was performed to the 98,133 compounds from ZINC and
Natural Product database for 6 times to find new HPPD inhibitors. Finally, 29 compounds were found
to be highly fitness with the HPPD based pharmacophore model. In addition, these compounds were
optimized for geometry using Schrödinger’s LigPrep module and used for further molecular docking.
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Figure 2. Two-dimensional (left) and 3D (right) charts of structure-based pharmacophore
models (A) 1TG5, (B) 1TFZ, (C) 5YWH, (D) 5YWK, (E) 5YY6 and (F) 5XGK for potential
4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors in the HPPD binding pocket. The interactions
were visualized with the following color code: hydrogen bond acceptor (red arrow), hydrogen bond
donor (green arrow), hydrophobic interaction (yellow sphere), aromatic ring feature interaction (purple
sphere and arrow).

2.2. Docking Result

Based on the docking results, the ligand benquitrione was completely embedded in the active
capsule. benquitrione and amino acids His226, His308, Glu394 coordinated with cobalt ion,
meanwhile, the benzene ring of benquitrione formed a face-to-face π–π interaction with Phe381
and hexahydropyrimidine ring formed a vertical π–π interaction with Phe424 (Figure 3A).

Compounds ZINC00004910836, ZINC000040310216 and ZINC000003830381 were found fully
embed into the active pocket. Compound ZINC000049180836 not only produced primary metal
coordination bonds, moreover, the two benzene rings also interacted with Phe424 and Phe381 via the
obvious π–π interactions. Meanwhile, the hydroxyl at benzene ring generated hydrogen bond with
Gln307 as depicted in Figure 3B.

The benzene portion of compound ZINC000040310216 formed π–π interactions with Phe424 and
Phe381. Compound ZINC000040310216, amino acids His226, His308 and Glu394 all coordinated
with cobalt ion. Meanwhile, carbonyl moiety generated hydrogen bond interactions with Gly420 and
Asn282 as depicted in Figure 3C.
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The docking mode of compound ZINC000003830381 was similar as benquitrione. There was
a π–π stacking between cyclopentyl, Phe424 and Phe381. ZINC000003830381 also produced metal
coordination bonds together with His226, His308 and Glu394. The hydroxyl on the cyclopentane
generated hydrogen bond interactions with Asn423 as displayed in Figure 3D.
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Figure 3. Receptor–ligand interaction of (A) benquitrione, (B) ZINC000049180836 (C) ZINC000040310216,
(D) ZINC000003830381, (E) ZINC000035458722, (F) ZINC000012663485 and (G) ZINC000002032320
with the HPPD active site.

Compounds ZINC000035458722, ZINC000012663485 and ZINC000002032320 (Figure 3E–G)
also formed π–π interaction with Phe424 and Phe381. The hydroxyl on the aromatic ring part
of ZINC000035458722 generated hydrogen bond interaction with Gln307. The pyrrole ring of
ZINC000002032320 also generated important hydrogen bond interactions with Phe419. However,
none of these three compounds produce metal coordination bonds.

Herein we focused on the three small molecules ZINC000040310216, ZINC000003830381
and ZINC000049180836 because they have shown the function of potential HPPD inhibitors.
ZINC000002032320 with the highest docking scores among the left three molecules was also subjected
to MD simulations to demonstrate whether the metal coordination was necessary.

2.3. MD Simulations

ZINC000049180836, ZINC000040310216 and ZINC000003830381 all formed major ionic interactions
with amino acids His226, His308, Glu394, resulting in metal coordination and all the above three
compounds inserted in the active pocket between Phe381and Phe424 via π–π interaction (Figure 4A–C).
ZINC000049180836 formed three new hydrogen bonds with Gln307, Leu427and Lys421 in HPPD
binding site. In HPPD binding pocket, ZINC000049180836 (Figure 7A) displayed crucial interactions
with Phe381(0.9), Phe424(0.8), Leu427(0.9) and His226(1.0), His308(1.0), Glu394(1.0) and Gln307(0.9),
Lys421(0.8), respectively. Amino acids His226, His308, Glu394 form coordination bonds with metal
ions and ligands form π–π interaction with amino acids Phe381 and Phe424.
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Figure 4. Bar charts of protein–ligand (P–L) contacts. (A) ZINC000049180836 (B) ZINC000040310216,
(C) ZINC000003830381, (D) ZINC000002032320. Abscissa represents the amino acid number. Ordinate
represents interactions fraction.

