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The role and nature of mitochondrial dysfunction in diabetic kidney disease (DKD) has

been extensively studied. Yet, the molecular drivers of mitochondrial remodeling in

DKD are poorly understood. Diabetic kidney cells exhibit a cascade of mitochondrial

dysfunction ranging from changes in mitochondrial morphology to significant alterations

in mitochondrial biogenesis, biosynthetic, bioenergetics and production of reactive

oxygen species (ROS). How these changes individually or in aggregate contribute

to progression of DKD remain to be fully elucidated. Nevertheless, because of the

remarkable progress in our basic understanding of the role of mitochondrial biology and

its dysfunction in DKD, there is great excitement on future targeted therapies based on

improving mitochondrial function in DKD. This review will highlight the latest advances in

understanding the nature of mitochondria dysfunction and its role in progression of DKD,

and the development of mitochondrial targets that could be potentially used to prevent

its progression.

Keywords: diabetic kidney disease, mitochondria, mitochondrial dynamics, oxidative phosphorylation,

mitochondrial respiratory complexes, bioenergetics

INTRODUCTION

The kidney contains a great diversity of cell types in order to perform all of its endocrine and
exocrine functions. Importantly, several different cell types in the kidney must act harmoniously
in diverse microenvironments for the kidneys to function properly. An early indication as to the
importance of mitochondria to the kidney function derives not only from their relative abundance
in the kidney, but also the relative distribution of mitochondria specific to the needs and function
of the cell type of the kidney with mitochondria-rich cells predominantly distributed in highly
metabolically active proximal tubular cells, while podocytes and tubular epithelial cells of thin limb
of Henle and collecting ducts exhibit comparatively a lower number of mitochondria (1–5).

Mitochondria are organelles with an endosymbiotic origin critical to proper function of
eukaryotic cells. Central to the diverse functions of mitochondria are their bioenergetics properties
serving as “powerhouses” of the cell generating adenosine triphosphate (ATP), as well as playing key
roles in producing intermediates metabolites, reactive oxygen species (ROS) production, calcium
homeostasis and apoptosis (Figure 1). As the most important physiological system for producing
chemical energy stored as ATP from glucose, it is not surprising that mitochondria gained early
attention as a possible target of diabetes and its micro/macrovascular complications.
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FIGURE 1 | Multifaceted functions of mitochondrial function. Mitochondria are

known to generate ATP and metabolites critical for signal transduction, as well

as playing key roles in inflammation, calcium homeostasis, redox homeostasis

and cell death.

The time course of mitochondrial dysfunction in the kidney
has been documented in several experimental models of diabetic
kidney disease (DKD) (6, 7). For instance, it was found that
mitochondrial changes in size and function preceded histological
and biochemical changes associated with kidney damage and
these mitochondrial changes evolved with DKD progression (6).
Indeed, altered mitochondrial morphology, bioenergetics and
increased mitochondrial transition pore opening and ROS were
all apparent prior to the presence of albuminuria (6, 8–12).
These results suggest that mitochondrial dysfunction could be
contributing to diabetic associated kidney damage.

Direct evidence that mitochondrial dysfunction can be a
cause of chronic kidney disease (CKD) and DKD can also
be gleaned by evaluating renal function in the presence
of known mutations of mitochondrial associated proteins.
The evidence is strengthened by several studies evaluating
mutations in mitochondrial associated proteins that led to
kidney dysfunction (13–21). Several independent mutations,
relevant to mitochondrial function, result in kidney dysfunction,
including prenyl diphosphate synthase subunit 2 (PDSS2) (22–
24), mitochondrial inner membrane protein (Mpv17) (25),
required for meiotic nuclear division 1 homology (RMND1) (26–
30), ATP-binding cassette A1 (ABCA1) (12), apoptosis-inducing
factor 1 (AIF1) (31), and several mitochondrial tRNAs (32–
36). Podocyte-specific knockout of pdss2 further suggested the
possible cell type specific consequences of some of these genes
since it resulted in podocyte-associate renal disease. However,
kidney damage was not apparent with conditional knockout of
pdss2 in tubules, monocytes, or hepatocytes (22, 23). Podocyte

knockout of ABCA1 was also shown to predispose the mice to
DKD (12). Altogether, the evidence suggests that mitochondrial
dysfunction can be a driving and primary cause of CKD
and DKD, potentially playing an intrinsic and early role in
disease progression. However, despite much interest, the precise
nature of the changes to mitochondria and its physiological or
pathophysiological significance remains elusive in DKD.

