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Abstract

The birth and adult development of 'Dolly' the sheep, the first mammal produced by the transfer of a terminally differentiated cell 
nucleus into an egg, provided unequivocal evidence of nuclear equivalence among somatic cells. This ground-breaking experiment 
challenged a long-standing dogma of irreversible cellular differentiation that prevailed for over a century and enabled the 
development of methodologies for reversal of differentiation of somatic cells, also known as nuclear reprogramming. Thanks to this 
new paradigm, novel alternatives for regenerative medicine in humans, improved animal breeding in domestic animals and 
approaches to species conservation through reproductive methodologies have emerged. Combined with the incorporation of new 
tools for genetic modification, these novel techniques promise to (i) transform and accelerate our understanding of genetic diseases 
and the development of targeted therapies through creation of tailored animal models, (ii) provide safe animal cells, tissues and 
organs for xenotransplantation, (iii) contribute to the preservation of endangered species, and (iv) improve global food security whilst 
reducing the environmental impact of animal production. This review discusses recent advances that build on the conceptual legacy 
of nuclear transfer and – when combined with gene editing – will have transformative potential for medicine, biodiversity and 
sustainable agriculture. We conclude that the potential of these technologies depends on further fundamental and translational 
research directed at improving the efficiency and safety of these methods.
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What did Dolly teach us?

The germ-plasm theory by August Weismann proposed 
that cells of a developing organism lose developmental 
plasticity during differentiation (Weismann et  al. 
1889). Observations in the roundworm Parascaris 
equorum made by Theodor Boveri, showing 
chromosome diminution in the somatic compartment 
whilst a full chromosome set was retained in the 
germline, contributed to Weismann’s concept. Hans 
Spemann proposed that transferring the nucleus of a 
cell into an egg would be a 'fantastical experiment' 
that would put this idea to the test (Spemann 1938). 
Early experimental attempts in amphibians supported 
this idea, as embryonic development failed after the 
nuclear transfer of gastrula-derived somatic cells into 
oocytes (King & Briggs 1955). Furthermore, when 
primordial germ cells (PGCs) from the same stages were 
used as nuclear donors, normal tadpoles developed, 
implying that developmental plasticity was restricted 

in cells adopting a somatic identity (Smith 1965). 
However, subsequent work by using more advanced 
developmental stages, such as embryonic gut epithelial 
cells, resulted in the development of normal adult frogs 
after the nuclear transfer (NT). Although the efficiency 
was very low (~1%), this experiment offered the first 
evidence that the genetic content of differentiated cells 
was equivalent to that of an undifferentiated blastomere 
(Gurdon & Uehlinger 1966). However, adult frogs 
were never obtained after NT with adult cells, thus a 
demonstration of complete reprogramming of an adult 
somatic cell remained unanswered for another three 
decades. A report of four cloned cattle made from NT 
embryos reconstructed with cultured inner cell mass 
(ICM) cells suggested that partially differentiated donor 
cells supported full-term development in mammals 
(Sims & First 1994). The year 1996 saw the culmination 
of extensive efforts by many groups over previous 
decades in overcoming the technical challenges of 
performing NT in mammals. For the first time, cultured 
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cells from established cell lines from the embryonic 
disc of a sheep embryo were successfully used as 
nuclear donors. These experiments resulted in the 
birth of two lambs, Megan and Morag, who grew to 
fertile adults (Campbell et  al. 1996b). Following this 
experiment, the team used cells isolated from the 
mammary gland of a 6-year-old Finn Dorset sheep and 
performed 277 NT experiments, from which one lamb, 
Dolly, was born (Wilmut et al. 1997). A key insight for 
the success of these experiments was the understanding 
of the critical need for cell-cycle coordination between 
the donor cell and the recipient oocyte (Campbell 
& Alberio 2003). Previous work by Campbell and 
colleagues had established the importance of using 
cells in the non-replicative phase of the cell cycle for 
NT into metaphase II oocytes (Campbell et al. 1996a). 
This was achieved very ingeniously via the 'starvation' 
of cells for several days, in order to slow down cell-
cycle progression and enrich for cells in G0. As a result, 
reconstructed embryos had normal ploidy. This was in 
contrast to embryonic blastomeres, which have a long 
S-phase and undergo DNA damage after transfer into 
an MII oocyte (Campbell et  al. 1993). DNA damage 
contributes to widespread chromosomal abnormalities, 
consistent with those reported in early studies in 
amphibians.

