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Generating high quality libraries for DIA MS with
empirically corrected peptide predictions
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Data-independent acquisition approaches typically rely on experiment-specific spectrum

libraries, requiring offline fractionation and tens to hundreds of injections. We demonstrate a

library generation workflow that leverages fragmentation and retention time prediction to

build libraries containing every peptide in a proteome, and then refines those libraries with

empirical data. Our method specifically enables rapid, experiment-specific library generation

for non-model organisms, which we demonstrate using the malaria parasite Plasmodium

falciparum, and non-canonical databases, which we show by detecting missense variants

in HeLa.
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Data-independent acquisition (DIA) mass spectrometry
(MS) is a powerful label-free technique for deep,
proteome-wide profiling1,2. With DIA, mass spectro-

meters are tuned to systematically acquire tandem mass spectra at
regular retention time and m/z intervals, freeing the method of
the intensity-triggering biases introduced by data-dependent
acquisition (DDA). To accomplish this, precursor isolation win-
dows are widened such that multiple peptides are usually co-
fragmented in the same MS/MS scan. DIA methods generally
identify peptides with library search engines3–5 using experiment-
specific spectrum libraries6 from DDA experiments. In peptide-
centric searching7, library entries are scored according to reten-
tion time, such that the best-scoring time point for each peptide is
reported. Only peptides present in the libraries can be detected,
and the peptide detection reports must be corrected to limit the
number of potential false discoveries8. Most importantly, these
libraries are built at the expense of time, sample, and considerable
effort with offline fractionation, especially considering that they
are typically not reusable across laboratories or instrument
platforms9.

When experiment-specific spectrum library generation is either
impossible or impractical, as is frequently the case with non-
model organisms, sequence variants, splice isoforms, or scarce
sample quantities, software tools such as Pecan10 and DIA-
Umpire11 can detect peptides from DIA experiments without a
spectrum library by directly searching every peptide in FASTA
databases. Gas-phase fractionation12 (GPF) improves detection
rates with these tools10 by injecting the same sample multiple
times with tiled precursor isolation windows, allowing each
injection to have narrower windows (and thus fewer co-
fragmented peptides) with the same instrument duty cycle.
While offline fractionation requires an additional liquid chro-
matography (LC) step using orthogonal separation modes to
online LC-MS, GPF occurs completely within the mass spectro-
meter, making it both more reproducible and easier to perform.
While this method is often prohibitively expensive because it
requires enough instrument time and protein content for multiple
injections for each sample, the use of multiple GPF injections can
be applied just to pooled samples to generate DIA-only chro-
matogram libraries that make it easier to detect peptides in single-
injection DIA experiments13. However, even when using GPF,
these tools still generally detect fewer peptides than library search
engines, which can leverage previously acquired instrument-
specific fragmentation and measured retention times.

Recently it has become possible to accurately predict spectra
from peptide sequences14,15, but direct searching of single-
injection DIA data has remained problematic, in part due to the
false discovery rate (FDR) correction required when considering
all possible tryptic peptides in a FASTA database. Proteins show
3–4 orders of magnitude difference in intensity between the best-
and worst-responding tryptic peptides16, and only considering
the best-responding peptides in libraries can improve detection
rates by lessening the required FDR correction. This approach has
been applied by generating independent assay libraries for each
DIA injection, either by searching the DIA data directly5,11, or
using paired DIA/DDA experiments6,17.

Here we demonstrate an approach to generate DIA-only
chromatogram libraries from GPF-DIA injections using peptide
fragmentation and retention time predictions. This method cre-
ates empirically corrected libraries that sidestep the issues of
directly searching predicted libraries, because the GPF-DIA
injections use the same acquisition parameters, chromato-
graphic conditions, and sample matrix as quantitative single-
injection DIA experiments. We observe improved peptide
detection rates when searching these empirically corrected
libraries over searching sample-specific DDA libraries.

Empirically corrected libraries are built directly from protein
sequence databases, allowing our workflow to enable experiments
that identify protein-level genetic variants and quantify peptides
from non-model organisms.

Results
Empirically corrected libraries from peptide predictions. Here
we report on a DIA-only workflow that produces higher-quality
libraries than those generated by DDA while simultaneously
supplanting the need for any offline fractionation. Our workflow
(Fig. 1, Methods) uses a recently developed deep neural network,
Prosit14, to generate a predicted spectrum library of fragmenta-
tion patterns and retention times for every +2H and +3H tryptic
peptide in a FASTA database, with up to one missed cleavage.
Fragmentation prediction in Prosit adjusts based on normalized
collision energy (NCE), and we tune the NCE parameter for each
peptide charge state to account for DIA-specific fragmentation.