Mitochondrial Function and DKD
Progression
Due to the diverse pathways ascribed to mitochondria, there
is not a single means to determine their function nor single
biochemical assay to define their “health.” However, due to
their classically assigned and pivotal role in energy production,
many investigators have evaluated alterations in mitochondrial
respiratory complexes, oxygen consumption rates, and/or ATP
production as “proxy” for mitochondrial dysfunction with DKD
progression. The oxygen consumption rate (OCR)measurements
in the early phase of DKD (1–4 weeks after diabetic induction) in
animal models indicated that metabolic activity was increased in
renal cortex and proximal tubular cells (37–40), but subsequently
declined with progression of albuminuria in experimental models
of DKD (41). This would seem to be consistent with reports
of increased respiratory complex activities in early phases
of DKD (42, 43). However, other studies report contrasting
results indicating decreased mitochondrial respiratory complex
activities likely representing later stages of DKD (44–48).
Similarly, while ATP levels within the kidney cortex have
frequently been found unchanged during progression of DKD
(49, 50), significantly lower levels of ATP have also been reported
in other studies (6, 51). Our interpretation of these studies
is that these results may indicate a compensatory increase in
mitochondrial respiration early in DKD which is lost during
progression of DKD.

The observations on mitochondrial function during DKD
progression focusing mainly on tubular cells seem to be in
contrast to the glomerular region of kidney cortex. Since
glomerular cells are not as mitochondrial rich as tubules, the
reduction in mitochondrial densities may allow for enhanced
metabolic plasticity in these cells. Indeed, a number of studies
seem to indicate that glomerulus and specifically podocytes have
decreased OCR or metabolic activity from early onset of DKD
which persist with progression of DKD (9, 52–54). In support
of these observations, other reports suggest that mitochondrial
respiratory complex activity is also decreased early on with DKD
(45, 55, 56). The effects on ATP levels, however, are less clear.
While several reports seem to indicate that ATP in podocytes
is decreased (6, 9, 52), others have reported no major or little
change (49, 50). These paradoxical results are not unexpected
since podocytes have been reported to readily utilize glycolysis,
possibly exhibiting a more flexible approach to ATP production
(3). The inherent tissue differences in mitochondrial number
and function highlights some of the limitations in our ability to
complete a wholistic picture.

While mitochondria have been clearly demonstrated to
be important players in the development and progression
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FIGURE 2 | Mitochondrial dynamic. Mitochondria continuously change their size and shape by two opposing processes: mitochondrial fission and fusion. During the

mitochondrial fission, mitochondria become fragmented in response to cell stress whereas they form an elongated shape increasing ATP production to adjust to

cellular stresses. INSP3R, Inositol trisphosphate receptor; DRP1, dynamin-related protein 1; OPA1, optic atrophy 1; VDAC, voltage-dependent anion channel;

MID49/51, mitochondrial dynamics proteins of 49 and 51kD; MFN1/2, mitofusin proteins 1 and 2; GRP75, glucose-regulated protein 75.

of DKD, the intricacies and nature of their dysfunction is
not fully understood (57, 58). We and others have reported
enhanced mitochondrial fission, increased mitochondrial ROS,
and decreased oxidative phosphorylation (OXPHOS) in mouse
models of DKD, whereas others have reported conflicting results.
It is unclear if differing reports are due to different means
of diabetic induction in animal models, the renal cell type
examined, species-specific differences, or time of observation in
the disease process. It will be an important future goal to reach a
consensus on these questions. We will further highlight some of
the current knowledge and possible gaps in defining the nature of
mitochondrial dysfunction in DKD.

Role of Mitochondrial Dynamics
Mitochondrial dynamics are the processes by which
mitochondrial length, shape, and size are determined (59–61).
Mitochondria have variable morphologies, even within the same
cell, depending on the cell type, cellular needs and signaling cues.
In its most basic and rudimentary understanding, mitochondrial
morphology appears to be regulated by an ever changing and
antagonistic intracellular balance between mitochondrial fission
factors and mitochondrial fusion factors (62).

During mitochondrial fission, a mitochondrion is constricted
to effectively divide a larger parent mitochondrion into smaller
daughter organelles (59, 60). Mitochondrial fusion is the opposite
process whereby smaller mitochondria have the outer and
inner membranes joined to create a larger mitochondrion
(59, 60). The balance between these factors of opposing
action ultimately imparts characteristic size and shape of the

mitochondria in a tissue-specific manner (Figure 2). Metabolic
demands and signaling cues in a cell’s microenvironment can
push the balance toward mitochondrial fission to generate
more fragmented and spherical mitochondria, or conversely
toward mitochondrial fusion generating a more tubular and
elongatedmorphology. Since this fluid process provides cells with
rapidly responding metabolic flexibility, it is not surprising to
realize that mitochondrial dynamics is highly regulated through
a spatio-temporally precise cooperation among mitochondria,
cytoskeleton, endoplasmic reticulum, and resident and recruited
mitochondrial-associated proteins (11, 63–67).

