
ORIGINAL RESEARCH
published: 31 May 2021

doi: 10.3389/fnut.2021.675935

Frontiers in Nutrition | www.frontiersin.org 1 May 2021 | Volume 8 | Article 675935

Edited by:

Cedric Moro,

INSERM U1048 Institut des Maladies

Métaboliques et

Cardiovasculaires, France

Reviewed by:

Nathalie Viguerie,

Institut National de la Santé et de la

Recherche Médicale

(INSERM), France

Sonia Baig,

National University of

Singapore, Singapore

*Correspondence:

Martina Kutmon

martina.kutmon@

maastrichtuniversity.nl

Michiel Adriaens

m.adriaens@maastrichtuniversity.nl

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Nutrition and Metabolism,

a section of the journal

Frontiers in Nutrition

Received: 04 March 2021

Accepted: 16 April 2021

Published: 31 May 2021

Citation:

Kalafati M, Lenz M, Ertaylan G,

Arts ICW, Evelo CT, van

Greevenbroek MMJ, Blaak EE,

Adriaens M and Kutmon M (2021)

Assessing the Contribution of Relative

Macrophage Frequencies to

Subcutaneous Adipose Tissue.

Front. Nutr. 8:675935.

doi: 10.3389/fnut.2021.675935

Assessing the Contribution of
Relative Macrophage Frequencies to
Subcutaneous Adipose Tissue
Marianthi Kalafati 1, Michael Lenz 2,3,4, Gökhan Ertaylan 2,5, Ilja C. W. Arts 2,6,

Chris T. Evelo 2,7, Marleen M. J. van Greevenbroek 8, Ellen E. Blaak 1, Michiel Adriaens 2*†

and Martina Kutmon 2,7*†

1Deparment of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University,

Maastricht, Netherlands, 2Maastricht Centre for Systems Biology, Maastricht University, Maastricht, Netherlands, 3 Institute of

Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Mainz, Germany, 4 Preventive Cardiology and

Preventive Medicine—Center for Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz,

Germany, 5Unit Health, Flemish Institute for Technological Research, Antwerp, Belgium, 6Department of Epidemiology,

CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands, 7Department of

Bioinformatics-BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University,

Maastricht, Netherlands, 8Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht

University, Maastricht, Netherlands

Background:Macrophages play an important role in regulating adipose tissue function,

while their frequencies in adipose tissue vary between individuals. Adipose tissue

infiltration by high frequencies of macrophages has been linked to changes in adipokine

levels and low-grade inflammation, frequently associated with the progression of obesity.

The objective of this project was to assess the contribution of relative macrophage

frequencies to the overall subcutaneous adipose tissue gene expression using publicly

available datasets.

Methods: Seven publicly available microarray gene expression datasets from human

subcutaneous adipose tissue biopsies (n= 519) were used together with TissueDecoder

to determine the adipose tissue cell-type composition of each sample. We divided the

subjects in four groups based on their relative macrophage frequencies. Differential gene

expression analysis between the high and low relative macrophage frequencies groups

was performed, adjusting for sex and study. Finally, biological processes were identified

using pathway enrichment and network analysis.

Results: We observed lower frequencies of adipocytes and higher frequencies of

adipose stem cells in individuals characterized by high macrophage frequencies.

We additionally studied whether, within subcutaneous adipose tissue, interindividual

differences in the relative frequencies of macrophages were reflected in transcriptional

differences in metabolic and inflammatory pathways. Adipose tissue of individuals with

high macrophage frequencies had a higher expression of genes involved in complement

activation, chemotaxis, focal adhesion, and oxidative stress. Similarly, we observed a

lower expression of genes involved in lipid metabolism, fatty acid synthesis, and oxidation

and mitochondrial respiration.

Conclusion: We present an approach that combines publicly available subcutaneous

adipose tissue gene expression datasets with a deconvolution algorithm to calculate
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subcutaneous adipose tissue cell-type composition. The results showed the expected

increased inflammation gene expression profile accompanied by decreased gene

expression in pathways related to lipid metabolism and mitochondrial respiration

in subcutaneous adipose tissue in individuals characterized by high macrophage

frequencies. This approach demonstrates the hidden strength of reusing publicly

available data to gain cell-type-specific insights into adipose tissue function.

Keywords: subcutaneous adipose tissue, low-grade inflammation, lipid metabolism, macrophages, cell-type

composition, computational deconvolution, publicly available data

INTRODUCTION

The adipose tissue is an endocrine and immunologically
active organ, that combined with its insulative and dynamic
energy storage functions affects the regulation of systemic
energy and inflammatory homeostasis (1). It consists of two
main components, a heterogeneous cellular population and
an extracellular matrix (2). The most abundant cell type in
adipose tissue is the adipocyte. Other cell types are also present
including preadipocytes, mesenchymal stem cells, fibroblasts,
endothelial cells, and many immune cells, including adipose
tissue macrophages (ATMs) (3).

In adipose tissue, there are resident macrophages and
monocyte-derived macrophages, which collectively are called
ATMs. In general, macrophages are phagocytes that preserve
tissue homeostasis by finding and removing cell debris,
pathogens, and apoptotic or necrotic cells. ATMs are present
in lean and obese adipose tissues, involved in the regulation of
adipogenesis and angiogenesis (4). Macrophages in lean humans
constitute around 5% of the cells in adipose tissue, whereas
during obesity they constitute up to 50% of all adipose tissue cells
(5). Chronic metabolic diseases promote macrophage infiltration
often leading to adipose tissue inflammation (4–7), characterized
by increased secretion of adipokines and cytokines into the
systemic circulation, which may be associated with hepatic and
peripheral insulin resistance (8).

The area of immunometabolism aims to understand how
changes in intracellular metabolic pathways in immune cells alter
their function and, how immune cells employ tissue metabolism
in adaptation to environmental changes. Understanding
therefore not only the contribution of macrophages and other
immune cells to adipose tissue dysfunction and plasticity
but also the interplay with adipocytes, adipokines, adipose
tissue-secreted cytokines, and other nonadipose tissues,
can offer insights on how to control immunometabolism
in health and disease. Describing therefore adipose tissue
cell-type composition is particularly important. In general,
tissue cell-type composition can be estimated with common
experimental methods (e.g., flow cytometry) or computational
deconvolution [e.g., CIBERSORT (9)]. Experimental methods
can be costly and are often logistically impractical for large
human cohort studies. Researchers can overcome these
limitations by using computational methods to estimate cell
type composition of complex tissues from their gene expression
profiles (9).