Building on the chromatogram library method13, we make a
pool of sub-aliquots from a representative subset of biological
samples in our experiment. In addition to analyzing each
biological sample using single-injection DIA (typically 4- to
12m/z-wide precursor isolation windows after staggered-window
demultiplexing18, depending on the instrumentation) with a 90-
min gradient, we collect six additional GPF-DIA acquisitions
(typically 2m/z-wide precursor isolation windows after demulti-
plexing, regardless of instrumentation) of the sample pool using
the same gradient. Considering column washes, these GPF-DIA
acquisitions take approximately 12 total additional hours of MS
acquisition. We find that single-injection DIA can benefit from
tuning the precursor isolation window to suit the mass spectro-
meter acquisition rate. However, GPF-DIA acquisitions tend to
be ion population-limited, and narrowing precursor isolation
windows below 2m/z (after demultiplexing) does not improve
detection rates (data not shown). In part, this may be related to
smaller windows breaking up isotopic envelopes, resulting in
lower overall sensitivity.

We search the GPF-DIA acquisitions of the pool against the
predicted spectrum library using EncyclopeDIA. Searching with
the predicted spectrum library has multiple disadvantages over
experiment-specific libraries. First, correcting for false discoveries
requires more stringent thresholds when considering every
possible peptide in a proteome, rather than just those previously
detected in a pooled sample. Secondly, while Prosit typically
produces higher-quality spectrum libraries with deep learning
than other, more conventional approaches19, the predictions are
less accurate than experiment-specific libraries generated on the
same instrumentation. However, these two disadvantages are
mitigated by the use of GPF-DIA with precursor isolation
windows as narrow as those used in targeted parallel reaction
monitoring20 (PRM) or DDA.

Finally, we use the detections made with GPF-DIA to construct
a new, empirically corrected library removing the disadvantages
of the predicted spectrum library. Assuming that virtually every
consistently quantifiable peptide in an experiment is detectable
from the pool using GPF-DIA, we filter the predicted library to
remove peptides that cannot be found in the pool. In addition, we
select the highest-scoring (and therefore easiest to detect) charge
state for each peptide and remove other, lower-scoring charge
states from the library. Then, for each identified peptide, we
calculate the aggregate peak shape across all of the identified
fragment ions and extract fragment peak area intensities for all
possible B- or Y-type ions that correlate with this shape. Since the
GPF-DIA injections are performed using the same instrumenta-
tion setup as the single-injection DIA injections, we use these
intensities as the fragmentation patterns in the empirically
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corrected library. Similarly, we use the time point of the apex
intensity of the aggregate peak shape as the retention time in the
new library. We find that while peptide ordering on the same
HPLC platform with the same column and method is typically
very high, we still benefit from retention time alignment to
account for fluctuations in run-to-run chromatography stability.
In addition, we perform the six GPF-DIA injections of the pool
near the middle of an experiment after at least one full set of
biological replicates, to limit variability caused by column (re)
conditioning to a new proteome composition. We recommend
reacquiring the six GPF-DIA injections if the column or gradient
change while an experiment is being conducted.

Validating the empirically corrected library methodology. We
first applied our method to analyze a yeast tryptic digest on a
Thermo Fusion Lumos MS. After column conditioning, we
acquired four replicate injections of single injection 400–1000m/z
DIA using 4m/z-wide windows (after demultiplexing) at 20 ms
ion injection time. We followed this by six GPF-DIA injections
from 400 to 500m/z, 500 to 600m/z, 600 to 700m/z, 700 to
800m/z, 800 to 900m/z, and 900 to 1000m/z with 2m/z-wide
windows (after demultiplexing) at 60 ms ion injection time. Using

a Uniprot Saccharomyces cerevisiae protein database (6729
entries), we produced a predicted spectrum library containing
456,511 total entries with 320,150 unique peptide sequences,
assuming an NCE of 33. After empirical correction, the new
library contained 64,597 unique peptide sequences from 4464
protein groups at a 1% peptide and protein FDR.