ZINC000040310216 formed a new hydrogen bond with Gly420 and Asn282 in HPPD binding site
(Figure 4B). ZINC000003830381 (Figure 4C) formed important hydrogen bonds with Asn423, Glu394,
Gln293 and Gly420 in HPPD binding site. In 5YY6 binding pocket, ZINC000002032320 displayed
crucial interactions with Tyr297(a fraction of 0.75), Pro389(0.95), Phe392(0.8) (Figure 4D). The key
interactions included hydrogen bonds with Pro389 and Gln307and π–π interaction with Tyr297 for
5YY6, Hydrophobic interaction with Phe392.

ZINC000049180836, ZINC000040310216, ZINC000003830381 and ligand histogram data indicate
that these three compounds possess key interactions between ligands and proteins, and both produce
important hydrogen bonding properties in drug design. Consequently, the conformations from
snapshots were appropriately identical with previous docking modes, which exactly suggested the
binding stability.

The RMSD pattern of protein (Cα) and ligand (fitting protein and ligand itself) during the 100 ns
simulations is shown in Figure 5. In detail, ‘Lig Fit Protein’ or ligand aligned on protein meant the
RMSDs measured the fluctuations of the ligand with respect to the protein [35]. It was obviously that
there were some fluctuations with a 3 Å shift for the proteins (HPPD) at the beginning. Hence, the RMSDs
fluctuating around some thermal average by approximately 1–3 Å for the entire simulation time exactly
illustrated the equilibrated simulation. ZINC000040310216 preserved roughly the same RMSD level
with benquitrione, whereas the average values of 5YY6-ZINC000003830381, 5YY6-ZINC000002032320
and 5YY6-ZINC000049180836 were a little higher than that of 5YY6-ZINC000040310216 complex.
On the whole, the fluctuations of proteins and ligands attained to be unchanged after 40 ns.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 14 
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2.4. MM/GBSA Calculation

MM/GBSA is a molecular mechanics of binding energy, solvation model, nonpolar solvation
term, nonpolar solvent accessible surface area and van der Waals interaction method to define the
free energy of binding [35]. MM/GBSA was applied to calculate the binding free energy of the
ligand-receptor complexes taking thermodynamic and desolvation parameters into consideration.
The ∆Gbind, ∆Gbind coulomb, ∆Gbind Hbond, ∆Gbind lipo and ∆Gbind vdW parameters involved in the
calculation are shown in Table 2. The Glide energy required for compound ZINC00004910836 is the
smallest, which was consistent with the previous molecular docking results. Among the calculated
parameters of compound ZINC00004910836, the ∆Gbind value was 55.129 kcal/mol, the ∆Gbind coulomb
value was −48.956 kcal/ mol, the ∆Gbind Hbond was −0.530 kcal/mol, nonpolar solvation (∆Gbind lipo)
value was −26.162 kcal/mol and van der Waals (∆Gbind vdW) value was −41.324 kcal/mol. From the
parameters calculated for each compound, it could be easily concluded that ∆G bind coulomb and ∆G
bind vdW were the main contributors to the binding free energy of compounds. Noticeably, it was also
detected that ∆G covalent, providing unfavorable energy, was negative to the binding of protein.

Table 2. Contributions of various energy components to the binding free energy (kcal mol−1).

Compound ∆Gbind
∆Gbind

Coulomb
∆Gbind

Covalent
∆Gbind
Hbond ∆Gbind Lipo ∆Gbind vdW

ZINC000049180836 −55.129 −48.956 6.930 −0.530 −26.162 −41.324
ZINC000040310216 −48.339 0.322 8.513 −0.482 −25.319 −48.749
ZINC000003830381 −30.081 −26.801 9.483 −1.109 −27.654 −41.861
ZINC000002032320 −43.629 −15.992 8.294 −0.565 −23.267 −49.487
ZINC000035458722 −50.129 −13.244 3.182 −0.592 −26.8102 −40.3212
ZINC000012663485 −29.341 −45.45 7.568 −0.449 −24.507 −34.352

Benquitrione −19.652 −27.7484 3.5389 −0.968 −15.086 −32.827

3. Discussion

Six crystallographic structures of HPPD protein were collected from the RCSB PDB database
(PDB ID: 1TG5, 1TFZ, 5YWH, 5YWK, 5YY6 and 5XGK). The interaction between the HPPD protein and
potential ligands was calculated using LS. Although these models have similar chemical characteristics,
they all describe slightly different interaction patterns that may occur within the HPPD binding site.
For example, both the 1TG5 and 1TFZ models contain a hydrogen bond (green) effect with HIS287 and
a hydrophobic (yellow) effect with Phe398 and Phe360, but the 1TFZ model has one more aromatic ring
effect (blue) than the 1TG5 model, the same as 5YY6. Among the amino acids in the 5YWK and 5YWH
models, Phe424, Phe381, Phe392 and Met335 all produced hydrophobic groups (yellow), but the amino
acid His308 in 5YWH produced hydrogen bonds (green) as shown in Figure 2.

