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Abstract: Achieving nanostructures with high surface area is one of the most challenging tasks as
this metric usually plays a key role in technological applications, such as energy storage, gas sensing
or photocatalysis, fields in which NiO is gaining increasing attention recently. Furthermore, the
advent of modern NiO-based devices can take advantage of a deeper knowledge of the doping
process in NiO, and the fabrication of p-n heterojunctions. By controlling experimental conditions
such as dopant concentration, reaction time, temperature or pH, NiO morphology and doping
mechanisms can be modulated. In this work, undoped and Sn doped nanoparticles and NiO/SnO2

nanostructures with high surface areas were obtained as a result of Sn incorporation. We demonstrate
that Sn incorporation leads to the formation of nanosticks morphology, not previously observed
for undoped NiO, promoting p-n heterostructures. Consequently, a surface area value around
340 m2/g was obtained for NiO nanoparticles with 4.7 at.% of Sn, which is nearly nine times
higher than that of undoped NiO. The presence of Sn with different oxidation states and variable
Ni3+/Ni2+ ratio as a function of the Sn content were also verified by XPS, suggesting a combination
of two charge compensation mechanisms (electronic and ionic) for the substitution of Ni2+ by
Sn4+. These results make Sn doped NiO nanostructures a potential candidate for a high number
of technological applications, in which implementations can be achieved in the form of NiO–SnO2

p-n heterostructures.

Keywords: nickel oxide; nanoparticles; nanosticks; high surface area; doping mechanisms

1. Introduction

In the last few years, nickel oxide (NiO) has been extensively studied due to its interest-
ing optoelectronic and magnetic properties, and its high thermal and chemical stability [1],
which make it a promising candidate for numerous technological applications such as
electrochromic devices [2], supercapacitors [3], photocatalyst [4,5] or gas sensors [6,7],
among others. Although several publications related to Sn doped NiO nanostructures
can be found in the literature, less has been done in the study of the fundamental prop-
erties of this oxide. A deep knowledge of the properties of p-type semiconductor oxides
is essential in order to understand the mechanisms related to the final applications. As
some examples, substitutional metal cations with different oxidation states, such as Nb5+,
Sn4+, Li+ or Al3+, can lead to changes in the NiO stoichiometry and therefore can be used
to tune the concentration of Ni vacancies, which usually play a key role in the applica-
tions [6,8]. It is well known that an improvement in the physical and chemical properties,
and therefore in the technological applications can be achieved by using nanomaterials
due to their higher porosity and huge surface-to-volume ratio [9,10]. Many efforts have
been focused so far on the engineering of NiO morphology to provide nanostructures with
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high porosity and high surface area by doping with different elements [11–13]. On the
other hand, SnO2 has been considered as a promising candidate in several technological
applications, such as solar cells [14], gas sensing [15] or Li-ion batteries [16], among oth-
ers. The electronic structure, optical properties or vibrational modes of this well-known
n-type oxide have been deeply studied over the last few decades, making this material
one of the most common dopants in NiO. Different authors have reported the influence
of Sn incorporation in well-known semiconductor oxides, such as ZnO [17,18], In2O3 [19]
or Ga2O3 [20], among others, confirming an improvement of the optical properties or
an enhanced acetone gas sensing behaviour. However, Sn doping in NiO has attracted
considerable attention due to several factors, such as its thermal and chemical stability,
and the promoted variations in the NiO electrical properties. In addition, Ni2+ can be
easily substituted by Sn4+ and Sn incorporation usually leads to an increased conductivity
of NiO. Recent works reported on high surface area values for diverse Sn doped NiO
nanostructures synthesized following different routes. Wang et al. [6] reported the growth
of Sn-doped three dimensionally ordered macroporous NiO following a colloidal crystal
template method, with values of surface area below 110 m2/g. Kim et al. [21] reported
a surface area value of 87.9 m2/g for Sn doped NiO microspheres synthesized by spray
pyrolysis and sequent heat treatment. Gao et al. [12] reported a simple hydrothermal
route to the synthesis of Sn-doped NiO hierarchical nanostructures, confirming that Sn
incorporation leads to a decrease in the particle size. It is well known that, among other
chemical routes, hydrothermal methods usually allow for obtaining nanometric materials
with high compositional and morphological control as well as nanostructures with lower
dimensions, mainly due to the pressure, which plays a key role during the synthesis. Most
of the works related to Sn doped NiO are focused on the effect of Sn incorporation in
technological applications, such as gas sensors or photocatalyst, assuming that Sn is mainly
incorporated as Sn4+. In addition, in those works, the Sn concentration never exceeds
values around 10 at.%, not exploring the solubility limit of Sn in NiO, one aspect that
motivates this study. Furthermore, Sn incorporation usually does not promote significant
changes in the NiO morphology in comparison with undoped NiO. In that frame, our work
can contribute with novelty and new forefront insights since the study of the solubility limit
of Sn in NiO or the study of different morphologies as a function of the Sn content have
been deeply discussed. In this work, undoped and Sn doped NiO nanostructures were
obtained by a modified hydrothermal method. In addition, the Sn doping process and the
solubility limit of Sn in NiO were explored by adding nominal atomic concentrations of Sn
between 3% and 30%. Diverse complementary characterization techniques were used in the
investigation of all the samples, such as X-ray diffraction (XRD), scanning and transmission
electron microscopy (SEM and TEM), Raman spectroscopy, cathodoluminescence (CL), N2
adsorption–desorption isotherms and Brunauer–Emmett–Teller (BET) surface, and X-ray
photoelectron spectroscopy (XPS).