Although searching single-injection DIA acquisitions directly
with predicted spectrum libraries is highly dependent on
prediction accuracy, we found that our workflow produced
high-quality libraries even if the predictions were not precisely
tuned for the instrument, which suggests broad cross-platform
applicability. We demonstrated this by modulating the NCE
setting in Prosit (Fig. 2a) and comparing with two libraries: (1) an
experiment-specific offline high-pH reversed-phase (HpH-RP)
fractionated DDA spectral library containing 39,612 unique
peptide sequences acquired at the same time as the DIA
experiment and (2) a sample-specific offline SCX fractionated
DDA spectral library containing 45,987 unique peptide sequences
from another study. Even across a wide range of NCE settings,
searching GPF-DIA spectra produced between 33% and 60%
larger empirically corrected libraries than we could obtain from
the experiment-specific 10-fraction HpH-RP fractionated DDA
library (Fig. 2b). Interestingly, the optimal NCE setting for Prosit
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Fig. 1 Workflow for generating empirically corrected libraries. Fragmentation patterns and indexed retention times (iRTs) are generated with Prosit for all
possible tryptic peptides in a FASTA database, and these predictions are compiled into a predicted spectrum library. In this example, peptides from CDPK2
are shown with start/stop indices within the protein indicated in parentheses (red predicted spectra). We use EncyclopeDIA to search GPF-DIA
acquisitions of a sample pool with that library, and peptides detection results are compiled into a experiment-specific, empirically corrected library. This
new library contains fragmentation patterns and retention times extracted from the GPF-DIA data for only the detected peptides (blue empirical spectra).
Since GPF-DIA and single-injection DIA have the same instrumentation and on-column matrix, retention times and fragmentation patterns in the
empirically corrected library are more closely aligned than the original predictions.
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was 36 (not the instrument method-specified 33), which likely
reflects calibration drift and variation across Orbitrap instru-
ments21. Fewer peptides will be detectable in both single-injection
DIA and GPF-DIA data at incorrect NCE settings. However,
since there is less interference in GPF-DIA, these detection rates
do not drop as quickly. After empirical correction, the library will
contain fragmentation patterns observed in the GPF-DIA data
rather than the original library tuning parameters (Supplemen-
tary Fig. 1), and any peptide that can be detected in the GPF-DIA
data will be easier to detect in single-injection DIA. In this way,
the GPF-DIA functions as a calibration step that corrects the
Prosit NCE setting, making searches of single-injection DIA less
sensitive to NCE drift or other sources of prediction inaccuracies
after empirical correction (Fig. 2c).

Retention time is affected by chromatographic conditions, but
also by matrix effects. Single-injection DIA and DDA both
measure peptides within the full matrix. Offline fractionation,
such as SCX or high-pH reversed-phase, change the matrix by
fractionating the peptide mixture into multiple samples. Conse-
quently, each peptide sees a different matrix as it elutes relative to
the single-injection injections, causing errors in retention time
estimates. Unlike offline fractionation, GPF-DIA uses the
quadrupole for fractionation, maintaining the same full matrix
complexity of single-injection DIA and improving retention time
consistency. This process produced libraries with better retention
time accuracy (80% of peptides within 35 s) than both the
predicted (80% within 5.4 min) and fractionated DDA libraries
(80% within 4.6 min), even when the DDA libraries were acquired
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Fig. 2 Evaluating empirically corrected libraries made with peptide predictions. a Violin plots showing spectral correlation between predicted library for
yeast peptides and single-injection DIA (N= 1) at various NCE settings (circles indicate medians) when the instrument was configured for NCE= 33. b The
total numbers of empirically corrected library entries detected from GPF-DIA at various NCE settings (N= 1). c The fraction of peptides detected in single-
injection DIA (N= 1) relative to the optimal NCE for empirically corrected libraries (blue line) are more consistent than predicted libraries (red dashed line)
across a wide range of NCE settings. d The number of yeast peptides detected at 1% peptide FDR in single-injection DIA acquisitions (N= 4) using the
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on the same instrument (Supplementary Fig. 2). Coupled with
smaller library size and improved fragmentation patterns
(Supplementary Fig. 3), these three factors had roughly equal
and orthogonal improvements over directly searching single-
injection DIA with predicted libraries (Fig. 2d).

We were interested to determine if empirically corrected
libraries could be reused for different experiments. To test this, we
reanalyzed yeast datasets13 from a Thermo QE-HF MS at a
different location using the empirically corrected library gener-
ated in this study on a Thermo Fusion Lumos MS. We found we
were able to detect more peptides using the empirically corrected
library than could be detected by analyzing the same data with a
Prosit-predicted library or FASTA-only approach using Pecan.
However, even better results were produced if the data were

analyzed with a library built from GPF-DIA injections collected
on the same instrument (Supplementary Fig. 5). In this case,
collecting additional GPF-DIA injections and building an
empirically corrected library for each experiment improved
peptide detection rates by 30%.

While HpH-RP and SCX fractionated DDA produced similar-
sized libraries, these libraries draw from different pools of peptides
(Supplementary Fig. 4), demonstrating that combining both
fractionation methods is necessary for building comprehensive
DDA libraries. We observed that searching a combined HpH-RP
and SCX library produced more detections in single-injection DIA
datasets than either DDA library individually, but that overall,
searching single-injection DIA acquisitions with an empirically
corrected library detected 31% more yeast peptides (Fig. 3a). Both
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Pecan and the combined HpH-RP and SCX library can also be
calibrated using GPF-DIA with the chromatogram library method.
Searching single-injection DIA datasets with the empirically
corrected predicted library outperformed searching the Pecan-
based chromatogram library, and detected a comparable number of
peptides to searching the DDA-based chromatogram library
without any additional DDA measurements or offline fractionation.