The co-crystallized ligand benquitrione was redocked into the corresponding 5YY6 protein binding
pocket (Figure 6). The RMSD value was 0.55, which confirmed the accuracy and feasibility of the glide
docking method.

Flexible docking was performed with the 29 selected candidates against the multiple conformers of
the receptor protein 5YY6. Six small molecules with optimal comprehensive conditions were obtained
according to the conditions of docking score and the action mode of amino acid. Docking score
for the 6 compounds is shown in Table 3. The glide score of the six compounds were lower than
others, which indicated that all of them bond with the target protein stable. The Glide energy of
ZINC000035458722 is similar as benquitrione. Docking score and Glide gscore are the best criteria
for docking situation. The scores of the six compounds are better than the co-crystallized complex
ligand benquitrione, indicating that the compounds can complement the protein geometrically and
energy well.
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Table 3. Two-dimensional structure of the potential HPPD Inhibitors and the evaluation value.

Inhibitors Structure Docking Score Glide Gscore Glide Energy (kcal mol−1)
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Analysis of the cocrystal structures shows some interactions predicted by our ensemble docking
model (Figure 7A). Simulation trajectory analysis showed that within this time frame, the RMSD of the
ligand changed by about 2 Å relative to the initial (docking) conformation, and the posture was stable.
Interactions along the entire trajectories indicate that the interactions with His226, His308, Phe381,
Phe424 and Glu394 are conserved and are the residues necessary for HPPD inhibitor binding.
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(A) Protein–ligand contacts; (B) bar charts of protein–ligand (P–L) contacts.

Protein interactions with the ligand were monitored and normalized by a timeline representation
over the course of the trajectory (P–L contacts, Figure 7B). The interactions such as–hydrogen bonds
(≤2.5 Å), hydrophobic, ionic and water bridge were summarized and categorized by type. In HPPD
binding pocket, ligand benquitrione displayed crucial interactions with Phe381(0.9), Phe424(0.8) and
His226(1.0), His308(1.0), Glu394(1.0). These results indicated the metal coordination bond interaction
was maintained 100% between benquitrione and His226, His308 and Glu394. The interactions with
Phe424 and Phe381 hydrophobic bonds are 80% and 90%, respectively.

In conclusion, a reasonable and hierarchical virtual screening process was successfully constructed
to identify potential HPPD inhibitors. Molecular docking revealed that compounds ZINC00004910836,
ZINC000040310216 and ZINC000003830381 all produced metal coordination with amino acids His226,
His308 and Glu394 and formed π–π interactions with amino acids Phe424 and Phe381, and all of them
produced more important hydrogen bond interaction with the protein. MD simulation proved the
existence of metal coordination bonds and the influence of π–π interaction, which was consistent
with the previous molecular docking results. The MD simulation also confirmed that three of the
six compounds had high binding efficiency with HPPD. The binding free energy calculated by
MM/GBSA demonstrated that the van der Waals (∆Gbind vdW) energy term was the major contributor
to molecular binding. Overall, the results provide a set of guidelines for design novel and more potent
HPPD inhibitors.

4. Materials and Methods

4.1. Pharmacophore Model Generation and Theoretical Validation

5YWH, 5XGK, 1TFZ, 1TG5, 5YWK and 5YY6 protein–ligand complexes were obtained for a
detailed structural analysis after screening the fourteen AtHPPD protein with the rule of an effective
pharmacophore requires 3 or more structural characteristic elements.
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Structure-based pharmacophore models for HPPD inhibitors were generated on the 6 HPPD
crystal structures using LigandScout (LS, Inte: Ligand, version 4.3, Austria). Then optimize these
models to optimize their prediction performance. In the first optimization stage, the size of the features
were deleted or adjusted to allow as many active ingredients as possible to draw pharmacophores and
exclude inactive compounds according to the contribution map (https://www.mrc-lmb.cam.ac.uk/raji
ni/index.html) (Figure 8) and the action mode of the amino acids in the PDB [36–38]. Features that
indicate the interactions with the key residues necessary for inhibition are retained during this process,
such as the important interactions with Phe403, Phe398, Phe360, His287 in 1TG5 and 1TFZ. In the
second optimization stage, an exclusion volume is added to prevent inactive compounds that are
in spatial collision with the protein from being localized by the pharmacophore. This optimization
aims to reduce the chances of finding inactive compounds while still correctly identifying the active
compounds. Finally, six structure-based pharmacophore models are produced based on 6 PDB proteins
combined with the amino acid contribution map and the action mode of the protein ligands in the
PDB library.
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Figure 8. Protein–ligand contacts are represented by asteroid plot. The asteroid plot of AtHPPD
co-crystal structure RCSB PDB database (PDB) code: (A) 1TG5, (B) 1TFZ, (C) 5YWH, (D) 5YWK,
(E) 5YY6 and (F) 5XGK). Co-crystal ligand in the center is denoted as blue node. The residues in
the inner and outer circle represent directly and indirectly contacting residues, respectively. Size of
the circle indicates the number of atomic contacts and the residues are colored according to their
secondary structures.