2. Experimental Details
2.1. Synthesis of Undoped and Sn Doped NiO Nanostructures

NiO nanostructures were obtained following a soft chemical route based on a hy-
drothermal method followed by a thermal treatment using Ni(NO3)2·9H2O (Sigma-Aldrich
99.99%, Darmstadt, Germany) as precursor. The desired amount of Ni(NO3)2·9H2O was
dissolved in deionized water under continuous stirring, then NH4OH was added dropwise
until pH 10 was reached. The solution was transferred to a Teflon-liner autoclave and
heated at 60 ◦C during 8 h. The final powder was collected by centrifugation, washed in
deionized water and dried at 40 ◦C for 12 h, obtaining the Ni(OH)2 precursor. Thermal
treatments were performed at 250 ◦C during 2 h to obtain NiO nanostructures. Sn doped
nanostructures were obtained following a similar procedure. The desired amounts of
Ni(NO3)2·9H2O and SnCl2· 2H2O (Sigma-Aldrich 99.99%, Darmstadt, Germany, with Sn
atomic percentages of 0, 3, 6, 10, 15 and 30) were dissolved in deionized water under
continuous stirring, then NH4OH was added dropwise until pH 10 was reached. In this
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case, and based on our previous work [22], the solution was heated at 120 ◦C during 12 h.
For Sn doped NiO samples, thermal treatments were carried out at 450 ◦C during 2 h to
obtain Sn doped NiO nanostructures. The as-obtained Sn doped NiO samples were referred
to as NiO, NiO3, NiO6, NiO10, NiO15 and NiO30 based on the corresponding initial Sn
atomic percentage (at.%) 0, 3, 6, 10, 15 and 30, respectively. A schematic illustration of the
experimental procedure is shown in Figure 1.
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Figure 1. Schematic illustration of the experimental method employed to obtain undoped and Sn
doped NiO.

