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ABSTRACT

Motivation: High-throughput single-cell quantitative real-time poly-

merase chain reaction (qPCR) is a promising technique allowing for

new insights in complex cellular processes. However, the PCR reac-

tion can be detected only up to a certain detection limit, whereas failed

reactions could be due to low or absent expression, and the true ex-

pression level is unknown. Because this censoring can occur for high

proportions of the data, it is one of the main challenges when dealing

with single-cell qPCR data. Principal component analysis (PCA) is an

important tool for visualizing the structure of high-dimensional data as

well as for identifying subpopulations of cells. However, to date it is not

clear how to perform a PCA of censored data. We present a probabil-

istic approach that accounts for the censoring and evaluate it for two

typical datasets containing single-cell qPCR data.

Results: We use the Gaussian process latent variable model frame-

work to account for censoring by introducing an appropriate noise

model and allowing a different kernel for each dimension. We evaluate

this new approach for two typical qPCR datasets (of mouse embryonic

stem cells and blood stem/progenitor cells, respectively) by performing

linear and non-linear probabilistic PCA. Taking the censoring into ac-

count results in a 2D representation of the data, which better reflects its

known structure: in both datasets, our new approach results in a better

separation of known cell types and is able to reveal subpopulations in

one dataset that could not be resolved using standard PCA.

Availability and implementation: The implementation was based on

the existing Gaussian process latent variable model toolbox (https://

github.com/SheffieldML/GPmat); extensions for noise models and ker-

nels accounting for censoring are available at http://icb.helmholtz-

muenchen.de/censgplvm.
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Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on June 10, 2013; revised on February 18, 2014; accepted

on March 4, 2014

1 INTRODUCTION

1.1 High-throughput single-cell qPCR

To gain fundamental insights into complex cellular processes, it

is necessary to observe individual cells. One such process is the

transcriptional control of cell fate decisions, where it is crucial to

quantify the gene expression of individual cells because cell fate

decisions are made on a single-cell level. In contrast to single-cell

measurements, conventional experimental techniques measure

gene expression from pools of cells masking heterogeneities

within cell populations, which may be important for understand-

ing underlying biological processes (Dalerba et al., 2011;

Dominguez et al., 2013; Guo et al., 2010; Moignard et al.,

2013; Pina et al., 2012). Recent technical advances facilitate the

simultaneous measurement of tens to thousands of genes in hun-

dreds of individual cells (Taniguchi et al., 2009). As experimental

techniques advance and new types of data are generated, it is

important to develop sound computational methods that are

able to adequately deal with uncertainties inherent in the experi-

mental technique and to allow for a comprehensive analysis of

these new types of data. Currently, the messenger RNA content

of single cells can be analysed using high-throughput quantitative

real-time polymerase chain reaction (qPCR) platforms, such as

the Fluidigm BioMark HD, or using deep sequencing [RNA

sequencing (RNA-Seq)].
In single-cell qPCR, RNA is extracted from single cells and

complementary DNA is synthesized. This is followed by a

pre-amplification step and qPCR detection. In practice, this

procedure results in a limit of detection (LOD), below which

gene activity cannot be quantified. Gene expression is typically

measured in cycles (Ct), and depending on the analysed cell

types and genes, the LOD Ct value can be defined as a 99%

detection probability of the qPCR reaction and typically cor-

responds to �2–10 messenger RNA molecules per reaction

chamber (Fluidigm Corporation, 2012). This corresponds to

a censoring in the sense that for Ct values greater than

LOD Ct, the true Ct number cannot be established. This cen-

soring typically occurs for a large number of cells (see Fig. 1

for values of two typical datasets) and is one of the main

challenges when dealing with data from single-cell qPCR ex-

periments. For cases in which non-detection corresponds to a

lack of transcription, the true Ct value would be infinity

(McDavid et al., 2013), whereas for cases in which non-detec-

tion corresponds to a non-negligible amount of transcription,

the true underlying Ct value would be closer to LOD Ct;