The biological significance of Dolly the sheep, the 
first cloned mammal by using an adult somatic cell, 
was far-reaching. First, it answered the long-standing 
question of genetic/cellular equivalence among cells in 
the adult organism, which had occupied the minds of 
scientists for over a century. Secondly, it represented a 
new dawn for biotechnological applications in medicine 
and agriculture. Importantly, NT carried out under 
optimized conditions can erase epigenetic memory of 
somatic cells enabling multiple rounds of re-cloning 
without loss of developmental potential (Wakayama 
et al. 2013), emphasizing the powerful reprogramming 
capacity of oocytes (Alberio et  al. 2006, Halley-Stott 
et  al. 2013). Indeed, the physiological parameters 
of 6-year-old Dolly clones were equivalent to age-
matched control animals, which indicates that NT does 
not have long-term detrimental effects on aging (Sinclair 
et al. 2016). Thus, although the overall efficiency of NT 
remains low, the animals that develop full-term can be 
clinically healthy and fertile.

Genetic modification in livestock

Genetic modification of animals has primarily relied 
on the genetic modification of mouse embryonic stem 
cells (ESC) and the generation of chimeric founders 
that are bred to homozygosity (Doetschman et  al. 
1987, Thomas & Capecchi 1987). Mice have a short 
intergenerational interval and stem cell technologies 
have been available since 1981 (Evans & Kaufman 
1981, Martin 1981). Hitherto, these methods have 

not been adopted in livestock because germline 
competent ESC were not available. However, two 
recent reports suggest that this may no longer be a 
limitation. They demonstrated two novel sources of 
embryonic stem cells derived from pig and horse pre-
implantation embryos capable to robustly generate 
PGCs in vitro and can contribute to chimeric foetuses 
(Gao et al. 2019, Yu et al. 2020). The authors indicate 
that this technology can also work in other species, 
which would offer exciting opportunities for genetic 
engineering (GE) in livestock species. However, 
demonstration of efficient germline contribution in 
chimeric offspring is still needed before the broad 
use of livestock stem cells for GE can be realized. 
Thus far, however, NT has been a valuable alternative 
strategy for the generation of GE livestock. It has been 
used for multiple purposes, such as the generation 
of animal models of disease, the development of 
genetically multi-modified organ donor pigs for 
xenotransplantation, the production of nutraceuticals, 
preservation of endangered species, and as a platform 
technology for enhancing livestock genetic selection. 
Examples of these applications and some of the 
challenges and future directions are presented in the 
following sections.

Tailored large animal models for human diseases

Livestock species share many anatomical and 
physiological characteristics with humans, such 
as large body size, similar metabolism and long 
lifespan, which are desirable when modelling human 
development and studying disease. Furthermore, 
livestock species are mostly outbred, making 
phenotypic observations more relevant to humans 
(Fig. 1). Among livestock, the pig stands out as the 
species of choice for human disease modelling due 
to similarities in organ anatomy, size and physiology. 
Genetically engineered pig models of cardiovascular 
disease (Schneider et al. 2020), diabetes (Renner et al. 
2010, 2020), cystic fibrosis (Rogers et al. 2008, Bartlett 
et  al. 2016, Caballero et  al. 2021), several types of 
cancer (Perleberg et  al. 2018), Duchenne muscular 
dystrophy (DMD) (Klymiuk et al. 2013, Moretti et al. 
2020) and neurodegenerative disorders (such as 
Huntington’s disease and spinal muscular atrophy) 
have shown to closely recapitulate the physiopathology 
of these human diseases (Yang et al. 2010, Baxa et al. 
2013, Holm et al. 2016). Importantly, these models are 
currently being used as platforms for developing new 
treatments and diagnostic tools (Renner et  al. 2016, 
Regensburger et al. 2019, Moretti et al. 2020).