In this paper, our analysis assesses the contribution of
macrophage frequencies to the overall SAT gene expression.
We used the computational algorithm TissueDecoder (10) to
infer the SAT cell-type composition from publicly available, gene
expression microarray datasets. Furthermore, we divided our
samples based on their relative macrophage frequencies and
set out to study the relation between interindividual differences
in relative macrophage frequencies and transcriptional
differences in metabolic and inflammatory pathways within
the SAT.

MATERIALS AND METHODS

Deconvolution of Adipose Tissue Cell
Types by TissueDecoder
The TissueDecoder (10) framework uses CIBERSORT (9) to
estimate the cellular composition of adipose tissue samples
from their whole tissue gene expression profiles. TissueDecoder
provides a novel signature matrix (AT21) that includes highly
relevant cell types for adipose tissue, based on publicly available
data from the Affymetrix Human U1333 Plus 2.0 microarray.
Briefly, the AT21 reference dataset is generated using single cell-
type gene expression data from 21 different cell types from 204
samples that were collected from publicly available datasets in
the Gene Expression Omnibus (GEO) (11) and ArrayExpress
(12) databases. The raw data (CEL files) were preprocessed with
the Affymetrix Power Tools using the robust multiarray average
normalization method as described in the original publication
by Lenz et al. (10). CIBERSORT together with the AT21 matrix
were used to deconvolute the 779 samples, thus determining
the relative frequencies of 21 cell types. Additional information
on the probe selection criteria can be found in the original
publication (10).

In our analysis, we initially included 616 human subcutaneous
adipose tissue (SAT) samples from eight studies [GSE27916
(13), GSE20950 (14), GSE27657 (15), GSE41168 (16), GSE66159
(17), E-MTAB-1895 (18), GSE26637 (19), GSE27949 (20)],
combined into one SAT dataset. As we wanted to adjust
for sex in the linear regression models, samples without sex
information were excluded, thus 583 samples and seven studies
remained in our analysis (GSE27949 was excluded, as 33
samples did not have sex information). Furthermore, 64 samples
from studies with multiple time points, e.g., samples after
intervention, were excluded (54 samples from GSE41168 and 10
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samples from GSE66159). Finally, 519 SAT samples and seven
studies remained.

Filtering on Absolute Expression Level
The seven studies with the 529 SAT samples comprised
54,675 probes. Firstly, 11,953 probes without gene identifiers
were removed, thus 42,722 remained. The probes with the
duplicated gene identifiers (19,622 probes) were summarized into
one unique gene identifier (per duplicated probe) calculating
the medians across samples. The probes with the highest
median expression were kept resulting in 23,100 unique genes.
Furthermore, the median expression of the Y chromosome genes
in female subjects was defined as the gene expression detection
threshold. Y chromosome genes are not expressed in female
subjects and hence provide a measure of background noise.
Genes with a median expression below the computed threshold
(3.1 on a log2 scale) were removed. Finally, from 23,100 unique
genes, 4,056 genes were expressed below background level and
therefore removed, resulting in 19,043 unique genes considered
for downstream analysis. The probe identifiers were additionally
mapped to the Homo sapiens GRCh38 assembly in Ensembl (21)
through the BioMart (22) library in R (v3.6.3).

Grouping Subjects Based on Relative
Macrophage Amount
The SAT dataset individuals were divided into four groups
based on their relative adipose tissue macrophage frequencies.
Individuals with no detectable frequencies of macrophages were
defined as M0 group. The remaining subjects were divided into
tertiles, defined as M1 (%0–1), M2 (%1–2), and M3 (%2–25).

Statistical Analysis
Participant Characteristics
We assessed the differences in the cell-type frequencies between
groups using a Wilcoxon rank sum test. Multiple testing
correction was performed by applying the Benjamini and
Hochberg method on the p-values, to control the false-discovery
rate (FDR). The threshold for statistical significance for nominal
and FDR p-values was set at p < 0.05.

Differential Gene Expression Analysis
We focused our analysis on the extremes (M3 vs. M0).
Differential gene expression analysis was implemented using
limma (v3.42.2) (23). To assess the effect of adjusting for cell-
type composition, two linear models were implemented for the
differential gene expression analysis, (i) adjusting for sex and
study (model 1) and (ii) additionally adjusting for differences
in cell-type composition (20 cell types excluding macrophages).
All significant genes (nominal p < 0.05) were divided into
up- (nominal p < 0.05 and log2 fold change > 0.26) and
downregulated (nominal p< 0.05 and log2 fold change<−0.26).

Gene Ontology Analysis
GeneOntology (GO) analysis was performed using clusterProfiler
(v3.14.3) (24). All up- and downregulated genes were included
separately to provide direction for the involved biological
processes. The organism Homo sapiens and the ontology

biological process were used. The gene-mapping database was
set to “ENSEMBL.” Finally, the overrepresentation results were
simplified using the function simplify filtering on FDR-p < 0.05
and similarity cut-off 0.7.

Pathway Analysis
Pathway analysis was performed with rWikiPathways (v1.6.1)
(25). We used the curated human pathway collection (20200610).
An overrepresentation analysis was performed with the
microarray dataset. Pathways were significantly changed and
considered for the analysis when FDR-p < 0.05.

Network Analysis
The top 10 GO biological processes for the up- and
downregulated genes were exported as a process-gene network
using the function cnetplot from clusterProfiler. The nodes in the
networks represented genes and biological processes. They were
connected by an edge when a gene was involved in the process.
The networks were imported in Cytoscape (v3.8.0) (26) with
the function createNetworkFromIgraph via the RCy3 (v2.6.3)
(27). Only the relevant differentially expressed genes for the
enriched processes were shown in the networks. The pie chart
visualization for the process nodes showed how many genes
were associated with the biological process in total and their
overall expression patterns. The differential gene expression
was visualized using a color gradient for the node fill color in
the networks.

Sensitivity Analysis
We performed a sensitivity analysis excluding study GSE27916
(with 375 participants) to check whether the results we obtained
were mainly driven by this dataset, as a large proportion of
the samples were included in our SAT dataset. Likewise, we
performed an additional sensitivity analysis excluding study E-
MTAB-1895 (with 52 participants) which consisted of twins to
evaluate if our results were driven by the nonindependence of
these participants. Differential gene expression and GO analysis
was performed as described in the “Materials and Methods”
section above.