Finding missense variants with non-canonical libraries. Most
publicly available spectrum libraries22–24 are built by searching
millions of spectra against a canonical genome. Our approach
facilitates the analysis of sequence variants and splice junctions by
simplifying exome-specific library construction, and we demon-
strate this by analyzing HeLa-specific missense sequence variants.
RNA-seq expression across different HeLa strains25 suggests that
12.4k genes containing 127 missense variants determined by the
COSMIC26 cell line project are typically expressed (≥10 counts,
≥0.1 RPKM). Recently a custom database including COSMIC
variants was used to reanalyze 40 public HeLa datasets containing
1206 total DDA acquisitions27, globally detecting 21 missense
variants. Using this custom database, we built an empirically cor-
rected library for a previously published Thermo Q-Exactive HF
(QE-HF) HeLa dataset13, producing 37% more peptides than the
39-injection DDA library originally used in that analysis (Fig. 3a)
and mirroring the results from the yeast experiment. This library
contained 7484 protein groups including 37 missense variants
(Supplementary Data 1, Supplementary Fig. 6), representing
approximately 30% of the expected expressed variants reported by
COSMIC. With the library we detected an average of 24 missense
variants from single-injection DIA acquisitions (Fig. 3b).

While in general the additionally detected variant-containing
peptides will not greatly affect the overall number of quantitative
measurements, quantifying key peptides in specific genes, such as
the peptide antigen binding region of HLA28 (Fig. 3c–e), can have
a profound effect on biological interpretation. All of the variants
detected in this analysis are expected from the genomic data
presented in COSMIC. While improved fragmentation and
retention time accuracy in empirically corrected libraries can
buffer search engines from over-reporting missense variants, care
must be taken when attempting to distinguish between homo-
logous sequences with DIA. Heterozygous peptides with similar
retention times, such as those associated with G623S from the
kinase EEF2K (Supplementary Fig. 7a), can share fragment ions
(Supplementary Fig. 7b) and must be localized as if they
contained post-translational modifications (PTMs)29,30 if they
fall in the same precursor isolation window.

Detecting and quantifying peptides from non-model organ-
isms. We further applied our workflow to analyze cultures of
human red blood cells (RBCs) infected with Plasmodium falci-
parum, the parasite responsible for 50% of all malaria cases. We
performed DDA and DIA on late-stage (stage IV/V) gametocytes,
the form of the parasite that is transmitted from an infected
human to the mosquito vector that spreads the disease. Using a
QE-HF MS, we produced a 3378-protein empirically corrected
library, increasing the previously known proteome31 size by 58%
(Fig. 4a) while only missing 2.5% of proteins detected with other
methods. To estimate a null level, we performed the same
approach of searching for P. falciparum peptides on GPF-DIA
injections of uninfected RBCs and found that the library pro-
duced zero peptide and protein detections.

Using the empirically corrected library, we measured 2740
proteins in single-injection DIA experiments of P. falciparum
peptides. Because Plasmodium is an obligate parasite, even
samples produced by in vitro culture are frequently contaminated
with the host proteome. To study the robustness of our method
we diluted P. falciparum peptides into peptides derived from
uninfected RBCs to construct matched-matrix calibration
curves32 for every detected peptide, and found we could detect
>80% of the parasite peptides in up to 1:99 dilution (Fig. 4b,
Supplementary Fig. 8a). We found that with our method, DIA
maintained higher quantification precision and depth at each
dilution step than comparable DDA experiments (Fig. 4c,
Supplementary Fig. 8b) that were analyzed with MaxQuant33

with match-between-runs enabled. Leveraging the highly accurate
retention times in our empirically corrected library, we found that
we could in part recover contaminated P. falciparum samples
(Supplementary Fig. 9), even when MaxQuant/DDA reported the
majority of peptides as missing values.

We analyzed 2444 P. falciparum protein groups with at least
two peptides (Supplementary Data 2) that were detected in every
DIA acquisition of three culture replicates with three technical
replicates each (nine acquisitions total). After cross-referencing
against the PlasmoDB34 compendium of 20 different studies at
various asexual, sexual, and mosquito stages, we observed 20
proteins previously undetected by mass spectometry in any life
stage of P. falciparum. We found an additional 396 proteins that
had never been observed in late-stage gametocytes, including 55
previously detected only in immature (stage I/II) gametocytes.
Experiments such as these have the potential to redefine the
protein expression signature for each stage of the Plasmodium life
cycle, information that may be vital to identifying targets to
disrupt parasite maturation. For example, among those proteins
previously undetected in gametocytes is the calcium-dependent
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Fig. 4 Rapid library generation and quantitation of Plasmodium falciparum proteins. a A proportionally sized Venn diagram showing the overlap between
proteins detected in the empirically corrected library (blue), the full single-injection dilution curve with DDA (red), and the Stage IV/V mixed male/female
sexual P. falciparum proteome published by Lasonder et al.31 from 20× GeLCMS-fractionated DDA acquisitions (yellow). Quantitative ratios of b 2740 DIA-
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protein kinase CDPK2 (PF3D7_0610600). P. falciparum parasites
lacking CDPK2 develop normally through asexual stages, but
male gametocytes are incapable of undergoing exflagellation to
become gametes, thereby preventing transmission to the
mosquito vector35. Our work validates that CDPK2 is indeed
present at measurable levels in gametocytes, paving the way to
monitor dynamic expression of this kinase over the course of
parasite maturation.