While mitochondrial fission can be viewed as a process of
sequential discrete steps, the order and independence of each
step remains to be fully understood. An early step is marking
of the site where the mitochondria will divide. The current
model suggests that the endoplasmic reticulum (ER) initially
marks fission furrows in the mitochondria where mitochondrial
fission will ultimately occur (65, 66, 68). Increases in cytoplasmic
calcium drive actin assembly around the ER protein inverted
formin 2 (INF2) and the actin polymerization is believed to
provide some force for constriction (64, 67). The association
of INF2 with mitochondrial localized Spire 1C, links the
mitochondrial, actin polymerization event between the two
organelles (mitochondria and ER) (69) and will enhance calcium
transfer from ER to mitochondria via mitochondrial calcium
uniporter 1 (MCU1) initiating constriction of the mitochondrial
inner membrane prior to outer membrane constriction in a
process which requires activation of the electron transport
complexes and the mitochondrial metalloendopeptidase, OMA1
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(70). Mitochondrial fission will further proceed by recruitment
of the cytoplasmic fission factor, dynamin-related protein 1
(DRP1) to the outer mitochondrial membrane (71–74). DRP1
is recruited to the mitochondrial outer membrane where it
oligomerizes to form a ring around the mitochondria at
the fission furrow. DRP1 is anchored to the mitochondria
by interactions with its mitochondrial receptors including
mitochondrial fission 1 (FIS1), mitochondrial fission factor
(MFF), and mitochondrial dynamics proteins of 49 and
51 kD (MiD49/MiD51). Constriction of the mitochondrial
membrane utilizes DRP1-driven GTP-hydrolysis for energy to
drive mitochondrial fission.

DRP1 translocation to the mitochondria is further
regulated by several posttranslational modifications including
phosphorylation (52, 75–80), O-GlcNAcetylation (81),
sumoylation (82–84), and S-nitrosylation (85–87). DRP1
activation is also enhanced by binding with actin (88), actin-
related proteins (11, 89), AKAP1 (80), cardiolipin, and palmitic
acid (90–92).

Mitochondrial fusion, on the other hand, is mediated by
another dynamin related protein, optic atrophy 1 (OPA1), at the
mitochondrial inner membrane and mitofusin proteins 1 and 2
(MFN1 and 2) at the outer mitochondrial membrane. MFN1/2
can interact both as homo- and hetero-dimers to mediate fusion
of the outer mitochondrial membrane. OPA1 appears to be
regulated in part by post-translational changes driven by the
mitochondrial membrane potential and interactions with the
mitochondrial OMA1 zinc metallopeptidase. In addition, to its
function in mitochondrial fusion, OPA1 also plays a key role in
maintaining mitochondrial cristae morphology and respiratory
ETC function by sequestering cytochrome c within the cristae.
The importance of these mitochondrial dynamic protein factors
to life is evidenced by findings that knockout of several member
proteins is embryologically lethal (93–96).

Enhanced mitochondrial fission is reported in multiple cell
types of the kidney including tubules and podocytes in animal
models of DKD (1, 11, 52, 97–103). In support of these preclinical
studies, clinical evidence have revealed increased fragmented
mitochondria in several cell types within the kidney cortex of
diabetic patients as well (99, 104, 105). Our studies in the db/db
model of DKD identified enhanced mitochondrial fission and
increased expression of DRP1 in both glomerular endothelial
cells and podocytes (8). Importantly, while podocyte-specific
depletion of DRP1 had no effect on mitochondrial function,
DRP1 deficiency specifically in podocytes in diabetic db/db
mice improved DKD progression by improving mitochondrial
function suggesting a role for cellular stress to unravel the
effect of DRP1 on mitochondrial function (52). The tendency
toward mitochondrially fragmented morphology has been tied
most strongly to several proteins regulatingmitochondrial fission
(11, 52, 74, 80, 100, 106, 107). Other studies have confirmed these
initial observations in other models of DKD. For example, Myo-
inositol oxygenase (MIOX) expression was shown to be increased
in kidneys of db/db mice and streptozotocin (STZ)-treated
diabetic mice contributing to progression of DKD, and linked
to enhanced DRP1 and FIS1 expression with decreased MFN2
expression (98, 108). The Src homologous-collagen homolog

adaptor protein, p66Shc, expression and phosphorylation were
also increased in kidneys of both db/db mice and STZ-treated
diabetic mice, and were found to correlate with increased DRP1
and FIS1 expression and decreased MFN1 expression (99, 109).
Knockdown of Fis1 prevented mitochondrial fragmentation,
restored MFN1 expression, and reduced p66Src binding to FIS1
under high glucose conditions (99). Dual-specificity protein
phosphatase−1 (DUSP1) was shown to be decreased and JNK
pathway activation increased in the kidneys of STZ diabetic
mice and linked to increased DRP1 and MFF expression with
decreased MFN1 and OPA1 expression (101). Finally, the
expression of hypoxia inducible factor 1 (HIF1) was conditionally
deleted in proximal tubular cells of STZ treated diabetic mice
showed enhanced DKD progression with increased expression of
DRP1 and FIS1 with decreased MFN1 expression. In vitro it was
suggested that HIF1 modulates these changes by its target heme
oxygenase-1 (HO-1) (110).