RESULTS

Dataset Characteristics
The human SAT dataset was composed of 519 samples and
seven studies, all publicly available. Briefly, study GSE20950
(14) contained expression data from BMI-matched obese cohort
individuals that were either insulin sensitive or insulin resistant.
Study GSE26637 (19) contained expression data from obese
insulin sensitive and insulin-resistant females. Study GSE27657
(15) contained expression data of individuals undergoing surgery
in the thyroid region. Study GSE27916 (13) contained expression
data from the Swedish Obese Subjects Sib-Pair offspring cohort.
Furthermore, study GSE41168 (16) contained expression data
from nonobese individuals with normal glucose tolerance. Study
GSE66159 (17) contained expression data from overweight or
obese females at moderately increased risk of breast cancer.
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FIGURE 1 | Cell-type composition and differences between the M0 and M3 groups of the 21 cell types estimated by TissueDecoder in the SAT dataset. Compared

with the M0 group, individuals in M3 had higher relative frequencies of eight cell types (A), lower relative frequencies of six cell types (B), and no significant differences

for seven cell types (C).
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Finally, the E-MTAB-1895 (18) contained expression data from
young adult obesity-discordant monozygotic twin pairs.

Participant Characteristics
The SAT dataset individuals were divided into four groups
based on their relative adipose tissue macrophage frequencies.
Individuals with no detectable frequencies of macrophages were
defined as M0 group. The remaining subjects were divided into
tertiles according to the percentage (frequency) of macrophages
in the tissue, defined as M1 (%0–1), M2 (%1–2), and M3 (%2–
25). Since the studies included in our analysis were publicly
available, only a limited amount of phenotypic information was
available. Briefly, in M0, there were 115 participants (82 women),
in M1 were 135 participants (106 women), in M2 were 135
participants (94 women), and in M3 were 134 participants (90
women) (Supplementary Table 1). Thus, the groups did not
differ with respect to female/male distribution, and in all groups,
females were more prevalent. Additionally, from the M0 to
M3 groups, based on the available characteristics, obesity and
insulin resistance seem to worsen (Supplementary Figures 1,
2). Detailed phenotypic participant characteristics are reported
separately for each group and study in Supplementary Table 1.

High Macrophage Frequencies Are
Associated With Higher Adipose Stem Cell
and Lower Subcutaneous Adipocyte
Frequencies in SAT
We focused our analysis on the extremes (M3 vs. M0). Compared
with the M0 group, individuals in M3 had higher relative
frequencies of eight cell types, namelymacrophages, adipose stem
cells, B cells, CD8T cells, monocytes, plasmacytoid dendritic cells,
platelets, and smooth muscle cells (Figure 1A). Six cell types had
lower relative frequencies in the M3 group compared with the
M0 group. Those were the subcutaneous adipocytes, CD4T cells,
eosinophils, fibroblasts, neutrophils, and NK-cells (Figure 1B).
Finally, for seven cell types, there were no significant differences
between the M0 and M3 group (Figure 1C). Those were
the chondrocytes, endothelial cells, erythroblasts, mesenchymal
stromal cells, myeloid dendritic cells, osteoblasts, and pericardial
adipocytes. Information on cell-type composition and differences
(p-values) for the M1 and M2 group comparisons is provided in
Supplementary Table 2.

SAT Transcriptome Differences Between
Groups With High and Low Macrophage
Frequencies
Next, we assessed the SAT transcriptome for theM3 vs. M0 group
comparison. TheM0 group was used as a reference.We identified
2,210 upregulated (nominal p< 0.05 and log2 fold change> 0.26)
genes after adjusting for sex and study (model 1) and 842 after
additionally adjusting for differences in cell-type composition
(model 2) (Figure 2A; Supplementary Table 3). We identified
1,057 downregulated (nominal p < 0.05 and log2 fold change
< −0.26) genes in model 1 and 252 in model 2 (Figure 2B;
Supplementary Table 4).

FIGURE 2 | Venn diagram of the numbers of the upregulated (A) and

downregulated (B) genes, for the M3 vs. M0 group comparison. Two models

were used: adjusted for sex and (model 1) and additionally adjusted for

differences in cell-type composition (model 2).

GO Enrichment Analysis Between High and
Low M Groups
To gain further insight into the differentially expressed SAT
transcriptome after adjusting for sex and study (model 1)
and additionally adjusting for cell-type composition differences
(model 2), GO analysis was performed for the M3 vs. M0
comparison for the up- and downregulated genes, separately,
to provide direction of the biological processes. All 2,210
upregulated and 1,057 downregulated genes from model 1 and
all 842 upregulated and 252 downregulated genes from model
2 were used. The analysis resulted in 252 significant biological
processes for the upregulated genes (Supplementary Table 5)
and 85 for the downregulated genes (Supplementary Table 6)
for model 1 and in 248 significant biological processes for
the upregulated genes (Supplementary Table 7) and 46 for the
downregulated genes (Supplementary Table 8) for model 2.
Additionally adjusting for differences in cell-type composition
did not materially alter the results, therefore the analysis was
continued with model 1 (adjusting for sex and study).

Increased Inflammatory SAT Gene
Expression Associated With High
Macrophage Frequencies
The top 10 enriched biological processes (FDR-p < 0.05) for
the upregulated genes were selected and combined into a
network (Figure 3). The network illustrates a gene-process
network in which the nodes represent upregulated genes and
enriched processes, and they are connected by edges which
show that the genes are directly involved in the biological
process. The overall expression patterns are shown in the
pie chart visualization of the process nodes. Only the 472
upregulated genes in the top 10 processes are added in the
network visualization. In additional analyses, we performed
a pathway overrepresentation analysis with all upregulated
genes for the M3 vs. M0 group comparison. The analysis
identified 55 significantly changed pathways (FDR-p < 0.05;
Supplementary Table 9). Among those pathways were the
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FIGURE 3 | Increased inflammation associated with high macrophage frequencies in SAT. The gene-process network illustrates the top 10 GO biological processes

enriched for upregulated genes for the M3 vs. M0 group comparison. Upregulated gene nodes are visualized as hexagons and process nodes as circles. The edges in

the network show the involvement of genes in biological processes to which they are connected to. The differential gene expression is visualized on the gene nodes

using a color gradient from blue (downregulated) over white (not changed) to red (upregulated). The overall distribution of gene expression changes for genes

associated with a biological process is visualized using a pie chart divided into upregulated, downregulated, and not significantly changed genes.