2.2. Characterization

Structural characterization of the samples was performed by X-ray diffraction (XRD)
in a Philips X’Pert Pro diffractometer (Malvern PANanalytical, UK) using Cu Kα radia-
tion (λ = 1.54158 Å) in Bragg–Brentano configuration and by Raman spectroscopy in a
Horiba Jobin–Yvon LabRaman Hr800 confocal microscope (Horiba, Kyoto, Japan) using
a He–Cd laser (λ = 325 nm) as excitation source. The microstructure of the samples was
analyzed by TEM and HRTEM using a JEOL JEM 3000F microscope (JEOL, Tokyo, Japan)
equipped with an energy dispersive X-ray spectroscopy (EDS) detector. Compositional
mappings and EDS spectra were acquired in a Leica 440 Stereoscan SEM (Leica, Wetzlar,
Germany) equipped with a Bruker AXS 4010 detector. N2 adsorption–desorption isotherms
and Brunauer–Emmett–Teller (BET) surface areas were measured in collaboration with
the Nanyang Technological University, using a Tristar II 3020 instrument (Micrometrics
Instrument Corporation, Singapore, Singapore) at liquid nitrogen temperature. X-ray pho-
toelectron spectroscopy (XPS) analysis was carried out at the CNR Beamline for Advanced
diCHroism (BACH) of the Elettra synchrotron facility in Trieste, Italy. Photoemission
spectra were acquired with a Scienta R3000 electron energy analyzer in normal emission
geometry using 650 eV photon energy with a total energy resolution of 180 meV. Finally,
cathodoluminescence (CL) measurements were performed at room temperature in a Hi-
tachi S2500 SEM (Hitachi, Tokyo, Japan) using an Oriel Cornerstone 1/4m monochromator
and a Hamamatsu R928 photomultiplier.

3. Results and Discussion

XRD patterns from undoped and Sn doped samples are shown in Figure 2a. The
results indicate that only for the NiO and NiO3 samples, all the diffraction peaks can be
indexed with the characteristic NaCl structure of NiO (cubic structure, S.G. Fm-3m and
lattice parameters a = b = c = 4.17 Å). However, upon a nominal atomic concentration of
6 at.%, weak contributions at 26.8◦, 33.9◦ and 51.8◦ can be appreciated, increasing their
relative intensity as a function of the Sn content. These peaks can be attributed to SnO2
rutile structure (S.G. P42/mnm and lattice parameters a = b = 4.74 Å and c = 3.18 Å),
confirming the segregation of SnO2 upon a nominal atomic concentration of 6 at.%. Neither
peaks from the precursors nor from other Sn-based or Ni-based oxides are observed in the
XRD patterns.



Nanomaterials 2021, 11, 444 4 of 13Nanomaterials 2021, 11, x FOR PEER REVIEW 4 of 13 
 

 
Nanomaterials 2021, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/nanomaterials 

 
Figure 2. (a) XRD patterns from undoped and Sn doped NiO samples. XRD pattern from SnO2 is 
also included as reference. (b) Raman spectra from undoped and Sn doped NiO samples acquired 
with a UV laser (λ = 325 nm). 

The average crystallite dimensions (D) of NiO were calculated following Scherrer’s 
equation: 𝐷 =  𝐾𝜆𝐵 cos Ɵ (1)

where K is a dimensionless shape factor (0.9 in this work), λ is the X-ray wavelength 
(1.5404 Å), 𝐵 is the line broadening at half the maximum intensity and Ɵ is the Bragg an-
gle. Following Equation (1), the particle size was estimated for all of the samples, as 
shown in Table 1. 

Table 1. Structural parameters, particle size and surface area from Sn doped and undoped NiO 
samples. 

Sample Lattice Parameters a a=b=c (Å) DNiO a (nm) DNiO b (nm) Surface Area c (m2/g) 
NiO 4.178 10.6 12 39.4 
NiO3 4.181 7.9 8.1 56.8 
NiO6 4.180 7.3 7.6 342.4 

NiO10 4.183 6.9 6.6 71.7 
NiO15 4.181 6.8 6.2 71.2 
NiO30 4.167 5.7 5.4 72.6 

a Determined via XRD; b Determined via TEM; c Determined via BET. 

The shape and intensity of the diffraction maxima indicate high crystallinity and 
nanometric character of the as-grown samples. In addition, as the Sn content increases, 
the average particle size decreases, as confirmed by the broadening of the diffraction 
peaks and the particle sizes estimated following Scherrer’s equation. The ionic radius of 
Ni2+ (0.69 Å) is similar to that of Sn4+ (0.69 Å), therefore the substitution of Ni2+ sites for 
Sn4+ is more favorable in the NiO lattice. According to the XRD results, Sn substitution in 
NiO reduces the crystallite size, as indicated by the broadening of the diffraction peaks 
shown in Figure 2a. This could be related to a different kinetic process during the syn-
thesis since SnO2 and NiO exhibit different oxidation kinetics, as well as different reac-
tivities. In general, the decrease in particle size is usually attributed to the presence of 
dopants that can modify the kinetics of the synthesis of nanostructures, as reported by 
several authors. For example, Wang et al. demonstrated that Sn prevents NiO nanocrys-
tals from growing and combining into larger crystals [6]. Ponnusamy et al. reported a 