Post-translational modifications of DRP1 and specifically its
phosphorylation also seem to play a critical role in pathogenesis
of DKD. We and others have found that DRP1 phosphorylation
at the human residue S637 and equivalent mouse residue
serine 600 (S600 in mouse DRP1 isoform b), hereafter referred
to as S600, enhances DRP1 activity and translocation to the
mitochondria to mediate enhanced mitochondrial fragmentation
(8). We have shown that Rho-associated, coiled-coil containing
protein kinase 1 (ROCK1) activation in the diabetic kidney
phosphorylates DRP1 at S600 both in vivo and in vitro
triggering mitochondrial fragmentation (8). Recently, it was
shown that S600 of DRP1 in renal tubules maybe phosphorylated
by the compartment directing, A kinase (PRKA) anchor
protein 1 (AKAP1), localizing protein kinase A (PKA) to the
outer mitochondrial membrane and triggering mitochondrial
fragmentation in a STZ model of type-1 diabetes (80). We also
provided in vivo evidence indicating that knock-in diabetic db/db
mice mutating S600 in DRP1 to the non-phosphorylable alanine
at position 600 (S600A) exhibited marked improvement in
DKD progression and protected mitochondrial morphology and
bioenergetics of podocytes. Mechanistically, it was shown that
phosphorylation of DRP1 at S600 enhanced its interaction with
both MFF and the actin related protein 2/3 complex (ARP2/3)
enhancing mitochondrial localization of DRP1 and triggering
mitochondrial fission (11). Similarly, it has been reported that
phosphorylated DRP1was increased and the expression ofMFN1
markedly decreased in proximal tubular cells isolated from
db/db mice, while treatment of diabetic mice with a β2-agonist,
formoterol, decreased phosphorylated DRP1 levels and restores
MFN1 levels (51).

While there is a growing body of evidence indicating that
mitochondrial fission is a key morphological indicator of kidney
damage in DKD, hyperfused and large mitochondria may
also have a role in DKD progression (111). Hyper-elongated
mitochondria may be an indicator of cellular senescence
and associated with mitochondrial DNA damage, loss of
mitochondrial membrane potential, and enhanced ROS as
well (112–115).

Overall, the evidence seems to indicate that renal damage
in DKD is associated with a shift in mitochondrial dynamics
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toward enhanced fission. The evidence is clear that DRP1 lies at
the center of this dynamic and has been found to be increased
and/or modified in multiple kidney cell types. These changes
are frequently found in conjunction with increased expression
of fission proteins such as FIS1 and MFF and decreased
expression of MFN1. The functional consequences of tipping
the mitochondrial dynamic balance toward fission seem to share
deleterious end points such as enhanced ROS contributing to
DKD progression.

Mitochondrial Bioenergetics and Oxidative
Stress
Cellular ATP is maintained through two interconnected
metabolic pathways, glycolysis and oxidative phosphorylation
(OXPHOS). During glycolysis, glucose is transported into the
cell cytoplasm and converted into 2 molecules of pyruvate to
generate 2 ATP molecules. In the absence of oxygen, glycolysis
will anaerobically ferment the pyruvate to lactate generating 2
NADH in the cytoplasm. However, in the presence of oxygen,
pyruvate will be decarboxylated into acetyl coenzyme A (AcCoA)
inside mitochondrial matrix and enter the tricarboxylic acid
(TCA) cycle. The TCA cycle is an enzymatically controlled series
of oxidation steps culminating in production of CO2 and 8
NADH, 2 FADH2, and 2 ATP molecules. Ultimately OXPHOS
can harvest 30–36 ATP from the entry of the NADH and FADH2

per glucose depending upon the amount of proton leak.
OXPHOS is comprised of 4 respiratory complexes (I-IV)

within the inner mitochondrial membrane which are collectively
referred to as the electron transport chain (ETC) in which a
series of redox reactions are converted into a proton motive force
by pumping protons into the mitochondrial intermembrane
space (Figure 3). Complex I accepts electrons from NADH
while complex II accepts electrons from FADH2 and both
transfer the electron to coenzyme Q (CoQ). Complex III in
conjunction with cytochrome c can accept these electrons and
pass them to complex IV with oxygen as the terminal electron
acceptor. Complex V or ATP synthase allows passage of protons
back to the matrix linked to generation of ATP. Electron
escape during ETC reactions is capable of generating ROS
which under physiological conditions are both quenched by
endogenous antioxidant mechanisms and utilized as important
cellular signaling molecules. It has been suggested that increased
ROS generation and decreased ROS quenching result in oxidative
damage to cellular components and mitochondria capable
of resulting in cell death. This apparent paradox may exist
with low levels of ROS serving as survival signaling during
conditions of stress while once reaching a threshold become
damaging to the cell and synergistically contribute to enhanced
mitochondrial dysfunction.