“human complement system (WP2806),” “regulation of toll-like
receptor signaling pathway (WP1449),” “chemokine signaling
pathway (WP3929),” “type II interferon signaling (IFNG)
(WP619),” “focal adhesion (WP4172),” “oxidative damage
(WP3941),” “AGE/RAGE pathway (WP2324),” and “VEGFA-
VEGFR2 signaling pathway (WP3888).” SAT of individuals
with high numbers of macrophages was characterized by higher
expression of key genes involved in complement activation
(e.g., C1QA, C1QB, and C1QC), chemotaxis (e.g., CCL2, CCL3,
and CCL5), and adhesion molecules (e.g., ITGB2, VCAM1,
and ICAM1); major histocompatibility complex (MHC) class
I (e.g., HLA-A and HLA-B) and II (e.g., HLA-DPA1, HLA-
DRB1, and HLA-DQA1). Furthermore, it was characterized
by higher expression of genes involved in extracellular
matrix (ECM) organization [e.g., collagens, metalloproteinase
domain-containing protein (ADAMs), matrix metalloproteases
(MMPs), and tissue inhibitor of metalloproteinases (TIMPs)],
angiogenesis (e.g., VEGFB, SERPINE1, ANGPTL4), and

oxidative stress (e.g., CYBB and CYBA). These data reveal
activation of inflammatory pathways and an overrepresentation
of inflammatory GO biological processes, indicating that high
macrophage frequencies in the SAT associates with increased
SAT inflammatory gene expression.

Dysfunctional Lipid and Glucose
Metabolism, Mitochondrial Respiration,
and BCAA Catabolism Associated With
High Macrophage Frequencies in SAT
The top 10 enriched biological processes (FDR-p < 0.05) for
the downregulated genes were selected and combined into a
network (Figure 4). The network illustrates a gene-process
network in which the nodes represent downregulated genes
and enriched processes, and they are connected by edges which
show that the genes are directly involved in the biological
process. The overall expression patterns are shown in the
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FIGURE 4 | Dysfunctional lipid and glucose metabolism, mitochondrial respiration, and BCAA catabolism associated with high macrophage frequencies in SAT. The

gene-process network illustrates the top 10 GO biological processes enriched for downregulated genes for the M3 vs. M0 group comparison. Downregulated gene

nodes are visualized as hexagons and process nodes as circles. The edges in the network show the involvement of genes in biological processes to which they are

connected to. The differential gene expression is visualized on the gene nodes using a color gradient from blue (downregulated) over white (not changed) to red

(upregulated). The overall distribution of gene expression changes for genes associated with a biological process is visualized using a pie chart divided into

upregulated, downregulated, and not significantly changed genes.

pie chart visualization of the process nodes. Only the 157
downregulated genes in the top 10 processes are added in the
network visualization. Following the GO analysis, we performed
pathway analysis. The analysis revealed 12 significantly changed
pathways (Supplementary Table 10). Among those pathways
were, “fatty acid biosynthesis (WP357),” “amino acid metabolism
(WP3925),” and “adipogenesis (WP236).” Key genes involved
in lipid and glucose metabolism [glucose transporters e.g.,
SLC27A2 (also known as FATP2), IRS1 and IRS2, LPIN1], fatty
acid metabolism (e.g., ACACA, FASN) and fatty acid oxidation
(e.g., PPARA, PPARG), lipogenesis (e.g., ACLY, ELOVL6, FADS1,
FADS2), adipogenesis (e.g., KLF15, FOXO1, IGF1, TWIST1),
and angiogenesis (e.g., VEGFA, FGF2) were significantly
downregulated in individuals with high macrophage frequencies.

Furthermore, key genes involved in mitochondrial respiration
[e.g., PPARG and PGC1A (also known as PPARGC1A), COX7C
and COX14, NDUFA8, NDUFB5 and NDUFS4, ATP11B and
ATP8A2] were significantly downregulated in individuals
with high macrophage frequencies. On the same direction,
key genes involved in degradation of all BCAAs, namely
isoleucine, leucine, and valine (e.g., BCKDHB), and those specific
to isoleucine (e.g., PCCA and PCCB), leucine (e.g., AUH),
and valine (e.g., HIBADH and ALDH6A1) were significantly
downregulated in the individuals with high macrophage
frequencies. Collectively, these data reveal a decreased lipid
and glucose metabolism, mitochondrial respiration, and BCAA
catabolism associated with high macrophage frequencies
in SAT.
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Sensitivity Analysis
We performed a sensitivity analysis excluding study GSE27916
(with 375 participants) to check whether the results we obtained
were mainly driven by this dataset, as a large proportion of
the samples were included in our SAT dataset. Likewise, we
performed an additional sensitivity analysis excluding study E-
MTAB-1895 (with 52 participants) which consisted of twins to
evaluate if our results were driven by the nonindependence of
these participants. Differential gene expression and GO analysis
was performed. Exclusion of these datasets did not materially
alter the results (Supplementary Tables 11–18).

DISCUSSION

Methodology and Benefit of the Analytic
Approach
Our analysis demonstrated the substantial benefit of integrating
publicly available datasets in combination with the algorithm
TissueDecoder, in assessing the contribution of macrophage
frequencies to the overall subcutaneous adipose tissue gene
expression. TissueDecoder provides a signature matrix with cell
types relevant for obesity, type 2 diabetes, insulin resistance,
and other metabolic abnormalities. We used the inferred cell-
type composition from SAT Affymetrix microarray data to
identify individuals with high and low macrophage frequencies,
as macrophage content in adipose tissue predicts the risk
for metabolic disease. We showed the relative frequencies
of adipocytes to be lower and the relative frequencies of
adipose stem cells to be higher in individuals characterized by
high macrophage frequencies. Notably, TissueDecoder estimates
20 more cell types across three additional depots (omental,
epicardial, and pericardial adipose tissue). The proposed
approach can therefore be used in a similar manner to define
other groups of interest (e.g., subcutaneous adipocytes or adipose
stem cells) in investigating adipose tissue metabolism.