because the distribution of Ct values extends continuously

until the LOD (Fig. 1C and D), this suggests that both scen-

arios can be encountered in practice.*To whom correspondence should be addressed.
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Because high-throughput single-cell qPCR is a relatively new

technique, this issue of censoring has not been addressed system-

atically, and simple work-arounds such as substituting all cen-

sored data points with the LOD Ct value are commonly used

(Dalerba et al., 2011; Guo et al., 2010; Pina et al., 2012).
Recently, McDavid et al. (2013) have systematically addressed

these issues by proposing a customized approach for univariate

testing of differential gene expression of single-cell qPCR data

that explicitly takes the component of non-detected qPCR reac-

tion into account. Although the authors did not address impli-

cations of the LOD for multivariate analyses such as principal

component analysis (PCA), this highlights the need for new al-

gorithms addressing statistical and analytical challenges of

single-cell qPCR data.

Other sources of uncertainty on a cell-wise level such as effects

due to variations in cell size can be corrected for by measuring a

set of housekeeping genes and subtracting the mean expression

from the measured Ct number. Similarly, uncertainties can be

corrected that occur due to the batch-wise processing of cells on

arrays and variations in PCR efficiency between batches.

1.2 PCA of censored data

A common part of multivariate analysis of single-cell qPCR data

is PCA. This allows for a visualization of the variation in gene

expression within and across different cell populations as well as

the identification of subpopulations in a large group of hetero-

geneous cells (Dalerba et al., 2011; Guo et al., 2010). Recently,

we have shown that it is desirable to also apply non-linear gen-

eralizations of PCA because this can allow for a better identifi-

cation of novel subpopulations (Buettner and Theis, 2012). For

many statistical methods such as regression, algorithms to deal

with censored data have been established. For example, censored

values can be substituted, Tobit regression can be performed or

data can be deleted, treated as missing or imputed according to

some probability distribution (Ballenberger et al., 2012).

However, it is not clear how to deal with censored data in the

context of PCA, especially when there is a high fraction of cen-

sored data points. In this case, deletion can result in the loss of an

unacceptably high proportion of the data. Similarly, treating the

censored data as missing (Theis et al., 2011) discards potentially

valuable information. Substitution can yield strongly biased re-

sults, and multiple imputation results in several datasets that are

difficult to combine in a single PCA (Lubin et al., 2004; Uh et al.,

2008). Furthermore, for high fractions of censored data (as in

single-cell qPCR), it is not clear how to derive adequate prob-

ability distributions (Ballenberger et al., 2012; Lubin et al., 2004).
When performing PCA of censored data from single-cell

qPCR, the standard approach is to substitute the Ct values of

all censored data points with the same Ct value (usually LODCt)

and perform standard PCA. In Figure 2, a toy example is used to

illustrate the issues of this substitution approach. A different

approach is to treat the data as censored when performing the

PCA; however, to date no algorithm allowing for linear and non-

linear PCA of censored data has been presented. In the follow-

ing, we propose an extension of generalized PCA [Gaussian pro-

cess latent variable models (GPLVMs)] allowing for censored
data. When optimizing the generative mapping (including the

positions of the data points in a low-dimensional latent space),

we use statistically sound methods to account for the censoring

such that uncertainties in the high-dimensional space are re-

flected in the low-dimensional visualization of the data.
We evaluate our new strategy on dealing with single-cell qPCR

data on two typical datasets.

Thus, our contribution in this work is 2-fold. First, we propose

a strategy for performing PCA, and probabilistic kernel PCA in
general, of censored data. This allows the visualization of cen-

sored data within the commonly used framework of PCA with-

out introducing bias due to censoring and can be used for data

from a wide range of sources. Second, we present a framework

on how to account for uncertainties when performing PCA of

single-cell qPCR data. We quantify potential new biological in-

sights that can be gained by accounting for censoring: in the case

of single-cell qPCR data, our approach can result in PCA rep-

resentations that better reflect the underlying structure of the

data and allow for a better identification of biologically mean-

ingful subpopulations.