Notably, all these models have been generated via 
NT by using genetically modified somatic cells. The 
creation of gene-targeted animals by using somatic 
cells is very laborious, requires intensive cell screening, 
multiple rounds of NT, and results in only low numbers 
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of viable healthy offspring, which explains the relatively 
small numbers of animals generated so far. However, 
the development of gene-editing techniques by using 
the CRISPR/Cas9 system promises to drastically 
increase the efficacy of gene modification in somatic 
cells as well as directly in zygotes, which would 
remove the need for NT. For example, a new DMD 
pig model that displayed robust disease phenotype 
has been created by zygotic injection of Cas9 mRNA 
and guide RNA (Yu et al. 2016). However, DNA repair 
following double-strand breaks (DSB) caused by 
CRISPR endonucleases in zygotes is primarily driven 
by non-homologous end-joining (NHEJ), which results 
in a high proportion of mosaic embryos. One way to 
reduce mosaicism has been to optimize the injection 
of the Cas9/gRNA complex during the first few hours 
(~5 h in pig and ~10 h in bovine), before the onset of 
the S-phase in the zygote, greatly reducing mosaicism 
(Park et al. 2017, Lamas-Toranzo et al. 2019). Another 
key aim of gene editing is the generation of a targeted 
knock-in via homologous recombination (HR). Since 
homology-directed repair (HDR) is not the preferred 
mechanism for DSB repair, methods that promote 
this process are needed. Complementation of Cas9/
gRNA complex with RAD18, a component of the post-

replicative repair pathway, increases HDR in cell lines, 
however, no data exist for embryos (Nambiar et  al. 
2019). The use of chemical compounds promoting 
HDR in bovine embryos has shown promising results 
yielding >50% gene targeting (Lamas-Toranzo et  al. 
2020). The simplicity of zygotic injection represents 
a major technological advantage over NT for the 
generation of gene-targeted animals and may replace 
the need of the latter in the future. It is also possible that 
microinjection may become less critical as methods 
for delivering one or multiple ribonucleoprotein 
complexes by electroporation are becoming more 
efficient in livestock (Tanihara et  al. 2016, Hirata 
et al. 2020). A note of caution, however, needs to be 
made with regards to the high frequency of whole- or 
segmental-chromosome loss determined after DSB 
caused by the on- and off-target Cas9 cleavage during 
the zygote gene editing (Zuccaro et  al. 2020). These 
observations call for the use of alternative approaches 
that do not require DSB to convert a targeted DNA 
into a new desired sequence, such as base or prime 
editors (Anzalone et  al. 2020). Recently, transgenic 
chickens and pigs expressing Cas9 were reported 
as new resources for genome editing in livestock  
(Rieblinger et al. 2021).

Figure 1 Nuclear transfer using genetically modified cells as technological pipeline for the generation of large animal models for translational 
medicine, organ donor pigs for xenotransplantation, and new developments for sustainable animal agriculture. PUFA, polyunsaturated fatty 
acid; hfat1, humanized version of the C. elegans fat1 desaturase gene; app, expression cassette for microbial phytase; BgEgXyA, polycistronic 
expression cassette for beta-glucanase, xylanase, and phytase.
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Genetically multi-modified donor pigs for 
xenotransplantation

The 'opt-out' system introduced as part of the changes to 
organ donation law in several countries was supposed 
to alleviate the waiting lists for organ transplantation. 
However, data from the UK shows that demand for organ 
transplants is growing at 1% per year, and the number 
of suitable donors is decreasing at a rate of 1–4% per 
annum. Reasons for the decline in available organs 
include older age of donors and obesity, both factors that 
contribute to adverse effects on transplant outcomes. The 
highest organ demand is for kidneys, pancreata, hearts 
and livers. The use of animal organs from livestock, such 
as pigs, offers a possible solution to this growing problem 
(Fig. 1). The pig has many advantages, including human-
like size and physiology, broad availability and breeding 
characteristics (large litters and short reproductive cycles). 
Furthermore, pigs are amenable to advanced reproductive 
and genetic engineering platforms (reviewed in Kemter 
et al. 2020). Public acceptance for using pigs as organ 
sources is growing, although strict regulatory measures 
that ensure safe and ethically sustainable sourcing of 
organs are imperative (Kogel & Marckmann 2020). The 
technology has now reached a stage that offers hopes for 
clinical applications in the not-so-distant future.