Biological Implications of Our Findings
We observed lower frequencies of adipocytes and increased
frequencies of adipose stem cells in the individuals with high
macrophage frequencies compared with those with low ones.
Failure of adipocyte differentiation has been associated with
reduced expandability of adipose tissue, contributing to adipose
tissue inflammation, systemic inflammation, lipid overflow,
and insulin resistance (8, 28, 29), while low numbers of
adipocytes may be associated with impaired metabolic health
(30). In line, previous studies have showed that obese-derived
adipose stem cells have decreased differentiation, migration, and
angiogenic capabilities (31, 32) attributed to differences in the
anatomical distribution of adipose tissue (33) or decrease in
adipose stem cells in obese humans (34, 35) and mice (35, 36).
Based on the available phenotypic data, obesity and insulin
resistance status seem to worsen in individuals characterized by
high macrophage frequencies, lower percentage of adipocytes,
and higher percentage of adipose stem cells. Overall, our
data suggest that those individuals are characterized by an
impaired preadipocyte differentiation and a limited capacity for

hyperplasia, which may contribute to adipose tissue dysfunction,
insulin resistance, and a generally unfavorable metabolic profile.

We observed that adipose tissue of individuals characterized
by high SAT macrophage frequencies, exhibited the expected
increased inflammatory gene expression profile accompanied
by decreased gene expression in pathways related to lipid
metabolism, mitochondrial respiration, and BCAA catabolism.
In individuals characterized by high macrophage frequencies, we
observed a higher expression of genes involved in inflammatory
processes (e.g., chemotaxis, complement activation), ECM
remodeling, oxidative stress, and angiogenesis. Macrophage
amount but also change in their localization is associated with
increased chemokine expression and increased inflammation in
the adipose tissue (6, 37, 38), obesity (5, 7) and insulin resistance
(39). Furthermore, increased expression of complement
components has been previously associated with an increased
inflammatory profile in SAT in obesity, suggesting complement
involvement in the clearance of apoptotic debris in the adipose
tissue (40). Next, upregulation of genes related to ECM
organization in SAT has been associated with a reduced adipose
tissue expansion capacity and dysfunctional adipose tissue in
obesity (41, 42) and with hepatic insulin resistance (43). Alcala
et al. suggested that oxidative stress plays an important role in
ECM remodeling and therefore metabolic regulation in mice
(44). On that note, Van den Bossche et al. (45) reported that
oxidative stress promotes M1 macrophage polarization, while
a plethora of studies have corroborated that adipose tissue
undergoes increased oxidative stress due to obesity induced
by overnutrition (46, 47). Finally, the vascular endothelial
growth factors (VEGFs) are key factors in angiogenesis and
adipose tissue remodeling and VEGF has been reported to
be a chemotactic for macrophages (48). In line with our
results Lu et al. reports VEGFB upregulation was associated to
VEGFA downregulation, as a compensatory mechanism that
leads to brown-like white adipose tissue differentiation (49).
Collectively, our data show that individuals characterized by
high macrophage frequencies have higher expression of genes
involved in inflammatory processes and ECM remodeling,
suggesting increased SAT inflammation.

Moreover, we observed lower expression in genes involved
in lipid and glucose metabolism, mitochondrial respiration and
BCAA catabolism in the individuals with high macrophage
composition. Similar observations have been previously reported
with obesity and/or insulin resistance (19, 50–53). Especially
during hyperinsulinemic conditions, the lower expression of
mitochondrial pathways is an important finding as it could
reflect a regulatory defect, that potentially further advances
the pathogenesis of insulin resistance (19). Nilsson et al.
reported genes involved in adipose tissue lipogenesis strongly
downregulated in the SAT from monozygotic twins discordant
for type 2 diabetes (54). During the development of obesity and
insulin resistance, the adipose tissue can reach a flexing point
while adipocytes reduce their ability to synthesize additional
fatty acids or triglycerols, resulting in decreased lipogenesis
(55, 56). Furthermore, we found lower expression of genes
involved in amino acid metabolism. Wiklund et al. (57) reported
lower SAT expression of genes related to BCCA catabolism
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and mitochondrial energy metabolism along with increased
expression of genes involved in inflammatory processes in
insulin resistant subjects. Collectively, our data show that
individuals characterized by high macrophage frequencies have
lower expression of genes involved in lipid metabolism and
mitochondrial respiration, suggesting adipose tissue dysfunction
and impaired adipocyte differentiation, enhanced by the
increased SAT inflammation.

Strengths, Limitations, and Future
Directions
Our analysis exhibits the substantial benefit of combining and
reusing publicly available data. Additionally, it allows assessing
the contribution of macrophage frequencies to the overall
SAT gene expression. Furthermore, this type of analysis allows
researchers to investigate other cell types potentially involved in
the dysregulation of adipose tissue metabolism. Naturally, our
analysis comes with shortcomings; publicly available datasets
do not provide sufficient information on phenotypic measures
(e.g., BMI, HOMA-IR, or age) that could be adjusted for in the
linear regression analysis. Finally, a context-specific signature
matrix from isolated cells from the tissue of interest could
further improve the computational predictions of the cell-
type composition (10). Additionally, for studying adipose tissue
inflammation, identifying signatures for macrophage subtypes
could be of interest.

In conclusion, we have shown the additive value of integrating
publicly available datasets in combination with the useful
application of cell-type composition in SAT gene expression.
The contribution of macrophage frequencies and other cell types
to adipose tissue dysfunction and plasticity can offer insights
in modulating human health and disease by providing targets
and biomarkers for more personalized risk classification in
the prevention and treatment of obesity and its complications.
We hypothesized that increased macrophage and adipose stem
cell percentage and the decreased percentage of adipocytes
reflects adipose tissue inflammation and impaired preadipocyte
differentiation, possibly reflective of a limited capacity for
hyperplasia, and adipose tissue dysfunction that contributes
to an unfavorable metabolic profile. Further studies should
investigate whether classifying individuals based on their M1
or M2 macrophage profile has a similar effect in SAT gene
expression profiles.
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Supplementary Table 12 | Significantly downregulated genes sensitivity analysis

that excludes study GSE27916 for the M3 vs. M0 group comparison adjusted for

sex and study (model 1). The log2 fold changes, nominal, and FDR p-values

are shown.
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Supplementary Table 18 | Significant biological processes (downregulated

genes) for the M3 vs. M0 group comparison adjusted for sex and study (model 1),

for the sensitivity analysis that excludes study E-MTAB-1895. The column

significant genes shows the number of significant genes identified from our

dataset for this specific GO term. The total # genes shows the total number of

genes associated with that specific GO term. Nominal p-values and false

discovery rate (FDR) p-values for the GO terms are also presented.

REFERENCES

1. Huh JY, Park YJ, Ham M, Kim JB. Crosstalk between adipocytes and immune

cells in adipose tissue inflammation and metabolic dysregulation in obesity.