2 METHODS

To derive an algorithm for PCA of censored data, we first review prob-

abilistic dual PCA before we show how we can use this as a mathematical

framework to deal with censored data.

2.1 Dual PCA for censored data

Standard PCA with Gaussian noise Let the gene expressions in

the data space be denoted by Y ¼ ½y1, . . . , yN�
T, yi 2 RD, and latent

variables in the low-dimensional latent space be denoted by

X ¼ ½x1, . . . , xN�
T, xi 2 RQ, with D being the dimension of the data

space, Q being the dimension of the latent space (usually 2 or 3) and N

A B C D

Fig. 1. Fraction of censored data for two typical datasets: (A) fraction of non-detects in mESC data resolved by genes and (B) fractions of non-detects in

blood stem cell data. Genes sorted in descending order of fraction of censored values. (C) distribution of Ct values for mESC data and (D) blood stem/

progenitor cell data. The long tail of high Ct values continues until the LOD
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being the number of samples in the dataset. Then, probabilistic PCA can

be written as:

yn ¼Wxn þ �n ð1Þ

with independent and identically distributed (i.i.d.) Gaussian observation

noise �n: pð�nÞ ¼ Nð�nj0,�
�1IÞ (Bishop, 2006). Although for probabilistic

PCA we would marginalize over X and optimize the transformation

matrix W, for dual PCA (and more generally, GPLVM), we marginalize

over W and optimize the latent variables X. If we place a prior overW in

the form of pðWÞ ¼
QD

i¼1 Nðwij0,�
�1IÞ where wi is the i-th row of W and

integrate over W, we find (Lawrence, 2004):

pðYjX,�Þ ¼
1

ð2�Þ
DN
2 jKjD=2

exp �
1

2
trðK�1YYTÞ

� �
ð2Þ

with K ¼ �XXT þ ��1I. This marginalized likelihood is the product of D

Gaussian processes with linear covariance matrix K. It can be shown by

deriving the corresponding log-likelihood L with respect to the latent

variables X; the solution is equivalent to the one obtained by solving

the standard PCA problem (Lawrence, 2005). In this dual interpretation

of PCA, the cell-to-cell correlation is captured by the covariance matrix

K. If the linear kernel in K is substituted with a different non-linear

kernel, a non-linear generalization of probabilistic dual PCA (GPLVM)

is obtained. By constructing the covariance matrix using such non-linear

kernel, the relationship between cells can be arbitrarily complex. We

chose the commonly used radial basis function (RBF) kernel, which

can be written as:

kðx1,x2Þ ¼ � exp ��ðx1 � x2Þ
2

� �
þ ��1 ð3Þ

with hyperparameters � and �.

Dual PCA with alternative noise models So far the model assumes

Gaussian noise �n in every dimension, which is a good approach when

there are neither missing nor censored data. However, if we want to

perform a (dual) PCA (or GPLVM) of censored or missing data, it is

necessary to use a different noise model. This can be done by introducing

an additional latent variable F ¼ ½f1, . . . , fN� between X and Y

(Lawrence, 2005):

pðYjX, �Þ ¼

Z
pðYjFÞpðFjX, �ÞdF ¼

Z YN
n¼1

pðynjfnÞpðFjX, �ÞdF ð4Þ

The Gaussian observation noise model used for non-censored data can

then be interpreted as:

pðynjfnÞ ¼
YD
i¼1

Nðynijfni, �
�1Þ ð5Þ

Lawrence (2005) suggested that other noise models in the form of

pðynjfnÞ ¼
YD
i¼1

pðynijfniÞ ð6Þ

can be used. However, in the case of non-Gaussian noise models, the

Gaussian approximations of pðynijfniÞ need to be found to yield a

Gaussian distribution of the posterior of F and thus maintaining the

tractability of the marginalized likelihood.

pðynijfniÞ � Nðmnijfni,�
�1
ni Þ ð7Þ

Thus, to perform PCA/GPLVM with missing and censored data, we

first need to define an appropriate noise model. Next, once the (non-

Gaussian) noise model is defined, we need to find a Gaussian

approximation.