Pig heart transplantation to non-human primates has 
been widely used over decades as a model system (Cooper 
et al. 2014). NT technology was used to produce multi-
modified pigs devoid of alpha-1,3-galactosyltransferase 
(GGTA1), and expressing human complement regulatory 
protein CD46 and human thrombomodulin. Hearts from 
these triple-modified pigs survived for over 900 days 
after heterotopic abdominal transplantation in baboons 
(Mohiuddin et  al. 2016). Remarkably, pig hearts with 
these genetic modifications showed consistent life-
supporting function after orthotopic transplantation in 
baboons with survival times of up to 195 days (Langin 
et al. 2018, Reichart et al. 2020). Survival for a longer 
period was mainly limited by the continued growth 
of the pig hearts in the small chests of the recipient 
baboons. Inactivation of the growth hormone receptor 
gene (GHR) in the donor pigs is a potential strategy to 
overcome this problem (Hinrichs et al. 2021).

Besides the heart, multi-modified pigs (GGTA1-
deficient/human CD55 transgenic) made by NT have 
been used for kidney transplantation in a baboon that 
survived for 136 days (Iwase et al. 2017a, Iwase et al. 
2017b). Moreover, transplantation of similar kidneys 
into macaques resulted in more than 1-year survival (Kim 
et al. 2009). For liver and lung xenotransplantation, the 
survival is more limited, however, the best results were 
obtained by using multi-modified pigs. Multiple other 
genetic modifications have been proposed to overcome 
humoral and cellular rejection of xenotransplants, to 
prevent coagulation disorders and other physiological 
incompatibilities, and to reduce/eliminate the risk 
of transmission of porcine endogenous retroviruses  
(Table 1; reviewed in Kemter et al. 2020).

Recently, the combined use of CRISPR/Cas9 
technology plus transposon-mediated transgenesis in 
somatic cells has been used to create NT-engineered pigs 
with multiple gene knockouts and human transgenes 
(Yue et  al. 2020). The efficacy of these modifications 
was demonstrated in in vitro assays, but transplantation 
experiments in non-human primates still need to be 
performed. Newly created multi-modified pigs carrying 
eight human transgenes encoding for coagulation 
regulators, negative regulators of the immune response 
and complement system, plus the inactivation of three 
pig xeno-antigens were successfully used as donors of 
skin xenografts in Cynomolgus monkeys without the 
need of immunosuppressants for 25 days (Zou et  al. 
2020).

Thus, future milestones directed to reducing the size 
of the organs produced, compatible with humans, and 
increased tolerance through targeted gene modifications 
will pave the way to clinical assessment of these 
organs (Sykes & Sachs 2019, Reichart et al. 2020). The 
recent progress demonstrates the critical need for NT 
technologies for the generation of these donor animals 
for xenotransplantation that can now be enhanced by 
the incorporation of efficient gene-editing and -targeting 
technologies.

Another avenue that is being explored for autologous 
transplantation considers the creation of human organs 
in organogenesis-disabled pigs through interspecies 
chimerism. The proof of concept for this idea comes 

Table 1  Genetic modifications of donor pigs of cells, tissues and organs for xenotransplantation.

Aim Genetic modification

Deletion of sugar moieties of pig cells with 
pre-formed recipients’ antibodies

Knockout of the GGTA1, CMAH, B4GALNT2 genes

Inhibition of complement activation Transgenic expression of human complement regulatory proteins (hCD46, hCD55, hCD59) 
Prevention of coagulation dysregulation Transgenic expression of human THBD, EPCR, TFPI, ENTPD1, CD73 (NT5E)
Prevention of T-cell mediated rejection Transgenic expression of human CTLA4-Ig, LEA29Y, PD-L1; knockout or knockdown of swine 

leukocyte antigens
Inhibition of natural killer cells Transgenic expression of HLA-E/human β2-microglobulin
Inhibition of macrophages Transgenic expression of human CD47
Prevention of inflammation Transgenic expression of human TNFAIP3 (A20), HO-1, soluble TNFRI-Fc
Reduction of the risk of transmission of porcine 