Superoxide production during ETC transport was first
reported in 1966 (116), and has been an area of interest ever since.
Complex I (117–120) and complex III (118, 121–124) are believed
to be the principle sites of mitochondrial ROS generation during
ETC transport, of which complex I is believed to produce the
majority of mitochondrial ROS (122, 125–127). Complex III can
produce both intermembranous and matrix superoxide during

FIGURE 3 | Oxidative phosphorylation. Cellular energy in the form of ATP is

mainly generated in mitochondria by the oxidative phosphorylation (OXPHOS)

process, in which electrons on the inner-membrane of the mitochondria are

passed through a series of mitochondrial complexes (Complexes I-V) in redox

reactions. Energy released in these reactions is then coupled to ATP

generation. Increase in intracellular levels of NADH and FADH2 drives oxidative

phosphorylation, which leads to increase of oxygen consumption and ATP

production by ATP synthesis. For more information, refer to the main text.

ROS, reactive oxygen species; TCA, tricarboxylic acid; I/II/III/IV/V,

mitochondrial respiratory complex I/II/III/IV/V; NADH, reduced nicotinamide

adenine dinucleotide; NAD, nicotinamide adenine dinucleotide; FADH2,

reduced flavin adenine dinucleotide; FAD, flavin adenine dinucleotide; FMN,

flavin mononucleotide; CoQ, coenzyme Q; Cyt C, cytochrome C.

transport of electrons through the quinol (Q)-cycle depending
on the mitochondrial membrane potential and oxidation state
of cytochrome c (122, 123). Complex I can produce superoxide
by two distinguishable mechanisms. When the NADH/NAD+

ratio is high and respiratory chain activity is inhibited, the matrix
facing flavinmononucleotide (FMN) site can produce superoxide
(119, 128–130). Alternatively, superoxide can be generated when
mitochondrial potential drives reverse electron transport at
complex I. Reverse transport occurs when the mitochondrial
potential is high and CoQ is reduced forcing the reduction
of NAD to NADH at the flavin mononucleotide (FMN) site
(121, 131–133). In DKD, it has been demonstrated that both
complex I (134) and complex III (135) can generate superoxide
and increased mitochondrial ROS in the kidney (136–138).
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Transgenic expression of superoxide dismutase or thioredoxin
protected the kidney in mouse models of DKD (139, 140).
However, not all antioxidants were equally effective as transgenic
glutathione peroxidase-1 expression in STZ-treated mice did not
have renal protection (141).

Substantial evidence has accumulated in patients and
animal models of DKD indicating that mitochondrial ROS is
significantly increased in the kidney and generated the free
radical theory of diabetic microvascular complications (142–
144). The “Unifying Hypothesis” suggests that chronically
driven glucose over production of mitochondrial ROS at the
mitochondria leads to cellular and eventual end kidney failure.
Increasedmitochondrial ROS production has been demonstrated
both in vitro and in vivo in multiple mouse models of DKD
(39, 41, 56, 100, 109, 145–148). However, an important gap in
our current understanding of the role of mitochondrial ROS
in DKD pathogenesis is to identify the source(s) of enhanced
mitochondrial ROS in DKD. The increased mitochondrial ROS
production was initially proposed has been proposed to be
linked to mitochondrial dynamics remodeling and biogenesis
(149). This suggestion was supported experimentally by some
recent studies indicating that overexpression of DRP1 or
MFF, as well as knockdown of MFN1/2 together or alone
in cultured cells, lead to mitochondrial fragmentation and
increased mitochondrial ROS (149–154). Increased expression
of p66Shc, NR4A1, ROCK1/DRP1, and HIF1 (hypoxia inducible
factor 1) in DKD also caused fragmented mitochondria and
increased mitochondrial ROS and apoptosis (8, 98, 99, 101,
110, 155). Decreased expression of DUSP1, MIOX, or PGC1α
in the DKD were similarly reported to increase mitochondrial
ROS and apoptosis (98, 101, 145). Increased production of
mitochondrial ROS appears to be a central effector of cellular
damage, but is inherently difficult to measure mitochondrial ROS
in vivo due to their multiple species and frequently very short
biological half-lives. Indeed, a central challenge in addressing
the role of redox biology in DKD progression is to accurately
measure mitochondrial ROS. Importantly, studies addressing
mitochondrial ROS have resulted in conflicting interpretations
mainly because of variations in the detection methods employed
with a wide range of experimental approaches, including the
use of fluorescent indicators of ROS, electron paramagnetic
resonance (EPR), spectrophotometry, and high-performance
liquid chromatography (HPLC); each method with its own
limitations and advantages and generally specific to the ROS
molecule attempting to be measured, cross reactivity, cellular
permeability and localization.