Using this framework to deal with missing data is straightforward: as

Lawrence (2005) shows, the precision �ni corresponding to missing values

ni is set to 0: �ni ¼ 0.

When dealing with censored data, we need to define a more complex

noise model. Here we propose to define a noise model based on the

probit function (cumulative distribution function of the normal

distribution)

�ðzÞ ¼
1

2�

Z z

�1

exp �
t2

2

� �
dt:

For data points n that are right censored at the value b in dimension i,

a noise model reflecting this censoring can be defined as:

pðyni � bjfniÞ ¼ �ð�ðfni � bÞÞ ð8Þ

where � controls the slope of the curve. For data that are left censored at

bl in dimension i, we can choose the noise model accordingly

[pðyni � bjfniÞ ¼ �ð��ðfni � blÞÞ]. Similarly, data that are interval cen-

sored between b1 and b2, can be accounted for with a noise model in

the form of

pðb1 � yni � b2jfniÞ ¼ �ð�ðfni � b1ÞÞ ��ð�ðfni � b2ÞÞ ð9Þ

In Figure 3, the probit noise model for pðy � bjfÞ and the Gaussian

noise model for pðy ¼ bjfÞ are shown. In the probit noise model, the

slope/steepness of the curve is controlled by the parameter �; similarly,

the width of the Gaussian noise model is controlled by ��1.

Gaussian approximations as needed in Equation (7) can be found by

using assumed density filtering (Lawrence et al., 2005; Minka, 2001).

Here, approximations are updated sequentially by incorporating one

datum at a time. This yields an approximation q(F) to the true posterior

pðFjX,YÞ in the form of

qðFÞ ¼ Nðfjf,�Þ ð10Þ

A B C

Fig. 2. The 2D toy example (mixture of four Gaussians). In (A) the true values of Y are shown; Y1 is right censored for values42 (shown in grey). In (B)

a PCA is performed with all censored values substituted with two resulting in a biased representation of the data. In (C) a PCA taking censoring into

account using an appropriate noise model is shown resulting in a more realistic representation of the data. The uncertainty inherent in the generative

model is visualized using greyscale as described in Section 2.2. This uncertainty is greatest on the far right where censoring occurs
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with a block-diagonal covariance matrix � that is built of D blocks

�1, . . . ,�D. The parameters of the approximation can be calculated as:

�ni ¼
	ni

1� 	ni&ni
ð11Þ

mni ¼
gni
	ni
þ fni ð12Þ

with &ni being the n-th diagonal element of �i, gni ¼
@
@fni

lnZni and

	ni ¼ g2ni � 2 @
@&ni

lnZni. The partition function Zni is defined as:

Zni ¼

Z
pðynijfniÞqðFÞdF ð13Þ

It can be shown (Lawrence et al., 2005) that for the case of the probit

noise model, the partition function can be calculated as:

Zni ¼ �ðuniÞ

where

uni ¼ cniðfni � bÞ

cni ¼
1

��2 þ &ni
ð14Þ

In practice, if the slope of the noise model is not fixed, we learn it

together with the kernel parameters: therefore, we consider the slope of

the noise model to be steep and add a white noise term to the kernel K in

the form of ��2Ic with Ic being a diagonal matrix such that only the

entries corresponding to censored data points are set to 1 and all other

entries are set to 0—this will then result in an increase of &ni by � and, as

can be seen from Equation (14), in an equivalent description of the noise

model. Note that care has to be taken because censored inputs are inde-

pendent for each dimension. This means that we have to use a different

kernel for each dimension because Ic will be different for each dimension.