Discussion
In conclusion, empirical correction of predicted spectrum
libraries enables rapid experiment-specific library generation for
non-canonical proteomes or non-model organisms without off-
line fractionation. DDA-based spectral libraries can become stale
over time as columns are changed or NCE tuning drifts within an
instrument. While the method we propose to create empirically
corrected libraries requires an extra 6 GPF-DIA injections for
each new experiment, the procedure has the advantage of
ensuring that the library is always up-to-date, and even accounts
for variation across different instrument platforms.

In addition to DIA applications, this method is applicable for
building accurate mass and time tag36,37 libraries for MS1-only
data acquisition strategies, such as BoxCar38, an approach that
forgoes collecting MS/MS and relies on highly accurate mass and
retention time indices to identify peptides using match-between-
runs. Error rates for match-between-runs peptide detection
without MS/MS spectra are often higher than 1% FDR and
are hard to estimate without controlled experiments39. Errors
caused by approaches such as BoxCar are likely exacerbated when
the on-column matrix changes, such as between fractionated and
unfractionated proteomes. Since our approach builds libraries
using the same on-column matrix, retention time tags built with
GPF-DIA will likely remove this source of variability.

We also developed a graphical user interface in EncyclopeDIA
(Supplementary Note 1) to facilitate making empirically corrected
libraries for new proteomes from any FASTA database, which can
be converted for external use in both Skyline40 and OpenSwath4.
While our interface currently does not support analyzing peptides
with PTMs, we believe that when prediction software improves
for PTMs, our approach to library building will work for those
peptides as well. To encourage the reuse of our method, we have
released a growing repository of pre-generated predicted libraries
compatible with EncyclopeDIA, Skyline, and Scaffold DIA, which
are available for download at ProteomicsDB [https://www.
proteomicsdb.org/prosit/libraries].

Methods
S. cerevisiae culture and sample preparation. As described in Searle et al.,13 S.
cerevisiae strain BY4741 (Dharmacon) was cultured at 30 °C in YEPD and har-
vested at the mid-log phase. Cells were pelleted and lysed in a buffer of 8 M urea,
50 mM Tris (pH 8), 75 mM NaCl, 1 mM EDTA (pH 8) followed by seven cycles of
4 min bead beating with glass beads. After a 1 min rest on ice, lysate was collected
by piercing the tube and centrifuging for 1 min at 3000 × g and 4 °C into an empty
eppendorf. After further centrifugation at 21,000 × g and 4 °C for 15 min, the
protein content of the supernatant was removed and estimated using BCA. Pro-
teins were then reduced with 5 mM dithiothreitol for 30 min at 55 °C, alkylated
with 10 mM iodoacetamide in the dark for 30 min at room temperature, and
diluted to 1.8 M urea, before digestion with sequencing-grade trypsin (Pierce) at a
1:50 enzyme-to-substrate ratio for 16 h at 37 °C. In all, 5 N HCl was added to
approximately pH 2 to quench the digestion, and the resulting peptides were
desalted with 30 mg MCX cartridges (Waters). Peptides were dried with vacuum
centrifugation and brought to 1 μg/3 μl in 0.1% formic acid (buffer A) prior to MS
acquisition. All measurements of yeast were performed on the same biological
replicate to assess technical variability in the method.

P. falciparum culture and red blood cell sample preparation. Human O+
erythrocytes (RBCs) were obtained from Valley Biomedical (Winchester, VA;
catalog number HP1002O). Three biologically replicate flasks of stage IV/V P.