Figure 2. (a) XRD patterns from undoped and Sn doped NiO samples. XRD pattern from SnO2 is also included as reference.
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The average crystallite dimensions (D) of NiO were calculated following Scherrer’s equation:

D =
Kλ

B cos O
(1)

where K is a dimensionless shape factor (0.9 in this work), λ is the X-ray wavelength
(1.5404 Å), B is the line broadening at half the maximum intensity and O is the Bragg angle.
Following Equation (1), the particle size was estimated for all of the samples, as shown in
Table 1.

Table 1. Structural parameters, particle size and surface area from Sn doped and undoped NiO samples.

Sample
Lattice

Parameters a

a = b = c (Å)
DNiO

a (nm) DNiO
b (nm)

Surface Area c

(m2/g)

NiO 4.178 10.6 12 39.4
NiO3 4.181 7.9 8.1 56.8
NiO6 4.180 7.3 7.6 342.4
NiO10 4.183 6.9 6.6 71.7
NiO15 4.181 6.8 6.2 71.2
NiO30 4.167 5.7 5.4 72.6

a Determined via XRD; b Determined via TEM; c Determined via BET.

The shape and intensity of the diffraction maxima indicate high crystallinity and
nanometric character of the as-grown samples. In addition, as the Sn content increases, the
average particle size decreases, as confirmed by the broadening of the diffraction peaks
and the particle sizes estimated following Scherrer’s equation. The ionic radius of Ni2+

(0.69 Å) is similar to that of Sn4+ (0.69 Å), therefore the substitution of Ni2+ sites for Sn4+