However, as the marginal likelihood factorizes into d Gaussian processes,

this extension of standard GPLVMs is straightforward, and the possibil-

ity was described earlier (Grochow et al., 2004). More specifically,

we choose the white noise term for dimension d such that

kw, d ¼ �
�2Ic, d þ 


2Inc, d with Ic, d and Inc, d being the diagonal matrices

where only those entries are set to 1 where a data point is censored and

not censored, respectively. All other terms in the kernel (i.e. RBF term or

linear term) were shared across all dimensions.

In summary, the generation of the PCA mapping taking censoring into

account involves two major steps. First, a Gaussian approximation

[Equation (7)] to the probit noise model [Equation (8)] has to be found

via assumed density filtering [Equations (11) and (12)]. This yields an

approximation to the log-likelihood of the model [Equation (4)]. In the

second step, this approximation is maximized with respect to the latent

positions X and the kernel parameters (including �). For this optimization

step, non-linear optimizers such as scaled conjugate gradient (Nabney,

2001) can be used.

2.2 Visualizing uncertainties in latent space

Performing dual PCA with the probit noise model as outlined above,

yields an explicit mapping from latent space to the original high-dimen-

sional space [Equation (4)]. When generating this mapping, not only the

positions of the points in the latent space but also the parameters of the

(noise) model are chosen such that censoring is accounted for. That is, the

uncertainty of the data is reflected in the mapping.

Consequently, we can use this model to calculate for any point x� in

the latent space a posterior mean Miðx
�Þ and a posterior variance Viðx

�Þ

for each dimension i (Supplementary Note S1) (Rasmussen and Williams,

2006). For standard GPLVMs with one kernel shared across all dimen-

sions, Viðx
�Þ will be the same for all dimensions. In this case, it is

straightforward to visualize the uncertainty of the mapping in the

latent space by varying the intensity of the background pixels (back-

ground of the 2D map) (Lawrence, 2006). In our case, the posterior

variance will vary across dimensions. To visualize the uncertainty

across all dimensions, we use the fact that Equation (4) is a product of

D Gaussian processes. Consequently, we can quantify the uncertainty of

the mapping by calculating the product of the posterior variance across

all dimensions. For visualizing this uncertainty, we then vary the intensity

of the background pixels with

Intensity ðx�Þ /
XD
i¼1

logðViðx
�ÞÞ ð15Þ

The higher the uncertainty, the darker the pixels. Black pixels corres-

pond to the highest uncertainty.

2.3 PCA of censored single-cell qPCR data

Censoring in single-cell qPCR techniques occurs due to a detection limit

of the qPCR reaction. This LOD both depends on the manufacturer of

the machine and is experiment-specific where it can vary between differ-

ent genes. Most researchers do not establish this gene-dependent LOD

but use a global LOD reflecting the overall sensitivity of the qPCR ma-

chine (Guo et al., 2010; Pina et al., 2012). However, more objective

methods to establish an LOD, such that a qPCR reaction will be found

with a probability of at least 99% if the Ct value is below the LOD, can

be used, too. For example, necessary experiments to do so are outlined in

the manual of the popular Biomarks system (Fluidigm Corporation,

2012).

In the following, we will evaluate our new strategy on how to deal with

the LOD (once it is established) when performing PCA. Therefore, we

first use the standard approach where all values greater than the LOD are

substituted with a particular value Ctsub. The choice of Ctsub depends

largely on the biological interpretation of non-detects (Supplementary

Note S2). If most non-detects correspond to a genuine lack of transcrip-

tion, a large value should be chosen for Ctsub because the true underlying

Ct value would be1 (for practical reasons, Ctsub ¼ 40 could be chosen,

as a maximum of 40Ct can typically be measured); otherwise, a value of

Ctsub closer to LOD (or LOD) should be chosen. We followed the latter

approach (settingCtsub ¼ LOD), which is commonly adopted in the lit-

erature (Guo et al., 2010; Pina et al., 2012). Furthermore, we also

explored higher values of Ctsub corresponding to the interpretation of

non-detects as lack of transcription (Supplementary Figs. S1 and S2).