Mol Cells. (2014) 37:365–71. doi: 10.14348/molcells.2014.0074

2. Pawlina W, Ross MH. Histology: A Text and Atlas: With Correlated Cell and

Molecular Biology. Lippincott Williams &Wilkins (2018).

3. Esteve Rafols M. Adipose tissue: cell heterogeneity and functional diversity.

Endocrinol Nutr. (2014) 61:100–12. doi: 10.1016/j.endoen.2014.02.001

4. Thomas D, Apovian C. Macrophage functions in lean and obese adipose

tissue.Metabolism. (2017) 72:120–43. doi: 10.1016/j.metabol.2017.04.005

5. Weisberg SP, McCann D, Desai M, RosenbaumM, Leibel RL, Ferrante AW Jr.

Obesity is associated with macrophage accumulation in adipose tissue. J Clin

Invest. (2003) 112:1796–808. doi: 10.1172/JCI200319246

6. Surmi BK, Hasty AH. Macrophage infiltration into adipose tissue:

initiation, propagation and remodeling. Future Lipidol. (2008) 3:545–56.

doi: 10.2217/17460875.3.5.545

7. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic

inflammation in fat plays a crucial role in the development of

obesity-related insulin resistance. J Clin Invest. (2003) 112:1821–30.

doi: 10.1172/JCI200319451

8. Stinkens R, Goossens GH, Jocken JW, Blaak EE. Targeting fatty acid

metabolism to improve glucose metabolism. Obes Rev. (2015) 16:715–57.

doi: 10.1111/obr.12298

9. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al.

Determining cell type abundance and expression from bulk tissues with digital

cytometry. Nat Biotechnol. (2019) 37:773–82. doi: 10.1038/s41587-019-0

114-2

10. Lenz M, Arts ICW, Peeters RLM, de Kok TM, Ertaylan G. Adipose tissue

in health and disease through the lens of its building blocks. Sci Rep. (2020)

10:10433. doi: 10.1038/s41598-020-67177-1

11. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al.

NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids

Res. (2013) 41(Database issue):D991–5. doi: 10.1093/nar/gks1193

12. Athar A, Fullgrabe A, George N, Iqbal H, Huerta L, Ali A, et al. ArrayExpress

update - from bulk to single-cell expression data. Nucleic Acids Res. (2019)

47:D711–D5. doi: 10.1093/nar/gky964

13. Nookaew I, Svensson PA, Jacobson P, Jernas M, Taube M, Larsson I, et al.

Adipose tissue resting energy expenditure and expression of genes involved in

mitochondrial function are higher in women than in men. J Clin Endocrinol

Metab. (2013) 98:E370–8. doi: 10.1210/jc.2012-2764

14. Hardy OT, Perugini RA, Nicoloro SM, Gallagher-Dorval K, Puri V, Straubhaar

J, et al. Body mass index-independent inflammation in omental adipose tissue

associated with insulin resistance in morbid obesity. Surg Obes Relat Dis.

(2011) 7:60–7. doi: 10.1016/j.soard.2010.05.013

15. Svensson PA, Jernas M, Sjoholm K, Hoffmann JM, Nilsson BE, Hansson M,

et al. Gene expression in human brown adipose tissue. Int J Mol Med. (2011)

27:227–32. doi: 10.3892/ijmm.2010.566

16. Yoshino J, Conte C, Fontana L, Mittendorfer B, Imai S-i, Schechtman KB,

et al. Resveratrol supplementation does not improve metabolic function in

nonobese women with normal glucose tolerance. Cell Metab. (2012) 16:658–

64. doi: 10.1016/j.cmet.2012.09.015

17. Ong KR, Sims AH, Harvie M, Chapman M, Dunn WB, Broadhurst

D, et al. Biomarkers of dietary energy restriction in women at

increased risk of breast cancer. Cancer Prev Res. (2009) 2:720–31.

doi: 10.1158/1940-6207.CAPR-09-0008

Frontiers in Nutrition | www.frontiersin.org 10 May 2021 | Volume 8 | Article 675935

https://doi.org/10.14348/molcells.2014.0074
https://doi.org/10.1016/j.endoen.2014.02.001
https://doi.org/10.1016/j.metabol.2017.04.005
https://doi.org/10.1172/JCI200319246
https://doi.org/10.2217/17460875.3.5.545
https://doi.org/10.1172/JCI200319451
https://doi.org/10.1111/obr.12298
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1038/s41598-020-67177-1
https://doi.org/10.1093/nar/gks1193
https://doi.org/10.1093/nar/gky964
https://doi.org/10.1210/jc.2012-2764
https://doi.org/10.1016/j.soard.2010.05.013
https://doi.org/10.3892/ijmm.2010.566
https://doi.org/10.1016/j.cmet.2012.09.015
https://doi.org/10.1158/1940-6207.CAPR-09-0008
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Kalafati et al. Macrophage Frequencies to Subcutaneous Adipose Tissue

18. Naukkarinen J, Heinonen S, Hakkarainen A, Lundbom J, Vuolteenaho

K, Saarinen L, et al. Characterising metabolically healthy obesity in

weight-discordant monozygotic twins. Diabetologia. (2014) 57:167–76.

doi: 10.1007/s00125-013-3066-y

19. Soronen J, Laurila PP, Naukkarinen J, Surakka I, Ripatti S, Jauhiainen

M, et al. Adipose tissue gene expression analysis reveals changes in

inflammatory, mitochondrial respiratory and lipid metabolic pathways

in obese insulin-resistant subjects. BMC Med Genomics. (2012) 5:9.

doi: 10.1186/1755-8794-5-9

20. Keller P, Gburcik V, Petrovic N, Gallagher IJ, Nedergaard J, Cannon B,

et al. Gene-chip studies of adipogenesis-regulated microRNAs in mouse

primary adipocytes and human obesity. BMC Endocr Disord. (2011) 11:7.

doi: 10.1186/1472-6823-11-7

21. Yates AD, Achuthan P, Akanni W, Allen J, Allen J, Alvarez-Jarreta

J, et al. Ensembl 2020. Nucleic Acids Res. (2020) 48:D682–D8.

doi: 10.1093/nar/gkz966

22. Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the

integration of genomic datasets with the R/Bioconductor package biomaRt.

Nat Protoc. (2009) 4:1184–91. doi: 10.1038/nprot.2009.97

23. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers

differential expression analyses for RNA-sequencing and microarray studies.