The 6 pharmacophores obtained above are subjected to multiple virtual screening of 98,133
compounds from the ZINC and Natural Product database. If the number of molecules obtained by the
primary screening is too large, the first 200 matching high scores are taken and finally, the selected
groups of compounds are summarized to obtain a common intersection compound.

4.2. Multiple Receptor Conformers Based Molecular Docking

4.2.1. Ligand Preparation

A total of 29 compounds out of 98,133 were found to be–in high fitness with the pharmacophore
model. Using LigPrep, the ionization states, tautomeric forms and 3D conformation of 29 intersection
compounds were generated (Schrödinger, LLC, New York, 2018–2). The default conditions were

https://www.mrc-lmb.cam.ac.uk/rajini/index.html
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maintained, except for the ionization states which were generated at the target pH of 7.0 ± 0.2 using
Epik including the original state [39]. The resulting 3D ligand representations were exported as
structure data files, and unique IDs were assigned based on only canonical structures to facilitate
post-docking hierarchical data fusion.

4.2.2. Protein Preparation

The protein preparation workflow in Maestro (Schrödinger) was used to preprocess the HPPD
protein structure to assign bond sequences and optimize the structure, including hydrogen bond
optimization and constrained minimization. Use Schrödinger Prime to add missing side chains when
necessary. For each structure, a protein chain with the co-crystal ligand was retained, and more than
5 Å of water molecules were removed from the heteroatom group [40]. The internal hydrogen bond
network was optimized, and then the energy minimization was limited.

For the obtained six HPPD protein structures representations, Schrodinger Glide were used to
generate docking-grids around the cocrystal binding sites under the default settings. Each cocrystal
ligand was re-docked into its corresponding structure validated model; in each case, the cocrystal
posture was reproduced with root mean square deviation (RMSD) value <1.5 Å.

4.2.3. Docking Simulation

The docking simulation was performed in Glide. The ligand representation of all compounds
obtained through LigPrep was docked with the extra precision (XP) of the default settings of all
6 HPPD models prepared using Glide (Schrodinger), except writing out at most 5 poses per ligand
representation and including 32 poses per ligand for post-docking minimization [41]. The obtained
29 small molecules were docked with the above-mentioned six PDB proteins in the glide module
of the Maestro-scratch project platform for molecular docking, six compounds were obtained after
comparing the conditions of glide gscore, glide energy and the mode of interactions of small molecules
with amino acids.

4.3. MD Simulation

The complex was introduced into the MD simulations in the Desmond (v3.8) module of Schrödinger
software. The simulation system was built in an auto calculated trapezoidal box, which was dissolved
with simple point charge (SPC) water and neutralized with appropriate number of counter ions.
In addition, the OPLS_2005 force field was used to minimize the energy of complex systems, where the
maximum interaction was set to 2000 and convergence threshold was set to 1.0 kcal/mol/Å [42].
The steepest descent and limited memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm
minimizes the system energy with a maximum of 5000 steps until it reaches a gradient threshold of
25 kcal/mol/Å. An all-atom explicit water MD simulation of 100 ns was performed on four potential
small molecules. Each MD system was created from the docking protein–ligand complex corresponding
to the best docking score (i.e., the 5YY6 PDB structure and its corresponding docking ligand result in the
highest absolute docking score). Finally, the RMSD of the protein backbone and the root mean square
fluctuation (RMSF) of the residues were plotted to analyze the structure convergence to equilibrium.

The initial MM/GBSA calculation uses initial and MD to optimize the receptor ligand complex.
Use all default parameters, including the VSGB 2.0 solvation model. Calculation of Schrodinger
software suite [43,44]. The binding free energy ∆Gbind was calculated with the MM/GBSA methodology
was applied based on stable MD trajectory.

∆Gbind = Gcomplex −Greceptor −Gligand (1)

Gcomplex is the free energy of the complex; Greceptor is the free energy of the receptor; Gligand is the
free energy of the ligand.
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