endogenous retroviruses (PERV)
Knockdown of PERV expression; genome-wide knockout of the PERV pol gene
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from a study showing the creation of a mouse with a 
rat pancreas following blastocyst complementation 
and interspecies chimerism (Kobayashi et  al. 2010). 
Notably, in a reciprocal experiment, a mouse pancreas 
was created in a rat by blastocyst complementation. 
Isolated islets of Langerhans transplanted into a diabetic 
mouse restored normal glycaemia, demonstrating 
functional complementation (Yamaguchi et  al. 2017). 
This experiment demonstrated the potential for creating 
functional organs using interspecies chimeras. As an 
alternative for human organogenesis, pigs and sheep are 
the desired host species. An initial study showed very 
limited contribution of human cells into pig chimeric 
foetuses following blastocyst complementation (Wu 
et al. 2017). The causes of the very limited chimerism 
are unclear, but they could be due to differences in the 
developmental stages represented by the stem cells and 
the host embryo (Mascetti & Pedersen 2016). The type of 
stem cell and the culture conditions can also determine 
the viability of the cells in interspecies chimeras (Fu 
et al. 2020, Aksoy et al. 2021). It is also noteworthy that 
the greater evolutionary divergence between pigs and 
humans (>90 million years) compared to that between 
mice and rats (<20 million years) renders this approach 
incompatible under these experimental conditions. 
However, a better understanding of the signalling 
pathways and pluripotency features operating in the early 
embryo could lead to developing better stage-matched 
complementation strategies. Comparative embryology 
using scRNASeq has revealed that conventional and 
naïve human cells are more closely matched to late pig 
blastocysts, suggesting that more advanced stages of 
pig development could be better hosts for human cells 
(Ramos-Ibeas et al. 2019).

The combination of strategies aiming at the 
'humanization' of pig organs via (i) elimination of pig 
antigens, (ii) introduction of human immunomodulatory 
genes, and (iii) genetic ablation of pig organs followed 
by embryo complementation constitute avenues that 
are technically possible. Indeed, a recent study shows 
the generation of human–pig chimeric embryos using a 
combination of techniques. First, ablation of the ETV2 
gene, a master regulator of haemato-endothelium, 
was performed in porcine somatic cells. ETV2 mutant 
embryos created by NT were then complemented 
with human-induced pluripotent stem cells (iPSC). 
Remarkably, the embryos generated contained blood 
vessels made exclusively of human endothelial cells 
(Das et  al. 2020). The colonization of pig embryos 
was facilitated by the overexpression of BCL2, an anti-
apoptotic gene. Previous work showed that inhibition 
of BCL2 can overcome the staged-related barriers to 
colonization in chimeric embryos (Masaki et al. 2016). 
More recently, a new approach for increasing interspecies 
chimerism was reported, based on the creation of Igf1r 
mutant mouse embryos complemented with WT rat ESC 
(Nishimura et al. 2021). This resulted in the generation 

of neonatal mice having the extensive contribution of 
rat cells in diverse organs, predominantly those in which 
IGF signalling is very important, including the kidney, 
heart, lung and thymus. Although future studies should 
focus on the phenotypic analysis of such animals, this 
work shows the prospect of using pigs for creating 
organs containing autologous human vasculature, thus 
greatly reducing the chances of immune rejection.

The impact of gene editing in animal production 
and welfare

The challenges of improving sustainable animal 
production whilst meeting the increased demand for 
healthier and nutritious animal products by the growing 
world population demand the use of new approaches 
to enhance the quality and productivity of livestock 
(Fig. 1). One approach suggested to improve the health 
benefits of meat consumption is to modify the proportion 
of unsaturated fats. Since dietary interventions 
to feed animals with sources of such fats are not 
environmentally friendly, transgenic approaches could 
be used. Examples of cattle, sheep and pigs expressing 
the C. elegans fat1 desaturase gene in fibroblasts prior 
to NT have been reported (Lai et  al. 2006, Wu et  al. 
2012, Zhang et  al. 2013). These animals had a richer 
content in omega-3 fatty acids, making them a prime 
example of a nutraceutical produced by NT. Other 
examples include the generation of hypoallergenic milk 
through the abolition of β-lactoglobulin production in 
cows (Jabed et al. 2012), and lactoferrin and lysozyme-
containing cow milk (Kaiser et  al. 2017). However, 
current regulations for the consumption of products 
from genetically modified animals are very restrictive.

Another strategy for improving specific traits not reliant 
on transgenesis is to incorporate specific mutations that 
can alter animal phenotypes. For example, the naturally 
occurring mutation at the MSTN gene is the cause of the 
'double muscle' phenotype in some cattle (Grobet et al. 
1997, McPherron & Lee 1997) and sheep (Clop et  al. 
2006) breeds, resulting in 20% more muscle mass. These 
mutations were introduced not only into other sheep 
and cattle breeds (Proudfoot et al. 2015) but also into 
pigs (Wang et al. 2015a) and goats (Wang et al. 2015b) 
by gene editing via NT or zygotic injections. Gene 
editing offers an alternative means for the accelerated 
introduction of naturally occurring alleles, albeit in 
different species. From a regulatory and consumer 
perspective, the acceptability of such products may be 
less controversial.