We have recently used a transgenic, redox-sensitive GFP
based biosensor specifically expressed in the mitochondrial
matrix to determine mitochondrial generated ROS in a db/db
mouse model in vivo (56). Kidney from transgenic control
and diabetic mice were examined by 2-photon microscopy
followed by ratio-metric determination of the redox state of
the biosensor. Increased mitochondrial ROS in the diabetic
kidneys was found which strongly implicated complex I as a
key generator as the biosensor was matrix localized and the
increase in ROS was prevented by a genetic bypass of complex
I. This report and others have utilized mitochondrial targeted

antioxidants such as mitoTEMPO, elamipretide, and others
to demonstrated reduced mitochondrial ROS correlating with
improved histological features of DKD in mouse models (12, 56,
156, 157).

Evidence determining mitochondrial ROS in the kidney of
diabetic mice has also been obtained using dihydroethidium
(DHE) as the redox sensor (45). Results in these mice
were in contrast to the previous studies describing decreased
mitochondrial ROS in the diabetic kidney. However, both
studies were in agreement in regards to decreased activity of
mitochondrial respiratory chain activity and found evidence of
oxidative stress in the kidneys of diabetic animals (45, 56).
These contrasting findings might be indicative of the difficulty
in interpretating the cross-talk among different sources of ROS
production (45, 56, 100). One such point of cross-talk in DKD
could be derived from NADPH oxidases pathway. The NADPH
oxidases of the NOX family are important enzymatic sources
of ROS whose main biological function is electron transport
across the plasma membrane and generate ROS by reducing
oxygen to superoxide and/or hydrogen peroxide (158). At least
seven homologs of NOX are present in the human genome:
NOX1 to NOX5, DUOX1, and DUOX2. These mainly differ
in their activation mechanisms, tissue distribution, and type
of ROS production (157). Among different members of NOX
family, NOX4 expression has been shown to be increased in
the kidneys of diabetic mouse models, and capable of producing
different types of ROS, mainly hydrogen peroxide (45, 159–163).
However, under stress conditions, NOX4 might be translocated
to mitochondria contributing to enhanced mitochondrial ROS
by regulating mitochondrial respiratory complex I activity (164,
165). Consistent with this notion, deletion and pharmacological
inhibition of NOX4 have been demonstrated to attenuate
progression of DKD (161). NOX5 is also increased in the
human diabetic kidney but not encoded by the mouse genome.
Nevertheless, it has been shown that forced ectopic expression of
NOX5 in mouse models leads to accelerated progression of DKD
which could be ameliorated by pan-NOX inhibitors (161, 166–
168).

While the specific contribution of mitochondrial generated
superoxide remains an open question, it is clear that there is
enhanced ROS in the kidneys of diabetic mouse models probably
arising from multiple sources. The generated ROS is usually
carefully balanced to stimulate stress abrogation responses, while
not exceeding the cell ability to protect itself from damage
through anti-oxidant enzymes. Once the balance is shifted
such that the production of ROS exceeds the cells inherent
antioxidant protections, an increasing cycle of cell damage
is elicited resulting in compromised mitochondrial function,
damaged mitochondrial DNA and proteins (169). If the cell
cannot re-establish its balance, the end result is cellular death and
kidney dysfunction.

Mitochondrial Biogenesis and Mitophagy
Mitochondrial biogenesis and degradation are highly regulated
in order to maintain a healthy pool of mitochondria in the
cell. However, both of the processes are dysregulated in DKD.
Mitochondrial biogenesis refers to the cellular regulation of
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mitochondrial abundance titrated through an interconnected
set of transcription factors. Central among these transcription
factors is the peroxisome proliferator-activated receptor gamma
(PPAR) coactivator-1 family of transcriptional coactivators
(PGC1α/β) and PGC-1-related coactivator (PRC), coined as
“master regulators” of mitochondrial biogenesis.

PGC1α was initially identified by the Spiegelman group
(170) as a binding partner of PPAR that is highly expressed
in tissues with high energy demand such as the kidney. As a
coactivator, PGC1 does not bind to DNA promoters directly, but
in dimerization with a variety of transcription factors tomodulate
a series of mitochondrial active gene products (171, 172). A
few of the better understood partners of PGC1α include nuclear
respiratory factor 1 (NRF1), NRF2, and the estrogen-related
receptors (ERR). These heteromeric dimers likely, at least in
part, could explain why experimental results with modulating
PGC1α appear so highly tissue-specific since the possible
dimeric combinations and relative amounts could depend on a
specific tissue’s expression levels of PGC1α, its various binding
partners, and posttranslational modifications. Regardless, the
system allows for a high degree of specialization in the regulation
of gene products impinging upon mitochondrial biogenesis,
mitochondrial gene transcription, fatty acid oxidation, TCA
cycle, and OXPHOS. The role of PGC1α as a transcriptional
rheostat tuning metabolic cellular function to physiological
energy demands has been experimentally demonstrated in a
myriad of tissues.