Because in the substitution approach systematic uncertainties in the

data in the form of censoring are ignored, in this case, a standard PCA

can be performed. In addition to standard PCA, results for independent

component analysis (ICA) and t-Distributed Stochastic Neighbour

Embedding (t-SNE) (Amir et al., 2013; van der Maaten and Hinton,

2008) using the substitution approach are shown in Supplementary

Figures S1 and S2. We then compare this substitution approach to our
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Fig. 3. Probit noise model for three different vales of � (A) and Gaussian

noise model for three different values of ��1 (B)
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new algorithm where PCA with the probit noise model is performed. In

contrast to the substitution approach, there is no need to choose Ctsub
because the probit noise model accounts for uncertainties in the underlying

true Ct value for non-detects. Because the non-detects are modelled sep-

arately by introducing a discrete part in the GPLVM, this can either be

interpreted as a noise model for censored data or as a discrete model for

genes that are ‘off’. For the probit noise model, we compare censored PCA

of fixed steepness parameter � with censored PCA where � is optimized in

the form of a parameter of a white noise kernel, as described above.

We tested the two approaches with both a linear kernel (resulting in

standard PCA) and an RBF kernel to capture non-linearities in the data.

Because theoretically a maximum of 40Ct can be measured, we used

this as the upper limit in the noise model for interval censoring [Equation

(9)]. This prevents the optimizer from being stuck in a local minimum

where some censored data points are mapped to high Ct numbers. (In

practice, this only occurred for the linear kernel with fixed � in the blood

dataset.) In each run, we followed Guo et al. (2010) and Moignard et al.

(2013) and performed a cell-wise normalization by subtracting the aver-

age Ct number of the housekeeping genes from the Ct value of the gene of

interest. Consequently, when data points were censored at a value b

before normalization, this threshold was normalized accordingly for

each cell (Ballenberger et al., 2012).

We evaluated the different approaches on two recently published

datasets. The first dataset was published by Guo et al. (2010). Briefly,

the authors analysed the development of the mouse zygote to the basto-

cyst by measuring gene expression on a single-cell level. Therefore, the

authors quantified the expression levels of 48 genes for 442 cells at dif-

ferent stages of the cellular development (1-cell stage to 64-cell stage).

Cells at the 32-cell stage had undergone differentiation to either trophoec-

toderm (TE) cells or inner cell mass (ICM). Cells at the 64-cell stage were

TE cells, primitive endoderm (PE) cells or epiblast (EPI) cells. Lables for

cells at the 32- and 64-cell stages were derived from Figure 1 by Guo et al.

(2010) by assigning each cell to the closest cluster (TE, PE, EPI, ICM).

Cells from the 1-cell stage were systematically different from all other cells

because of the differences in experimental conditions (Guo et al., 2010).

That is why we excluded all nine cells from the 1-cell stage from our

analysis. More details on the dataset can be found in recent publications

by Buettner and Theis (2012) and Guo et al. (2010).

The second dataset consists of 597 blood stem and progenitor cells, in

which the expression of 24 genes was measured, including 18 transcrip-

tion factors, five housekeeping genes and a cell surface marker (Moignard

et al., 2013). Approximately 120 individual primary cells were isolated for

each population from mouse bone marrow by fluorescence-activated cell

sorting (FACS). As for the ESC data, the sorted populations comprise a

cellular hierarchy that gives rise to all of the mature cell types of the blood

system. The haematopoietic stem cells sit atop the hierarchy and give rise

to the megakaryocyte–erythroid lineage through the PreMegE progenitor

or to the lymphoid-primed multipotent progenitor (LMPP). The LMPP

in turn gives rise to the myeloid lineage and the lymphoid lineage through

the granulocyte–monocyte progenitor and the common lymphoid pro-

genitor (CLP), respectively (Orkin and Zon, 2008). Each population

has been isolated on the basis of cell surface markers and characterized

functionally either in vivo or in vitro.