Importantly, herd productivity is also dependant on 
the robust health status of the animals reared. Gene 
editing can be used to generate disease-resistant 
animals. Porcine reproductive and respiratory syndrome 
virus (PRRSV)-resistant pigs were created following 
the mutation of CD163, which prevents viral infection 
(Whitworth et al. 2016, Burkard et al. 2017). Similarly, 
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transmissible gastroenteritis virus (TGEV)-resistant pigs 
were created by editing the gene for the putative viral 
receptor ANPEP (Whitworth et al. 2019). Other strategies 
include the use of gene introgressions to create disease-
resistant pigs. The RELA gene from the warthog, naturally 
resistant to African swine fever, was introgressed into 
domestic pigs (Lillico et al. 2016). Although a delayed 
onset of infection was determined, this introgression 
did not confer complete protection against the clinical 
symptoms, suggesting that additional modifications 
may be needed (McCleary et al. 2020). Another recent 
study reports the use of a CRISPR/Cas9 nickase strategy 
combined with NT to generate cattle with a targeted 
insertion of a natural resistance-associated macrophage 
protein-1 (NRAMP1) expression cassette making them 
resistant to tuberculosis (Gao et al. 2017).

Part of improving production systems will require 
changes in the ways in which animals are reared. A 
good example of a step towards improving welfare 
is the propagation of the POLLED genotype across 
cattle breeds. By using gene editing and NT, POLLED 
alleles were introgressed and resulted in the birth of 
homozygous polled bulls (Carlson et  al. 2016), which 
after crossing with horned cows delivered hornless 
offspring (Young et al. 2020).

Probably the most important goal of future animal 
production is environmental sustainability. Genetic 
engineering was thus used to overcome inefficient feed 
digestion in pigs, which results in excessive release of 
phosphorus and nitrogen to the environment. Transgenic 
pigs expressing microbial phytase in the salivary 
glands had an increased ability to digest phosphorus 
from dietary phytate and showed a markedly reduced 
faecal phosphorus concentration (Golovan et al. 2001). 
Recently, this approach was extended to transgenic 
pigs expressing beta-glucanase, xylanase, and phytase 
in the salivary glands. As a consequence, digestion of 
non-starch polysaccharides and phytate was enhanced, 
faecal nitrogen and phosphorus outputs were reduced 
(23–45%), and growth rate (~25%) and feed conversion 
rate (12–15%) were significantly improved (Zhang et al. 
2018).

These examples demonstrate that favourable traits 
(e.g. disease resistance and feed conversion efficiency) 
can be rapidly introduced to improve sustainable 
production, health and welfare of animal production 
systems.

Advanced animal breeding and genetic selection

The long generation intervals in domestic animals 
hinder the progress of genomic selection requiring 
novel approaches to accelerate the pace at which 
new animal phenotypes can be created. As discussed 
above, the combination of robust and safe gene/base-
editing methods and reproductive techniques, such as 
in vitro fertilization and NT can drastically accelerate 

the rate of genetic gain. However, the bottleneck of 
meiosis remains. This critical step in the reproductive 
cycle of animals ensures genetic diversity, however, 
in breeding programmes, it represents a major hurdle 
due to the long time needed to generate mature 
gametes in livestock. Breeders and geneticists have 
been working on technological solutions to shorten 
this period for decades. A vision for utilizing in vitro 
systems for growing gametes as a means to reduce 
generation intervals, also known as 'velogenetics', was 
proposed in the early ’90s when genotype databases 
and assisted reproduction were beginning to be used 
(Georges & Massey 1991). More recently, these ideas 
have resurfaced as a result of developments in genetic 
selection, stem cell technologies and the possibilities of 
in vitro gamete production in domestic animals (Rexroad 
et al. 2019). In vitro breeding (IVB) was proposed as a 
platform combining the use of quantitative trait loci 
(QTL) datasets and reproductive techniques as a method 
of enhanced genetic selection (Goszczynski et al. 2019). 
This approach would yield a ten-fold increase in genetic 
selection without genetic manipulation. The use of 
gene/base-editing methods could further enhance the 
rate of genetic gain of this platform by multiplexing the 
incorporation of new alleles (Jenko et al. 2015).