A number of studies have provided strong evidence that
decreased PGC1α and reduced mitochondrial biogenesis are
key features in the development of DKD. PGC1α has been
demonstrated to be significantly decreased in the diabetic kidneys
(9, 45, 145, 173–175). STZ treated rats have decreased PGC1α
in renal tubules. This is evident in several mouse models
of DKD as well. Diabetic OVE26, AKT2, and db/db mouse
models have all been illustrated to have decreased PGC1α in
the kidneys (176, 177). PGC1α was demonstrated to play a
key role in another study examining an enzyme believed to
couple glycolysis to mitochondria bioenergetics, pyruvate kinase
M2 (PKM2) (10). In this study, podocyte-specific depletion of
PKM2 in diabetic mice exacerbated diabetic renal injury, while
pharmacological activation of PKM2 protected diabetic mice
from kidney damage. Importantly, increased levels of PKM2
were correlated to protection from DKD in diabetic patients.
The underlying mechanism proposed was that the protection was
due in part to PKM2 linked activation of PGC1α and improved
mitochondrial function (10, 178).

Our group has demonstrated that PGC1α could also be
regulated by a long non-coding RNA, Tug1 (taurine upregulated
1). We found that Tug1 overexpression protects db/dbmice from
DKD (9). The protection was linked in vitro to Tug1 binding to
PGC1α and improvedmitochondrial function. However, another
report found that podocyte-specific inducible overexpression of
PGC1α in mouse models of DKD failed to offer renal protection
(179). High expression levels of PGC1a could potentially drive a
mitochondrial substrate preference toward b-oxidation of lipids
contributing to worsening phenotype of DKD in experimental
models. These results may indicate that PGC1α levels must

be regulated and maintained within a very limited range to
be beneficial.

PGC1α offers renal protection, at least in part, by
driving oxidized nicotinamide adenine dinucleotide (NAD+)
biosynthesis (180, 181). The redox imbalance of NADH/NAD+

(reduced/oxidized) is high in the diabetic kidney as electrons
from the breakdown of nutrients become stored as NADH and
metabolic pathways such as sirtuins consume NAD+. Complex
I or lactate dehydrogenase can then regenerate NAD+ through
oxidation of NADH (182–185). Modulation and the end balance
of these processes determine the NADH/NAD+ ratio and
represents one intersection point of PGC1α with sirtuins in
mitochondrial biogenesis and bioenergetics.

The family of NAD-dependent deacetylases known as Sirtuins
(SIRT1-7) regulate mitochondrial biogenesis and function as
a nutritional rheostat which effects mitochondrial function
via protein acetylation and have been implicated in several
pathologies, including DKD (186–189). Proximal tubular
overexpression of SIRT1 protected diabetic mice from DKD.
Knockout of SIRT1 exacerbated renal injury in two separate
diabetic mouse models and induced albuminuria in non-diabetic
animals (190). The SIRT1 agonist, resveratrol, reduced podocyte
damage in diabetic mice by activating PGC1α as well as its
targets NRF1 and mitochondrial transcription factor 1 (TFAM)
to improve mitochondrial function and reduce oxidative stress.
SIRT1 has been shown to play a protective role in both tubules
and podocytes of diabetic mouse models. The renoprotection
stems in part through deacetylation of transcription factors,
including PGC1α and PPARy (181, 191, 192). Podocyte-specific
overexpression of SIRT1, and several non-specific agonists of
SIRT1 such puerarin have been shown to attenuate DKD in
animal models (193, 194). A more specific agonist, BF175, was
tested and was shown to protect the kidney in type 1 diabetic
OVE26 mice (195).

Consistent with the interplay between PGC1α and SIRT1,
it has been shown that PGC1α can also increase levels of the
mitochondrially-localized, SIRT3 (175, 196, 197). SIRT3 has
been demonstrated to regulate mitochondrial function through
direct binding to ETC proteins, mitochondrial dynamics, redox
protection, and TCA cycle modulation and is the main
mitochondrial deacetylase regulating cellular ROS. The SIRT3
agonist, honokol, was tested in BTBR ob/ob mice with type 2
diabetes and determined to be protective in DKD (186). SIRT3
was determined to be significantly decreased in the kidney of
BTBR ob/ob mice in conjunction with increased ROS levels.
Treatment with Honokol, a Magnolia tree bark extract and
SIRT3 activator, reduced albuminuria and podocyte injury in
the diabetic mice and was found to restore PGC1α levels in
glomerular cells. The protective role of SIRT3 on glomeruli was
mediated in part through increased SIRT3 tubular expression and
upregulation of tubular nicotinamide phosphoribosyl transferase
(Nampt), suggesting a possible tubule-glomerulus retrograde
signaling mechanism. The lack of regulation of SIRT3 in
glomeruli and postulated tubular-glomerular signaling was also
a finding of a study examining SIRT1 in the diabetic kidney (190)
where diabetic glomerular damage was improved by selective
upregulation of tubular SIRT1.
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In contrast to mitochondrial biogenesis, the process of
mitophagy is the physiological clearance mechanism for removal
of damaged mitochondria from the cell which appears to become
overwhelmed in DKD (198–200). Mitophagy appears to have
both a ubiquitin-dependent and -independent pathway (201,
202). The ubiquitin-dependent pathway is dependent upon
mitochondrial dynamics, energetics, transport, and autophagic
factors. The phosphatase and tensin homolog (PTEN) induced
putative kinase 1 (PINK1) and Parkin (PRKN) are key mediators
of the pathway. Physiologically PINK1 is transported to the
inner mitochondrial membrane and proteolytically degraded in
a ubiquitin dependent manner. When mitochondria become
damaged and depolarized PINK1 is autophosphorylated and
stabilized on the outermitochondrial membrane to recruit PRKN
and its E3 ligase activity. Mitochondrial fate is determined by the
balance of the ubiquitination/deubiquitination process whereby
increased poly-Ub targets the mitochondrion for proteasome
destruction. PINK1 can increase mitochondrial fission by
indirectly increasing DRP1 activity while the PINK1/PRKN
interaction enhances Mfn2 degradation (203–210). Ubiquitin-
independent pathway involves several ubiquitin E3 ligases which
can localize to mitochondria and recruit autophagic factors.

