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Eating for hunger or pleasure: a Serotonin Model
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Obesity, resulting from an imbalance
between energy intake and expenditure,
represents a major health crisis to our
society, due to its alarmingly high preva-
lence and comorbidities, including dia-
betes, cardiovascular diseases, cancer,
and COVID-19. Better understanding the
neurobiological mechanisms for feeding
behavior is essential for developing ra-
tional strategies to combat obesity and
related comorbidities.

Agouti-related peptide (AgRP) neurons lo-
cated in the arcuate nucleus of the hypo-
thalamus (ARH) have received perhaps the
most attention as a master regulator of
feeding behavior. It is well known that AgRP
neurons are regulated by multiple hor-
mones that reflect the body’s energy stor-
age or nutritional state, e.g., leptin, insulin,
ghrelin, and asprosin (Yang and Xu, 2020).
AgRP neurons are activated in a calorie-
deficient state (Takahashi and Cone, 2005;
Yang et al., 2011; Liu et al., 2012), and acti-
vations of AgRP neurons can drive eating
(Aponte et al., 2011; Krashes et al., 2011).
Together, these findings support a physio-
logical feedback pathway that regulates
feeding: a calorie-deficient state (e.g. hun-
ger) activates AgRP neurons, which in turn
drive eating. However, this ‘AgRP model’
faces a challenge, as recent in vivo record-
ings revealed that AgRP neurons decrease

their activities dramatically within a few
seconds after feeding starts, or even with-
out the food actually being consumed
(Betley et al., 2015; Chen et al., 2015;
Mandelblat-Cerf et al., 2015). This rapid di-
minishment of AgRP neuron activity
(Figure 1A) raises a question regarding how
feeding behavior, which usually lasts for
minutes to hours, is sustained. Based on
our observations reported in a recent
Molecular Psychiatry article (He et al.,
2021), we propose an alternative
‘Serotonin Model’, which provides physio-
logical feedback signals for feeding control.

The brain serotonin, a neurotransmitter
also known as 5-hydroxytryptamine (5-HT),
is mainly synthesized by neurons in the
midbrain dorsal Raphe nucleus (DRN). We
demonstrated that the activation of these
5-HTDRN neurons can inhibit eating (He et
al., 2021). Importantly, using the in vivo
recordings, we found that 5-HTDRN neurons
gradually increase their activities during the
2-h feeding period (Figure 1A). In sharp
contrast to the rapid and sustained inhibi-
tion of AgRP neurons, the activation of 5-
HTDRN neurons occurs in a gradual and slow
fashion (He et al., 2021). Importantly, the
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Figure 1 The ‘Serotonin Model’ illustrates physiological feedback signals to regulate both
hunger-driven feeding and non-hunger-driven feeding. (A) A schematic illustration of
changes in activities of AgRP neurons or 5-HTDRN neurons during feeding. (B) A subgroup of
5-HTDRN neurons project to the ARH, inhibiting AgRP neurons via the 5-HT1BR and activating
POMC neurons via the 5-HT2CR, to suppress hunger-driven feeding; another subgroup of 5-
HTDRN neurons project to and inhibit DAVTA neurons via the 5-HT2CR to suppress non-hunger-
driven feeding. The GABAA receptor and the SK3 potassium channel mediate changes in ac-
tivities of the ARH-projecting and VTA-projecting 5-HTDRN neurons, respectively, during feed-
ing. 5-HT1BR, 5-HT 1B receptor; 5-HT2CR, 5-HT 2C receptor; DA, dopamine; DRN, dorsal
Raphe nucleus; GABA, c-aminobutyric acid; POMC, proopiomelanocortin; SK3, small con-
ductance calcium-activated potassium channel 3.

This is an Open Access article distributed under
the terms of the Creative Commons Attribution-
NonCommercial License (https://creativecom
mons.org/licenses/by-nc/4.0/), which permits
non-commercial re-use, distribution, and reproduc-
tion in any medium, provided the original work is
properly cited. For commercial re-use, please con-
tact journals.permissions@oup.com

doi:10.1093/jmcb/mjab055 Journal of Molecular Cell Biology (2021), 13(9), 693–694 | 693

Published online September 4, 2021

Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed

Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed



level of 5-HTDRN neuron activity is correlated
to the quantity of food intake (He et al.,
2021). Thus, we suggest that 5-HTDRN neu-
rons function as a key component of a neg-
ative feedback loop. Low 5-HTDRN neuron
activity permits animals to eat; as animals
continue eating, 5-HTDRN neurons slowly el-
evate their activities to eventually terminate
the meal.

Feeding can be driven by hunger (a
state of nutritional deficit) to ensure sur-
vival. Feeding can also be triggered by
the hedonic properties of certain foods in
the absence of nutritional deficit.
Dysregulations of hunger-driven feeding
and hedonic feeding both contribute to
the development of obesity (Kenny,
2011; Alonso-Alonso et al., 2015). It has
been suggested that neurocircuits con-
trolling these two types of feeding behav-
iors are not completely dissociable (Rossi
and Stuber, 2018). Consistent with this
notion, we found that 5-HTDRN neurons
can regulate a hunger-driven feeding and
a non-hunger-driven feeding in animals
(He et al., 2021). However, our study fur-
ther illustrated two largely segregated
subgroups of 5-HTDRN neurons: one sub-
group send projections to the ARH and
specifically inhibit feeding behavior
driven by hunger, while the other sub-
group of 5-HTDRN neurons project to the
ventral tegmental area and reduce the in-
take of a high palatable diet in the non-
hungry state (Figure 1B). Interestingly,
these two subgroups of 5-HTDRN neurons
both display slow activation during the
course of hunger-driven feeding and non-

hunger-driven feeding, respectively; how-
ever, they use distinct ion channels to
achieve these changes (Figure 1B).

In summary, our findings support a
‘Serotonin Model’ that provides physio-
logical feedback signals to regulate both
hunger-driven feeding and non-hunger-
driven feeding. We further identified dis-
tinct 5-HTDRN-originated neurocircuits
and disparate ion channels that can reg-
ulate these two types of feeding behav-
iors. These results provide a necessary
framework for the development of a pre-
cision medication approach to treat obe-
sity resulting from overeating for hunger
or for pleasure.
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