falciparum NF54 gametocytes were prepared. Asexual cultures were synchronized
with sorbitol and set up at 5% hematocrit and 1% parasitemia. Gametocytogenesis
was induced by withholding fresh blood and allowing parasitemia to increase. N-
acetyl glucosamine was added to media for 4 days beginning 7 days after setup in
order to remove asexual parasites. Gametocyte-infected erythrocytes (giRBC) were
enriched from uninfected erythrocytes (uiRBC) by magnetic-activated cell sorting
at stage III. Stage IV/V gametocytes were collected on day 15 post-setup. Addi-
tional uiRBC were also prepared by washing multiple times in RPMI and stored at
50% hematocrit. giRBC and uiRBC cells were lysed in a buffer of 10% sodium
dodecyl sulfate (SDS), 100 mM ammonium bicarbonate (ABC), cOmplete EDTA-
free Protease Inhibitor Cocktail (Sigma), and Halt Phosphatase Inhibitor Cocktail
(Thermo Scientific). Proteins were then reduced with 20–40 mM tris(2-carbox-
yethyl)phosphine (TCEP) for 10 min at 95 °C and alkylated with 40–80 mM
iodoacetamide in the dark for 20 min at room temperature. After centrifugation at
16,000 × g to pellet insoluble material, proteins were purified with methanol:
chloroform extraction41 and dried and resuspended in 8M urea buffer before the
content was estimated using BCA. After dilution to 1.8 M urea, proteins were
digested with sequencing-grade trypsin (Promega) at a 1:40 enzyme-to-substrate
ratio for 15 h at 37 °C. The resulting peptides were desalted with Sep-Pak cartridges
(Waters), dried with vacuum centrifugation, and brought to 1 μg/3 μl in 0.1%
formic acid (buffer A) prior to MS acquisition. In addition, several digested peptide
mixtures were made by diluting peptides from one flask of giRBC cells with
peptides from uiRBC cells at ratios of 1:0, 2:1, 7:8, 4:15, 1:9, 2:41, 2:91, and 1:99
giRBC:uiRBC.

LC MS (S. cerevisiae). Tryptic S. cerevisiae peptides were separated with a Thermo
Easy nLC 1200 on self-packed 30 cm columns packed with 1.8 μm ReproSil-Pur
C18 silica beads (Dr. Maisch) inside of a 75 μm inner diameter fused silica capillary
(#PF360 Self-Pack PicoFrit, New Objective). The 30 cm column was coiled inside of
a Sonation PRSO-V1 column oven set to 35 °C prior to ionization into the MS. The
HPLC was performed using 200 nl/min flow with solvent A as 0.1% formic acid in
water and solvent B as 0.1% formic acid in 80% acetonitrile. For each injection, 3 μl
(approximately 1 μg) was loaded and eluted with a linear gradient from 7% to 38%
buffer B over 90 min. Following the linear separation, the system was ramped up to
75% buffer B over 5 min and finally set to 100% buffer B for 15 min, which was
followed by re-equilibration to 2% buffer B prior to the subsequent injection. Data
were acquired using DIA.

The Thermo Fusion Lumos was set to acquire six GPF-DIA acquisitions of a
biological sample pool using 120,000 precursor resolution and 30,000 fragment
resolution. The automatic gain control (AGC) target was set to 4e5, the maximum
ion inject time (IIT) was set to 60 ms, the NCE was set to 33, and +2H was
assumed as the default charge state. The GPF-DIA acquisitions used 4m/z
precursor isolation windows in a staggered-window pattern with optimized
window placements (i.e., 398.4 to 502.5m/z, 498.5 to 602.5m/z, 598.5 to 702.6m/z,
698.6 to 802.6m/z, 798.6 to 902.7m/z, and 898.7 to 1002.7m/z). Individual samples
for proteome profiling acquisitions used single-injection DIA acquisitions (120,000
precursor resolution, 15,000 fragment resolution, AGC target of 4e5, max IIT of 20
ms) using 8m/z precursor isolation windows in a staggered-window pattern with
optimized window placements from 396.4 to 1004.7m/z.

For generation of an S. cerevisiae spectral library, 80 μg of the same tryptic
digests described above were separated into 10 total fractions using the Pierce high-
pH reversed-phase peptide fractionation Kit (Thermo, #84868). Briefly, peptides
were loaded onto hydrophobic resin spin column and eluted using the following 8
acetonitrile steps: 5%, 7.5%, 10%, 12.5%, 15%, 17.5%, 20.0%, and 50%, keeping both
the wash and flow-through. The resulting peptide fractions were injected into the
same Thermo Fusion Lumos using the same chromatography setup and column
described above, but configured for DDA. After adjusting each fraction to an
estimated 0.5–1.0 μg on column, the fractions were measured in a top-20
configuration with 30 s dynamic exclusion. Precursor spectra were collected from
300–1650m/z at 120,000 resolution (AGC target of 4e5, max IIT of 50 ms). MS/MS
were collected on +2H to +5H precursors achieving a minimum AGC of 2e3. MS/
MS scans were collected at 30,000 resolution (AGC target of 1e5, max IIT of 50 ms)
with an isolation width of 1.4m/z with a NCE of 33.