The kidney has been shown to have a high rate of mitophagy
relative to other organs, as well as cell type dependent regulation
where podocytes have greater levels of mitophagy relative to
tubules (211, 212). Increased mitophagy has been shown to
be protective in models of CKD, DKD, and AKI (213–220).
The PINK1/PRKN pathway is activated by oxidative stress
established in DKD whereas treatment with the mitochondrial
antioxidant, MitoQ, has been suggested to protect from DKD
by increasing mitophagy levels (218). Tissue-specific knockout
of ATG5 in a STZ model of DKD revealed that podocyte
deletion induced podocytopathy and glomerulosclerosis while
endothelial-specific knockout accelerated progression of DKD
and when deleted in both tissues together increased DKD
(221). These observations in aggregate suggest a critical role of
mitophagy in DKD progression.

CONCLUSION AND FUTURE
PERSPECTIVES

In this review, we touched the surface of several possibilities
by which mitochondrial dysfunction could contribute to the
development and progression of DKD, but we recognize that
there still much remains to be uncovered. We would like to
underscore a few gaps in knowledge for future discoveries.

As of yet, it is difficult to reach a clear consensus on the
time course of mitochondrial respiratory activity and OXPHOS
changes during progression of DKD.We await the arrival of more
specific bioreporters to evaluate specific sources of enhanced
ROS in real time in living animals, which ideally could link
ROS to their enzymatic source in mitochondria. Similarly, a
complete understanding of how mitochondrial dynamics fidelity
is regulated and an evaluation of the “coincident detection” to

fully integrate multiple organelles and biological factors into
a single framework remains to be fully accomplished. The
mitochondrial biogenesis pathway, and PGC1α in particular,
are attractive therapeutic targets for DKD, but likely await the
ability of targeting this pathway selectively in the kidney within
a narrow therapeutic window. Finally, mitophagy, the crossroads
of diverse signaling pathways, has shown a great promise as
a therapeutic target, but the molecular mechanisms by which
mitochondrial packaging for mitophagy becomes uncoupled
during DKD progression remains unclear.

In conclusion, there have been increasing efforts to better
define the nature of mitochondrial dysfunction in DKD
over the past two decades. Initial studies utilizing metabolic
screening approaches to identify the best possible biomarkers
for predicting DKD susceptibility and progression are currently
on-going (222, 223). While these and other studies have
identified several mitochondrially-derived molecules such as
mitochondrial DNA in serum and/or urine as potentially
useful markers for DKD progression, none has exceeded
expectations and are not currently available for patients care.
Looking forward, opportunities in mitochondrial medicine
involve the use of “multi-omics” and proteogenomics to provide
further insights into the role of mitochondrial biomarkers
in predicting DKD progression. A quantitative assessment of
mitochondrial dysfunction in patients with DKD could accelerate
the identification and development of novel biomarkers and
treatments, and improve the ability to assess the efficiency of
new drugs by measuring mitochondrial function pre- and post-
therapies. Finally, the genetic and hormonal environment of
the male and female kidney is significantly different, and these
differences have been implicated on the onset and progression
of DKD in both Type1 and 2 diabetes (224–227). The impact
of gender on mitochondrial bioenergetics and function in
kidney diseases has recently been reported (228). While many
questions still remain to be carefully addressed, it seems clear
that sexually determined differences in mitochondrial biogenesis,
bioenergetics, and ROS generation exist, and these differences
may also contribute to differences in long-term prognosis in
patients with DKD (229, 230). Further research is needed to
conclude a causal association between differences in gender,
mitochondrial dysfunction and progression of kidney disease in
large diabetic population.
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