is more favorable in the NiO lattice. According to the XRD results, Sn substitution in
NiO reduces the crystallite size, as indicated by the broadening of the diffraction peaks
shown in Figure 2a. This could be related to a different kinetic process during the synthesis
since SnO2 and NiO exhibit different oxidation kinetics, as well as different reactivities.
In general, the decrease in particle size is usually attributed to the presence of dopants
that can modify the kinetics of the synthesis of nanostructures, as reported by several
authors. For example, Wang et al. demonstrated that Sn prevents NiO nanocrystals from
growing and combining into larger crystals [6]. Ponnusamy et al. reported a decrease in
the particle size of NiO with Fe incorporation, due to the presence of Fe3+, which increases
the nucleation points in the NiO nanoparticles [23]. In this work, the presence of Sn in the
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NiO lattice, and its possible incorporation in different coordination environments, could
lead to a decrease in the particle size similar to those previously described, favoring the
inhibition of the growth of NiO nanostructures. The Raman spectra of both pure NiO and
Sn-doped NiO samples are shown in Figure 2b. The NiO Raman spectrum exhibits two
broad peaks around 546 and 1059 cm−1, corresponding to one-phonon mode (LO) and
two-phonon mode (2LO), respectively, of NiO [24–26]. LO mode is commonly attributed to
Ni2+-O stretching mode [27], which is expected to be weak or not observed in the Raman
signal from stoichiometric NiO. The presence of this LO mode in the Raman spectra from
the analyzed nanoparticles could be related to the presence of defects in NiO, such as Ni
vacancies [28,29] or the presence of Ni3+ [30]. The Raman spectra from Sn doped NiO
nanostructures show additional weak modes centered on 702 and 875 cm−1 corresponding
to 2TO and TO+LO optical modes in NiO [25,26], respectively, not showing Raman peaks
corresponding to SnO2 or other Sn-based compounds. However, the main difference
among these spectra is the blue-shift (higher than 20 cm−1 for LO mode) observed in the
Raman peaks from Sn doped NiO, as compared with bare NiO. It is well known that a
decrease in the particle size, similar to that observed in this work, could lead to a red-shift
in the Raman spectra due to confinement effects and relaxation of the surface [31,32], as
reported by diverse authors. However, an opposite behavior can be observed in this case
since the decrease in the particle size leads to blue-shifted Raman peaks. Hence, apart
from the low dimensions of the nanostructures, some other phenomena related to the
doping process should be considered in the analysis [31]. Actually, Varshney et al. [33]
observed a blue-shift related to the direct substitution of Ni2+ by Sn4+ and a decrease in the
lattice parameters with Sn incorporation. In our case, there is not a clear trend between
lattice parameters and Sn incorporation, therefore other factors, such as the presence of
Ni vacancies, Ni3+ or the presence of Sn in different coordination environments, should
be considered. EDS measurements shown in Supplementary Materials Figure S1 confirm
the presence of Ni, Sn and O in the samples. The atomic concentrations of all the samples,
estimated from the analysis of the corresponding EDS signal, are shown in Table S1. The
amount of Sn varies from 0 to 14.4 at.% as a function of the initial Sn concentration employed
during the synthesis. EDS mappings confirm the homogeneous distribution of Sn in the
analyzed nanopowders. Theoretical and experimental atomic Sn concentrations are similar
for samples with Sn content below 6%. However, upon this nominal concentration, a
deviation of the experimental values can be observed when compared with theoretical
ones. Hydrothermal synthesis usually requires an exhaustive control of the experimental
conditions, such as temperature, reaction time or pH. Among these, pH control is an
essential key to control the dopant concentration. Increasing pH value would lead to
an increase of Sn concentration; however, impure samples would be obtained. This is
because for pH values above 10, Sn2+ cations could suffer dismutation process, obtaining
Sn0 and Sn4+. Of course, this Sn0 could be easily oxidized to Sn2+ or Sn4+ following
thermal treatments, but at temperatures higher than 450 ◦C, SnO2 segregation is achieved
as well as increased dimensions. Taking this into account, the control of experimental
conditions allows us to obtain both Sn doped NiO nanostructures and NiO/SnO2 structures.
An increase in the Sn concentration could be achieved with higher pH values; however,
Sn doped NiO nanostructures would be more difficult to obtain. Figure S1b shows the
compositional mapping from the NiO3 sample, while the corresponding EDS spectra for
all samples are included in Figure S1c. The morphologies of the NiO nanostructures were
deeply analyzed by TEM, as shown in Figure 3. For the undoped NiO sample, spherical
nanoparticles with homogeneity in size and morphology can be observed. Averaged sizes
around 12 nm were estimated for NiO nanoparticles from the TEM analysis (Figure 3a), in
agreement with XRD results. It should be remarked that Sn incorporation promotes the
formation of some elongated nanostructures in the form of nanosticks in the Sn doped
samples (marked with arrows in Figure 3b,c), not observed in the undoped NiO. These
elongated nanostructures exhibit lengths of tens of nm with widths of few nm. The amount
and length of these nanosticks increase with the Sn content, as seen in Figure 3d,e. In the
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case of the NiO30 sample, these elongated structures reach 100 nm in length. The formation
of nanoparticles with dimensions lower than for undoped NiO can be also observed in
the Sn doped samples, because these nanoparticles are the predominant morphology for
all samples. The decrease in particle size with Sn incorporation can be also appreciated
in the TEM micrographs, in agreement with XRD results. In order to achieve a deeper
understanding of the relationship between the Sn content and the variable morphology
observed by TEM, HRTEM analysis was performed for the NiO sample, as a reference, and
NiO30 samples, where the dimensions of the nanosticks allow us to perform a detailed
study of their microstructure.
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Figure 3. TEM images from (a) undoped NiO sample, (b) NiO3 sample, (c) NiO6 sample, (d) NiO15
sample and (e) NiO30 sample