LC MS (P. falciparum). Tryptic P. falciparum and RBC peptides were separated
with a Thermo Easy nLC 1000 and emitted into a Thermo Q-Exactive HF. In-
house laser-pulled tip columns were created from 75 μm inner diameter fused silica
capillary and packed with 3 μm ReproSil-Pur C18 beads (Dr. Maisch) to 30 cm.
Trap columns were created from Kasil fritted 150 μm inner diameter fused silica
capillary and packed with the same C18 beads to 2 cm. The HPLC was performed
using 250 nl/min flow with solvent A as 0.1% formic acid in water and solvent B as
0.1% formic acid in 80% acetonitrile. For each injection, 3 μl (approximately 1 μg)
was loaded and eluted using a 84-min gradient from 6% to 40% buffer B, followed
by steep 5-min gradient from 40% to 75% buffer B and finally set to 100% buffer B
for 15 min, which was followed by re-equilibration to 0% buffer B prior to the
subsequent injection. Data were acquired using either DDA or DIA.

The Thermo Q-Exactive HF was set to acquire DDA in a top-20 configuration
with auto dynamic exclusion. Precursor spectra were collected from 400 to
1600m/z at 60,000 resolution (AGC target of 3e6, max IIT of 50 ms). MS/MS were
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collected on +2H to +5H precursors achieving a minimum AGC of 1e4. MS/MS
scans were collected at 15,000 resolution (AGC target of 1e5, max IIT of 25 ms)
with an isolation width of 1.4m/z with a NCE of 27. Additionally, six GPF-DIA
acquisitions were acquired of a biological sample pool (60,000 precursor resolution,
30,000 fragment resolution, AGC target of 1e6, max IIT of 60 ms, NCE of 27, +3H
assumed charge state) using 4m/z precursor isolation windows in a staggered-
window pattern with optimized window placements (i.e., 398.4–502.5m/z,
498.5–602.5m/z, 598.5–702.6m/z, 698.6–802.6m/z, 798.6–902.7m/z, and
898.7–1002.7m/z). Individual samples used single-injection DIA acquisitions
(60,000 precursor resolution, 30,000 fragment resolution, AGC target of 1e6, max
IIT of 60 ms) using 16m/z precursor isolation windows in a staggered-window
pattern with optimized window placements from 392.4 to 1008.7m/z.

FASTA databases and predicted spectrum libraries. Species-specific reviewed
FASTA databases for Homo sapiens (25 April 2019, 20415 entries) and Sacchar-
omyces cerevisiae (25 January 2019, 6729 entries) were downloaded from Uniprot.
The Plasmodium falciparum FASTA database42 was downloaded from PlasmoDB34

version 43 (24 April 2019, 5548 entries). The Ensembl-based HeLa-specific FASTA
database27 was downloaded from the ACS Publications website and modified to be
compatible with EncyclopeDIA (47,305 entries, including both canonical and
variant protein sequences). Each database was digested in silico to create all pos-
sible +2H and +3H peptides with precursor m/z within 396.43 and 1002.70,
assuming up to one missed cleavage. Peptides were further limited to be between 7
and 30 amino acids to match the restrictions of the Prosit tool14. In general, NCE
were assumed to be 33 (yeast was processed using NCE from 15 to 42 in 3 NCE
increments) but modified to account for charge state. Since DIA assumes all
peptides are of a fixed charge, we adjusted the NCE setting as if peptides were
fragmented at the wrong charge state using the formula:

Adjusted NCE ¼ NCE ´
factorðdefault chargeÞ
factorðpeptide chargeÞ ; ð1Þ

where the factors were 1.0 for +1H, 0.9 for +2H, 0.85 for +3H, 0.8 for +4H, and
0.75 for +5H and above43. After submitting to Prosit, predicted MS/MS and
retention times were converted to the EncyclopeDIA DLIB format for further
processing. Scripts to produce Prosit input from FASTAs and build EncyclopeDIA-
compatible spectrum libraries from Prosit output are available as functions in
EncyclopeDIA 1.0.

DDA data processing. All Thermo RAW files were converted to.mzML format
using the ProteoWizard package44 (version 3.0.18299) using vendor peak picking.
DDA data were searched with Comet45 (version 2017.01 rev. 1), allowing for fixed
cysteine carbamidomethylation, variable peptide n-terminal pyro-glu, and variable
protein n-terminal acetylation. Fully tryptic searches were performed with a 50
ppm precursor tolerance and a 0.02 Da fragment tolerance permitting up to two
missed cleavages. High-pH reversed-phase fractions were combined and search
results were filtered to a 1% peptide-level FDR using PeptideProphet46 from the
Trans-Proteomic Pipeline47 (TPP version 5.1.0). A yeast-specific Bibliospec48 DDA
spectrum library was created from Thermo Q-Exactive DDA data using
Skyline40,49 (Daily version 19.0.9.149).