In the primary analysis of both datasets an LOD of Ct¼ 28 was

assumed.

For both datasets, we evaluated our new approach to deal with cen-

soring for both a linear and an RBF kernel. First, we assess the effect of

the probit noise model compared with the Gaussian noise model.

Therefore, we make use of the generative models and calculate the pos-

terior mean of pðycjxcÞ for all censored data points c. Furthermore, we

quantified the performance of the different approaches in terms of their

ability to reflect the known structure of the data by calculating the nearest

neighbour error: for each cell, we established the label of its nearest

neighbour in the respective 2D space; if the label differed from the

original cell, we increased the nearest neighbour error count by one.

We chose this metric because it is easily interpretable and commonly

used in the machine learning community to quantify the performance of

dimensionality reduction/visualization methods; however, as its power is

limited (e.g. it does not account for newly discovered subpopulations),

visual inspection as an additional performance measure is crucial.

3 RESULTS

In Figure 1, the fraction of censored data points in both datasets

is illustrated for the different genes. It can be seen that in both

datasets a considerable fraction of data is censored across some

dimensions (genes), whereas for other dimensions no censoring

occurred (i.e. expression of the respective gene could be detected

with a Ct number below the LOD for all cells).

In the following section, we will first evaluate different

approaches of PCA with censored data for the mouse embryonic

stem cells (mESC) data. Next, we will repeat the evaluation with

a different dataset on blood stem/progenitor cells.

3.1 Evaluation of censored PCA for mESC data

The result of a standard PCA where all censored values are sub-

stituted with LOD (as described in Section 2.3) is shown in Figure

4D. This method was used in the original publication and yielded

a nearest neighbour error of 124. In the original high-dimensional

data space, the nearest neighbour error was 10. Note that this

error was calculated using the substitution approach.
Although TE cells can be clearly distinguished from all other

cell types, early cells from 2- to 8-cell stages are strongly over-

lapping. Similarly, there is a strong overlap between ICM cells

and PE/EPI cells.
Next, we compare the substitution method with our new al-

gorithm for censored PCA. In Figure 4E and F, the results for a

fixed ��2 ¼ 10 are shown together with the representation where

� was optimized together with the other kernel parameters.

For a quantitative analysis of the effects of the different noise

models, we used the generative mapping from the latent space to

the high-dimensional space to calculate the posterior means

given all censored data points in the low-dimensional space.

We then calculated the residuals between the posterior means

and the respective normalized LOD. In Figure 4A–C, it can be

seen that when using the substitution approach, the censored

values are mapped consistently to values lower than the

normalized LOD. In contrast, when our new approach is used,

a large fraction of censored data points is mapped to values

greater than the normalized LOD, which is in better agreement

with the ground truth. When � was learnt from the data by

optimizing it in the form of a kernel parameter, the maximum

a posteriori estimate was 15.3 for ��2. Compared with a fixed

value for ��2 of 10, censored data points were mapped closer to

the normalized LOD. It can be seen that taking into account the

censoring results in an improved mapping where EPI cells can be

separated better from ICM/PE cells than in the standard

method. This is reflected in lower nearest neighbour errors of

113 and 88 for fixed � and learnt �, respectively.
We also evaluated our new approach for an RBF kernel,

which allows non-linearities to be taken into account. The result-

ing mappings are shown in Figure 4G–I.
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It can be seen that in the non-linear case, the separation be-

tween different time points and cell times is comparable between

the substitution approach and our new approach. This is also

reflected in the similar nearest neighbour errors of 11, 12 and 10,

respectively.
However, it can be seen that the ICM cells as well as cells from

the 16-cell stage are separated into two clusters when the censor-

ing is accounted for. This leaves room for interpretation. When

comparing mean gene expression for the two subclusters in the

16-cell stage, we found that expression in Id2 and Klf4 differed

considerably between the two subclusters (P-values after

Wilcoxon rank sum test 10�6 and10�11, respectively, Fig. 5).