Figure 4 shows the HRTEM analysis performed for the NiO sample. Figure 4a shows
an isolated nanoparticle with dimensions around 10 nm, where interplanar distances of
2.12 Å can be measured, and corresponding to (200) plane of cubic NiO. The selected area
electron diffraction (SAED) pattern included in the inset confirms the rock-salt structure of
the analyzed NiO nanoparticle. Figure 4b shows another nanoparticle with dimensions
around 7 nm, where the corresponding Inverse Fast Fourier Transform (I-FFT)(shown in
the inset), shows the primitive cell of NiO with cubic structure. The NiO30 sample was
analyzed following the same procedure. Figure 5 shows the HRTEM images from the NiO30
sample, with the highest concentration of Sn, where two different morphologies in form
of nanoparticles and nanosticks were observed in the corresponding low magnification
TEM images shown in Figure 3. Figure 5a shows a nanostick with dimensions greater
than 20 nm in length and 2 nm in width. Interplanar distances of 2.62 Å can be measured
in this case, corresponding to (101) plane of SnO2 with rutile structure. Figure 5b shows
an HRTEM image from another nanostick with atomic resolution and the corresponding
I-FFT (Figure 5c) and SAED pattern (Figure 5d), confirming that nanosticks are formed
mainly by SnO2 with rutile structure. However, some of the nanosticks show defective
regions and local interplanar distances slightly distorted from rutile SnO2. In addition,
although in a lower concentration SnO2 nanoparticles can be also observed in this sample,
as shown in Figure 5e, where the SAED pattern included shows the diffraction points
corresponding to (101) and (110) planes of SnO2. Figure 5f shows a NiO nanoparticle with
the respective SAED pattern shown in the insert, where (200) planes corresponding to
NiO cubic structure can be indexed. These results suggest that the NiO30 sample contains
two main morphologies: NiO nanoparticles and SnO2 nanosticks, although some SnO2
nanoparticles can also be observed in a low concentration. In order to confirm these results,
local EDS spectra were acquired in different points of the NiO30 nanopowders.
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Figure 5. HRTEM images from the NiO30 sample. (a) Nanostick with interplanar distances corre-
sponding to SnO2. (b) NiO30 nanostick with atomic resolution and their corresponding (c) I-FFT and
(d) SAED pattern, confirming the SnO2 rutile structure. (e) SnO2 nanoparticle with the corresponding
SAED pattern. (f) NiO nanoparticle with the corresponding SAED pattern.

Table S2 shows the atomic percent of Ni, Sn and O acquired in regions with high
amount of nanoparticles or nanosticks. These values confirm that the regions with nanopar-
ticles are Ni-rich while the regions with nanosticks are Sn-rich, therefore the formation of
Ni doped SnO2 nanosticks and Sn doped NiO nanoparticles should also be considered in
this work. The HRTEM analysis from the NiO15 sample shows similar features to those
described for NiO30, as shown in Figure S2. In this case, two different nanosticks were
analyzed showing interplanar distances around 2.6 Å, corresponding to (101) plane of
rutile–SnO2 structure. Considering both XRD results and HRTEM analysis, the formation
of nanosticks could also partially explain the further decrease in the particle size of NiO
previously described, since the nanosticks formation does not contribute to the growth of
larger NiO nanocrystals. Based on our previous work, the synthesis of SnO2 following a
similar hydrothermal method favors the formation of homogeneous rounded nanoparti-
cles [22]. In this work, the presence of both Ni and Sn favors the formation of nanosticks;
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therefore, Ni and Sn could act as catalysts promoting the formation of elongated SnO2 and
Ni doped SnO2 nanosticks.