Nucleic Acids Res. (2015) 43:e47. doi: 10.1093/nar/gkv007

24. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for

comparing biological themes among gene clusters. OMICS. (2012) 16:284–7.

doi: 10.1089/omi.2011.0118

25. Slenter DN, Kutmon M, Hanspers K, Riutta A, Windsor J, Nunes

N, et al. WikiPathways: a multifaceted pathway database bridging

metabolomics to other omics research.Nucleic Acids Res. (2018) 46:D661–D7.

doi: 10.1093/nar/gkx1064

26. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D,

et al. Cytoscape: a software environment for integrated models of

biomolecular interaction networks. Genome Res. (2003) 13:2498–504.

doi: 10.1101/gr.1239303

27. Gustavsen JA, Pai S, Isserlin R, Demchak B, Pico AR. RCy3: Network

biology using Cytoscape from within R. F1000Res. (2019) 8:1774.

doi: 10.12688/f1000research.20887.1

28. Bluher M. Metabolically healthy obesity. Endocr Rev. (2020) 41:bnaa04.

doi: 10.1210/endrev/bnaa004

29. Danforth E Jr. Failure of adipocyte differentiation causes type II diabetes

mellitus? Nat Genet. (2000) 26:13. doi: 10.1038/79111

30. PasaricaM, Xie H, Hymel D, Bray G, Greenway F, Ravussin E, et al. Lower total

adipocyte number but no evidence for small adipocyte depletion in patients

with type 2 diabetes. Diabetes Care. (2009) 32:900–2. doi: 10.2337/dc08-2240

31. Perez LM, Bernal A, San Martin N, Galvez BG. Obese-derived ASCs show

impairedmigration and angiogenesis properties.Arch Physiol Biochem. (2013)

119:195–201. doi: 10.3109/13813455.2013.784339

32. Perez LM, Bernal A, San Martin N, Lorenzo M, Fernandez-Veledo S, Galvez

BG. Metabolic rescue of obese adipose-derived stem cells by Lin28/Let7

pathway. Diabetes. (2013) 62:2368–79. doi: 10.2337/db12-1220

33. Baglioni S, Cantini G, Poli G, Francalanci M, Squecco R, Di Franco A,

et al. Functional differences in visceral and subcutaneous fat pads originate

from differences in the adipose stem cell. PLoS One. (2012) 7:e36569.

doi: 10.1371/journal.pone.0036569

34. Onate B, Vilahur G, Ferrer-Lorente R, Ybarra J, Diez-Caballero A, Ballesta-

Lopez C, et al. The subcutaneous adipose tissue reservoir of functionally

active stem cells is reduced in obese patients. FASEB J. (2012) 26:4327–36.

doi: 10.1096/fj.12-207217

35. Perez LM, Bernal A, de Lucas B, San Martin N, Mastrangelo A, Garcia

A, et al. Altered metabolic and stemness capacity of adipose tissue-derived

stem cells from obese mouse and human. PLoS One. (2015) 10:e0123397.

doi: 10.1371/journal.pone.0123397

36. Perez LM, Suarez J, Bernal A, de Lucas B, San Martin N, Galvez BG. Obesity-

driven alterations in adipose-derived stem cells are partially restored by weight

loss. Obesity (Silver Spring). (2016) 24:661–9. doi: 10.1002/oby.21405

37. Huber J, Kiefer FW, Zeyda M, Ludvik B, Silberhumer GR, Prager G, et al. CC

chemokine and CC chemokine receptor profiles in visceral and subcutaneous

adipose tissue are altered in human obesity. J Clin Endocrinol Metab. (2008)

93:3215–21. doi: 10.1210/jc.2007-2630

38. Tourniaire F, Romier-Crouzet B, Lee JH,Marcotorchino J, Gouranton E, Salles

J, et al. Chemokine expression in inflamed adipose tissue is mainly mediated

by NF-κB. PLoS One. (2013) 8:e66515. doi: 10.1371/journal.pone.0066515

39. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, et al.

Adipocyte death defines macrophage localization and function in adipose

tissue of obese mice and humans. J Lipid Res. (2005) 46:2347–55.

doi: 10.1194/jlr.M500294-JLR200

40. Kaye S, Lokki AI, Hanttu A, Nissila E, Heinonen S, Hakkarainen A, et al.

Upregulation of early and downregulation of terminal pathway complement

genes in subcutaneous adipose tissue and adipocytes in acquired obesity. Front

Immunol. (2017) 8:545. doi: 10.3389/fimmu.2017.00545

41. Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J

Clin Invest. (2011) 121:2094–101. doi: 10.1172/JCI45887

42. Khan T,Muise ES, Iyengar P,Wang ZV, ChandaliaM, Abate N, et al. Metabolic

dysregulation and adipose tissue fibrosis: role of collagen VI. Mol Cell Biol.

(2009) 29:1575–91. doi: 10.1128/MCB.01300-08

43. van der Kolk BW, Kalafati M, Adriaens M, van Greevenbroek MMJ,

Vogelzangs N, Saris WHM, et al. Subcutaneous adipose tissue and

systemic inflammation are associated with peripheral but not hepatic

insulin resistance in humans. Diabetes. (2019) 68:2247–58. doi: 10.2337/db

19-0560

44. Alcala M, Sanchez-Vera I, Sevillano J, Herrero L, Serra D, Ramos MP, et al.

Vitamin E reduces adipose tissue fibrosis, inflammation, and oxidative stress

and improves metabolic profile in obesity. Obesity (Silver Spring). (2015)

23:1598–606. doi: 10.1002/oby.21135

45. Van den Bossche J, Baardman J, Otto NA, van der Velden S, Neele

AE, van den Berg SM, et al. Mitochondrial dysfunction prevents

repolarization of inflammatory macrophages. Cell Rep. (2016) 17:684–96.

doi: 10.1016/j.celrep.2016.09.008

46. Aroor AR, DeMarco VG. Oxidative stress and obesity: the chicken or the egg?

Diabetes. (2014) 63:2216–8. doi: 10.2337/db14-0424

47. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima

Y, et al. Increased oxidative stress in obesity and its impact on

metabolic syndrome. J Clin Invest. (2004) 114:1752–61. doi: 10.1172/JCI

21625

48. Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D. Migration

of human monocytes in response to vascular endothelial growth factor

(VEGF) is mediated via the VEGF receptor flt-1. Blood. (1996) 87:3336–43.

doi: 10.1182/blood.V87.8.3336.bloodjournal8783336

49. Lu X, Ji Y, Zhang L, Zhang Y, Zhang S, An Y, et al. Resistance to

obesity by repression of VEGF gene expression through induction of

brown-like adipocyte differentiation. Endocrinology. (2012) 153:3123–32.