However, this technology is contingent on a complete 
in vitro system for making gametes. Recent advances 
in our understanding of gamete development in large 
mammals are paving the way for the generation of 
mature gametes (Kobayashi et  al. 2017). Remarkably, 
there are close similarities in the transcriptional 
programme between human, pig and cattle germline 
development (Soto & Ross 2021, Zhu et  al. 2021), 
which offers advantages when it comes to translating 
findings from one species to another. This is particularly 
important because progress in human germ cell 
differentiation shows that mature oogonia can be 
generated, albeit at very low efficiency (Yamashiro 
et  al. 2018). Detailed molecular understanding of the 
biology of germ cells has also enabled the creation of 
oocyte-like cells directly from mouse embryonic stem 
cells by the expression of eight specific transcription 
factors (Hamazaki et al. 2021). These oocyte-like cells 
were capable of chromosome segregation but failed to 
undergo normal meiosis. Nevertheless, these advances 
offer exciting opportunities for adapting some of these 
conditions for the generation of animal gametes from 
novel stem cells.

Considering the challenges of accomplishing meiosis 
in vitro, the technology of surrogate sires could serve 
as an alternative. The idea is to generate males that 
lack their own spermatogonia, but their testis can act 
as a developmental niche for spermatogonia from other 
males. Testis of NANOS2 KO males support allogeneic 
spermatogonial transplantation and full spermatogenesis 
(Ciccarelli et al. 2020). The use of this technology could 
not only significantly increase the genetic merit of sires 
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used in breeding programs (Gottardo et  al. 2019) but 
can also serve as a tool for the genetic preservation of 
endangered species.

Preservation of endangered species

Nuclear transfer offers an avenue for the rescue of 
endangered species, provided a compatible cytoplast 
can be obtained from closely related species. Some 
successes were reported with wild African cats and grey 
wolfs, but limited success was reported with an extinct 
subspecies of goat (Gomez et al. 2004, Kim et al. 2007, 
Folch et  al. 2009). A critical aspect of this approach 
is the reliance on compatible cytoplasts. Importantly, 
a major breakthrough in the generation of synthetic 
cytoplasts from embryonic stem cells was recently 
reported (Hamazaki et  al. 2021). Future experiments 
will determine whether this technology can be used 
as an alternative source of compatible cytoplasts 
suitable for nuclear transfer. This platform would offer 
a reproductive alternative for rescuing species such 
as the Northern White rhinoceros (Hildebrandt et  al. 
2018). In this case, in vitro fertilized embryos and 
embryonic stem cells have been produced from the last 
two female specimens of the species. The generation of 
gametes from these stem cells as well as the generation 
of cytoplasts would enable the propagation of these 
last remaining animals by both natural reproduction 
and nuclear transfer. Although a limited gene pool 
could represent an obstacle for expanding endangered 
species, the establishment of induced pluripotent stem 
cells from frozen tissues/blood could offer an alternative 
route for the generation of gametes that could be used 
for in vitro breeding.

Concluding remarks

In this review, we summarized the critical impact that 
nuclear transfer had in facilitating the generation of 
genetically modified animals over the past 25 years. 
The impact of this technology has undoubtedly been 
more significant in livestock species due to the lack 
of embryonic stem cells, the standard route of gene 
targeting in mice. Thus, gene modification of donor cells 
prior to NT has been the preferred avenue for creating 
genetically modified livestock. Although the technique 
remains quite labour intensive, significant progress 
has been made in the procedures resulting in better 
efficiency. New sources of livestock embryonic stem cells 
have been reported, suggesting that gene manipulation 
and chimera generation may be simplified in the future. 
However, the long generation interval of livestock 
species makes the process of breeding to homozygosity 
of chimeric animals a lengthy and expensive process 
compared to mice. In contrast, NT allows the instant 
generation of transgenic animals, suggesting that it will 
remain a valuable technology for years to come.

We have come a long way since this landmark 
experiment, with improved knowledge of the molecular 
mechanisms of cellular reprogramming and more 
efficient techniques of NT. We can look forward to 
the next 25 years in which NT, in combination with 
other modern gene manipulation technologies, can 
offer solutions to urgent biomedical needs, improve 
sustainable animal production and facilitate species 
conservation.
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