The surface area of the undoped and Sn doped samples were obtained using the
nitrogen adsorption–desorption isotherms, showing the corresponding curves in Figure 6.
It can be seen that all of the samples display a characteristic hysteresis loop indicating
the existence of porous structures. The BET surface areas of all the samples are listed in
Table 1. It is noticeable that in a range of nominal atomic concentrations between 0 < x ≤ 6,
the surface area gradually increases, achieving remarkable values of 342 m2/g for the
NiO6 sample, which is consistent with the decrease of particle size observed by XRD,
which contributes to the increase of the surface area. However, upon a nominal atomic
concentration of 6%, a drastic decrease in the surface area can be observed. It should
be noted that upon this concentration, the segregation of SnO2 was observed, providing
the formation of nanosticks in a larger concentration and with higher dimensions. This
fact could lead to a decrease of the number of free positions where the adsorbate can be
adsorbed, thereby decreasing the value of the surface area. The most remarkable feature of
these results is the high surface area observed for the NiO6 sample, the one in which SnO2
starts to segregate. Different values can be found in the literature for the surface area of Sn
doped NiO, based on the particle size or morphology. For example, Wang et al. [6] reported
values around 108 m2/g for Sn-doped three-dimensionally ordered macroporous NiO with
a particle size similar to that observed for the NiO6 sample. Gu et al. [34] reported different
values of surface area as a function of the Sn doped NiO morphology: 61.5 m2/g for Sn
doped NiO microspheres and 38.1 m2/g for microcubes. Kim et al. [14] reported a value
of 87.9 m2/g for Sn doped NiO microspheres. In this work, the value of the surface area
for the NiO6 sample is clearly higher than previously reported values, which makes this
material a promising candidate for applications where surface area plays a key role, such
as gas sensors, photocatalysis or supercapacitors. XRD and EDS results point to a solubility
limit of Sn in NiO below 4.7 at.%, as SnO2 starts to segregate in the NiO6 sample, which
also exhibits high surface area values and an initiated growth on nanosticks, confirmed by
BET and TEM measurements.
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Hence, in order to achieve a deeper understanding of the Sn doping NiO process,
surface sensitive XPS measurements were performed for the samples just below (NiO3)
and over (NiO6), the solubility limit of Sn in NiO. XPS spectra of the NiO sample were
also acquired as a reference. The XPS spectra were calibrated using the C1s signal from
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adventitious carbon and deconvolutions, which were carried out using Voigt functions after
an appropriate Shirley background correction. Ni 3p, O 1s, Sn 3d core levels and valence
band region were acquired, as shown in Figure 7. Figure 7a shows the XPS spectra from Ni
3p core levels, where four bands can be observed. The low energy bands at 66.4 and 68.1 eV
correspond to Ni 3p3/2 and Ni 3p1/2, respectively, due to Ni2+ in NiO [35,36], whereas
the high energy bands at 70.1 and 72.4 eV are related to Ni 3p3/2 and Ni 3p1/2 from
Ni3+. These results confirm the presence of a variable concentration of Ni3+ in the probed
samples, confirming the nonstoichiometry found in the Raman spectra of the samples.
Nonstoichiometric NiO contains Ni vacancies, and some Ni2+ is oxidized to Ni3+ in order
to maintain charge neutrality [28,30]. The Ni3+/Ni2+ ratio, estimated from XPS spectra,
indicates values around 0.42 for the NiO and NiO3 samples and 0.22 for the NiO6 sample,
which indicates a lower presence of Ni3+ as the concentration of Sn rises.
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Figure 7b shows XPS spectra from O 1s core level. It should be noted that the con-
tribution around 529 eV observed with a higher relative intensity for the NiO and NiO3
samples corresponds to C 1s from the sample holder, therefore this signal will not be
considered. The spectra from all the samples are dominated by a contribution centered
at 531.2 eV, which corresponds to lattice O2− in NiO [1,36]. Two contributions at higher
energies (532.4 and 543.3 eV) can be distinguished for all the samples, increasing their
relative intensity for the NiO6 sample with higher Sn content. These two contributions are
usually attributed to adsorbed oxygen species and defect oxygen [1,6,36], respectively.

Sn 3d core levels from NiO3 and NiO6 are shown in Figure 7c, which confirm the
presence of Sn in these samples. For the NiO3 sample, the Sn 3d spectrum is formed
by two peaks centered at 486.5 and 495 eV, corresponding to Sn 3d5/2 and Sn 3d3/2,
respectively [36,37]. In the case of the NiO6 sample, two additional contributions with
lower relative intensity centered at 488 and 496.5 eV can also be observed. Therefore, it
can be confirmed that the lower energy contributions correspond to Sn2+ while the higher
energy contributions, observed only for the NiO6 sample, correspond to Sn4+. The presence
of Sn with different oxidation states leads to changes in the Ni3+/Ni2+ ratio, as previously
discussed. It is well known that substitutional Sn4+ usually promotes the formation of
defects (oxygen defects or Ni vacancies) in order to maintain the charge neutrality of the
system. Two different charge compensation mechanisms [6,38] (electronic compensation or
ionic compensation) have been previously reported for doped NiO. On the one hand, when
Ni2+ is replaced by isovalent Sn2+, Ni vacancies should not be altered. This fact can be
confirmed by considering the similar values estimated for Ni3+/Ni2+ ratios for the NiO and
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NiO3 samples. However, for the NiO6 sample, where Sn4+ was also detected, a decrease
in the Ni3+/Ni2+ ratio can be observed, leading to a lower concentration of Ni vacancies.
It should be noted that for this sample, an increase in the relative intensity of adsorbed
oxygen species and defective oxygen was observed, which could alter the concentration of
Ni vacancies. Therefore, a combination of electronic and ionic compensation mechanisms
should be considered in this work. Valence band region was also analysed, as shown
in Figure 7d. The XPS spectra from the NiO and NiO3 samples are dominated by a
contribution around 2 eV attributed to Ni 3d states, [39] whereas the spectrum from the
NiO6 sample is dominated by a contribution around 4 eV related to O 2p states [39]. These
results agree with the values of Ni3+/Ni2+ ratios previously estimated, and with the relative
intensity of oxygen species shown in Figure 7b.