doi: 10.1210/en.2012-1151

50. Auguet T, Guiu-Jurado E, Berlanga A, Terra X, Martinez S, Porras JA, et al.

Downregulation of lipogenesis and fatty acid oxidation in the subcutaneous

adipose tissue of morbidly obese women. Obesity (Silver Spring). (2014)

22:2032–8. doi: 10.1002/oby.20809

51. Elbein SC, Kern PA, Rasouli N, Yao-Borengasser A, Sharma NK, Das

SK. Global gene expression profiles of subcutaneous adipose and

muscle from glucose-tolerant, insulin-sensitive, and insulin-resistant

individuals matched for BMI. Diabetes. (2011) 60:1019–29. doi: 10.2337/db

10-1270

52. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J,

et al. PGC-1α-responsive genes involved in oxidative phosphorylation are

coordinately downregulated in human diabetes. Nat Genet. (2003) 34:267–73.

doi: 10.1038/ng1180

53. Mustelin L, Pietilainen KH, Rissanen A, Sovijarvi AR, Piirila P, Naukkarinen

J, et al. Acquired obesity and poor physical fitness impair expression of

genes of mitochondrial oxidative phosphorylation in monozygotic twins

discordant for obesity. Am J Physiol Endocrinol Metab. (2008) 295:E148–54.

doi: 10.1152/ajpendo.00580.2007

54. Nilsson E, Jansson PA, Perfilyev A, Volkov P, Pedersen M, Svensson

MK, et al. Altered DNA methylation and differential expression of

genes influencing metabolism and inflammation in adipose tissue from

subjects with type 2 diabetes. Diabetes. (2014) 63:2962–76. doi: 10.2337/db

13-1459

55. Ortega FJ, Mayas D, Moreno-Navarrete JM, Catalan V, Gomez-

Ambrosi J, Esteve E, et al. The gene expression of the main lipogenic

Frontiers in Nutrition | www.frontiersin.org 11 May 2021 | Volume 8 | Article 675935

https://doi.org/10.1007/s00125-013-3066-y
https://doi.org/10.1186/1755-8794-5-9
https://doi.org/10.1186/1472-6823-11-7
https://doi.org/10.1093/nar/gkz966
https://doi.org/10.1038/nprot.2009.97
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1093/nar/gkx1064
https://doi.org/10.1101/gr.1239303
https://doi.org/10.12688/f1000research.20887.1
https://doi.org/10.1210/endrev/bnaa004
https://doi.org/10.1038/79111
https://doi.org/10.2337/dc08-2240
https://doi.org/10.3109/13813455.2013.784339
https://doi.org/10.2337/db12-1220
https://doi.org/10.1371/journal.pone.0036569
https://doi.org/10.1096/fj.12-207217
https://doi.org/10.1371/journal.pone.0123397
https://doi.org/10.1002/oby.21405
https://doi.org/10.1210/jc.2007-2630
https://doi.org/10.1371/journal.pone.0066515
https://doi.org/10.1194/jlr.M500294-JLR200
https://doi.org/10.3389/fimmu.2017.00545
https://doi.org/10.1172/JCI45887
https://doi.org/10.1128/MCB.01300-08
https://doi.org/10.2337/db19-0560
https://doi.org/10.1002/oby.21135
https://doi.org/10.1016/j.celrep.2016.09.008
https://doi.org/10.2337/db14-0424
https://doi.org/10.1172/JCI21625
https://doi.org/10.1182/blood.V87.8.3336.bloodjournal8783336
https://doi.org/10.1210/en.2012-1151
https://doi.org/10.1002/oby.20809
https://doi.org/10.2337/db10-1270
https://doi.org/10.1038/ng1180
https://doi.org/10.1152/ajpendo.00580.2007
https://doi.org/10.2337/db13-1459
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Kalafati et al. Macrophage Frequencies to Subcutaneous Adipose Tissue

enzymes is downregulated in visceral adipose tissue of obese

subjects. Obesity (Silver Spring). (2010) 18:13–20. doi: 10.1038/oby.2

009.202

56. Poulain-Godefroy O, Lecoeur C, Pattou F, Fruhbeck G, Froguel P.

Inflammation is associated with a decrease of lipogenic factors in omental

fat in women. Am J Physiol Regul Integr Comp Physiol. (2008) 295:R1–7.

doi: 10.1152/ajpregu.00926.2007

57. Wiklund P, Zhang X, Pekkala S, Autio R, Kong L, Yang Y, et al. Insulin

resistance is associated with altered amino acid metabolism and adipose

tissue dysfunction in normoglycemic women. Sci Rep. (2016) 6:24540.

doi: 10.1038/srep24540

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Kalafati, Lenz, Ertaylan, Arts, Evelo, van Greevenbroek, Blaak,

Adriaens and Kutmon. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Nutrition | www.frontiersin.org 12 May 2021 | Volume 8 | Article 675935

https://doi.org/10.1038/oby.2009.202
https://doi.org/10.1152/ajpregu.00926.2007
https://doi.org/10.1038/srep24540
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles

	Assessing the Contribution of Relative Macrophage Frequencies to Subcutaneous Adipose Tissue
	Introduction
	Materials and Methods
	Deconvolution of Adipose Tissue Cell Types by TissueDecoder
	Filtering on Absolute Expression Level
	Grouping Subjects Based on Relative Macrophage Amount
	Statistical Analysis
	Participant Characteristics
	Differential Gene Expression Analysis
	Gene Ontology Analysis
	Pathway Analysis
	Network Analysis
	Sensitivity Analysis


	Results
	Dataset Characteristics
	Participant Characteristics
	High Macrophage Frequencies Are Associated With Higher Adipose Stem Cell and Lower Subcutaneous Adipocyte Frequencies in SAT
	SAT Transcriptome Differences Between Groups With High and Low Macrophage Frequencies
	GO Enrichment Analysis Between High and Low M Groups
	Increased Inflammatory SAT Gene Expression Associated With High Macrophage Frequencies
	Dysfunctional Lipid and Glucose Metabolism, Mitochondrial Respiration, and BCAA Catabolism Associated With High Macrophage Frequencies in SAT
	Sensitivity Analysis

	Discussion
	Methodology and Benefit of the Analytic Approach
	Biological Implications of Our Findings
	Strengths, Limitations, and Future Directions

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