P. falciparum and RBC DDA data were additionally processed with
MaxQuant33 (version 1.6.5.0) to perform label-free quantitation with precursor ion
integration. MaxQuant was configured to use default parameters, briefly fixed
cysteine carbamidomethylation, variable methionine oxidation, and variable
protein n-terminal acetylation. Fully tryptic searches were performed with a 20
ppm fragment tolerance using both the human and P. falciparum FASTA
databases, as well as common contaminants and filtered to a 1% peptide-level FDR.
Quantification was performed using unique and razor peptides with the match-
between-runs setting turned on.

DIA data processing. DIA data were overlap demultiplexed18 with 10 ppm
accuracy after peak picking in ProteoWizard (version 3.0.18299). Searches were
performed using EncyclopeDIA (version 0.8.3), which was configured to use
default settings: 10 ppm precursor, fragment, and library tolerances. EncyclopeDIA
was allowed to consider both B and Y ions and trypsin digestion was assumed.

FDR estimation. All searches are performed using the target/decoy strategy50. As
previously described13, EncyclopeDIA generates decoy peptide sequences by keeping
the first and last amino acids in place, but reversing the remaining inbetween
sequence. Decoy spectra are generated by moving all fragment ions corresponding to
amino acids to the mass appropriate for the new decoy sequence. Each decoy peptide
retains the same retention time as the corresponding target peptide. Retention time is
only used as a feature (not a filter), so every peptide (decoy or target) can be assigned
at any retention time. This approach is designed to give decoys a chance to produce
higher scores and better model truly incorrect peptides. EncyclopeDIA search results
were filtered to a 1% peptide-level using Percolator 3.1 (refs. 51,52). Proteins are then
parsimoniously allocated to protein groups and filtered to a 1% protein-level FDR.

Empirically corrected library generation. Predicted libraries were corrected with
EncyclopeDIA using the chromatogram library method described previously13, and
a tutorial for this process is outlined in Supplementary Note 1. Briefly, GPF-DIA
injections for a given study were loaded into EncyclopeDIA using the above
parameters, where the search library was set to the appropriate predicted spectrum
library. Peptides detected by EncyclopeDIA were exported as a chromatogram
library.

Percolator is rerun on peptides detected from the GPF-DIA injections to
globally filter peptide detections to a 1% FDR. Only peptides detected at a 1%
peptide FDR in both the individual GPF-DIA injection and the global analysis are
retained for the empirically corrected library. For each detected peptide, fragment
ion chromatograms are Savizky-Golay smoothed53, normalized to the same peak
area, and a peptide peak shape is calculated using median smoothing between these
chromatograms. A Pearson’s correlation score is calculated for every fragment ion
indicating the agreement between the overall peptide peak shape and the fragment
peak shape.

A peptide entry in a chromatogram library is similar to a peptide entry in a
spectrum library in that it contains a precursor mass, retention time, and a
fragmentation spectrum. In addition, a chromatogram library entry also contains
the peptide peak shape and a correlation score for each fragment ion. This score
provides an indication of the likelihood the fragment ion was interfered with in the
GPF-DIA injection, with the expectation that it will also likely be interfered with in
single-injection DIA as well. This process created a new empirically corrected
library containing only peptides found in the GPF-DIA samples, and also retained
empirical fragment ion intensities and retention times observed from the DIA data.
These libraries were made to be compatible with both EncyclopeDIA and Skyline
and were used for downstream analysis of single-injection DIA.

After library generation, FDR estimation for single-injection DIA experiments
was performed twice: once at the individual injection level, and again globally
across all quantitative samples. For peptide detection experiments, the match-
between-runs approach was not used. For the quantitative P. falciparum
experiments, match-between-runs was applied for peptides not detected in every
injection, but only if the peptide was detected at a 1% FDR in the global analysis
and at a 1% FDR in at least one individual injection.

Further validation was used for constructing the HeLa-specific library. Here,
peptides with similar sequences that fall in the same precursor isolation window
can be incorrectly identified by shared fragment ions alone. This class of peptides
falls outside of target/decoy-based false discovery estimation and require additional
FDR control. Missense variants in the HeLa empirically corrected library were
manually validated by checking for variant-specific ions that follow the peak shape.
Peptide detections made with no variant-specific ions were considered likely false
discoveries and removed from the library.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The raw data from the yeast and P. falciparum studies are available at MassIVE
(MSV000084000 [https://doi.org/10.25345/C5BD2H], ProteomeXchange PXD:
PXD017705) and file descriptions are listed in Supplementary Data 3. The raw data from
the HeLa reanalysis are available as originally published at MassIVE (MSV000082805
[ftp://massive.ucsd.edu/MSV000082805/]). The source data underlying Figs. 2a–d, 3a,
and 4a–c and Supplementary Figs. 2, 3 and 8 are provided as a Source Data file. All other
data are available from the corresponding author on reasonable request.

Code availability
Prosit (https://www.proteomicsdb.org/prosit) and EncyclopeDIA 1.0 (https://bitbucket.
org/searleb/encyclopedia) are both available under the Apache 2 open-source license.
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