In addition, the difference between the Fermi level and the maximum of the valence
band (EF–EVBM) was also estimated with values around 1.5, 1.1 and 0.6 eV for the NiO,
NiO3 and NiO6 samples, respectively. These results indicate a higher p-type character for
the Sn doped samples. The combination of XRD, BET and XPS results reveal a decrease
in the particle size, an increase of the surface area and a higher p-type character with Sn
incorporation, confirming that Sn doping can be a successful tool for the improvement of
several physical and chemical properties.

Finally, in order to study the influence of Sn doping and/or SnO2 segregation in the
luminescent properties of NiO, CL spectra were acquired for the samples with the lowest
(NiO) and highest (NiO30) amount of Sn, and for the NiO6 sample, which demonstrated a
particular behavior. Figure 8a–c shows CL spectra for NiO, NiO6 and NiO30, respectively,
acquired at room temperature. For all the samples, CL signal is dominated by two different
contributions in the near IR region and UV, centered at 1.5 and 3.1 eV, respectively. The
contribution centered at 1.5 eV, which relative intensity decreases as a function of Sn content,
is related to Ni2+ defect states [40], as previously reported. The decrease in the relative
intensity of these near-IR emissions could be related with the lower Ni2+ defect states
owing to the substitution of Ni2+ by Sn4+, as confirmed by XRD and XPS measurements.
The contribution centered at 3.1 eV shows a lower intensity and is usually attributed to
self-trapped d-d charge transfer excitons formed by coupled Jahn–Teller Ni2+ and Ni3+

centers [41–43], although their origin is still unclear. The presence of cations with different
oxidation states, as confirmed by XPS results, directly affect the defects structure, and
therefore to the electronic and optical properties.
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4. Conclusions

In this work, positive aspects regarding to the potential applicability of the Sn doped
NiO nanostructures in supercapacitors, sensors or photocatalysis are highlighted. In
summary, a series of undoped and Sn doped NiO nanostructures were synthesized by an
optimized hydrothermal method. The XRD results indicate that upon a 4.7 at.% of Sn, the
segregation of SnO2 in NiO is promoted. TEM and HRTEM analysis confirm that Sn and
Ni can act as catalysts, leading to the growth of SnO2 nanosticks with dimensions of tens of
nm length and a few nm width. The size of these nanosticks increases as the amount of Sn
rises in the samples. Both NiO and SnO2 nanostructures are formed during the synthesis,
leading to p-n heterojunctions. High values of surface area are estimated, mainly for the
NiO6 sample (342.4 m2/g). Sn doping is confirmed for the NiO nanoparticles, while SnO2
nanosticks could also be Ni doped. The two possible charge compensations mechanisms
induced by the presence of Sn with different oxidation states provide a new strategy to
increase the p-type character of NiO. Finally, the defects structure of NiO (mainly Ni
vacancies) play a key role in the luminescence properties as observed by CL measurements.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-4
991/11/2/444/s1, Figure S1: SEM image and compositional mappings from NiO3 samples, and
EDS spectra from all analyzed samples. Figure S2: HRTEM analysis from NiO15 sample. Table S1:
Atomic concentration of O, Ni and Sn from undoped and Sn doped samples acquired by EDS. Table
S2: Atomic percent of O, Ni and Sn acquired from NiO30 sample.
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