This is in good agreement with previously reported experimental

results from Guo et al. (2010), who show that Id2 is the earliest

markers for outer cells. Similarly, when comparing mean gene

expressions in the two subclusters of ICM cells, we found that

they differed significantly in expression of Fgf4 (P¼ 0.01,

Wilcoxon rank sum test). This is also in good agreement with

previously reported results showing differential expression of

Fgf4 in the early ICM (Guo et al., 2010). Thus, when allowing

for non-linearities and taking censoring into account, it was pos-

sible to correctly represent the structure of the data for all cell

types and resolve subpopulations that could not be revealed

when not accounting for censoring. In Supplementary Figure

S3, the nearest neighbour errors for all approaches to perform

a PCA of the mESC data set are shown. In Supplementary

Figure S1, we show the results for the substitution approach

with other multivariate methods for different choices of Ctsub.

All approaches yielded higher nearest neighbour errors than the

GPLVM with probit noise model.

3.2 Evaluation of censored PCA for blood stem/progeni-

tor cell data

To evaluate the potential benefits of our new approach for PCA

of censored data with a second independent biological dataset,

A B C

D E F

G H I

Fig. 4. (A–C) Distribution of residuals between posterior means and the normalized LODs for different approaches. (D–F) PCA with censored data from

mESC dataset. Standard PCA with substitution approach (D), taking censoring into account with probit noise model and fixed � (E) and probit noise

model with � learnt from data (F). (G–J) GPLVMwith RBF kernel for mESC data. Standard GPLVMwith substitution approach (G), taking censoring

into account with probit noise model and fixed � (H) and probit noise model with � learnt from data (I). In (I) the dashed lines indicate two distinct

subpopulations at the 16-cell stage and ICM
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we next applied our new analysis tools to a recently generated

single-cell gene expression dataset for five fluorescence-activated

cell sorting-sorted populations of blood stem and progenitor

cells.
As for the mESC dataset, we first compared standard PCA

with the substitution approach to censored PCA with the probit

noise model. Results are shown in Figure 6D–F. It can be seen

that by accounting for censoring in the data, a better separation

is achieved between most cell types; this occurs most clearly for

CLPs and granulocyte–monocyte progenitors. Consequently,

nearest neighbour errors decreased from 254 errors with the

standard substitution approach to 193 and 217 when censoring

was accounted for by fixing � and learning �, respectively. As for

the mESC dataset, we found that the censored PCA approach

yielded better posterior mean values for censored data points

than the standard approach using substitution (Fig. 6A–C).
We also used an RBF kernel to evaluate the non-linear PCA

with censored data. Results for the different approaches are

shown in Figure 6G–I. When accounting for the censoring, the

nearest neighbour error was reduced and a better separation be-

tween CLPs and LMPPs than for the substitution approach was

possible. Nearest neighbour error rates for all approaches are

summarized in Supplementary Figure S3. In Supplementary

Figure S2, we show results for the substitution approach with

other multivariate methods for different choices ofCtsub. All

approaches yielded higher nearest neighbour errors than the

GPLVM with probit noise model.

4 DISCUSSION

Conventional approaches for PCA of censored data where values

beyond the detection limit are substituted with the detection limit

can yield strongly biased results. We have proposed a novel ap-

proach for performing dual PCA of censored data. Our new

approach resulted in a mapping between low-dimensional and

high-dimensional space such that more censored data points

were mapped correctly to values greater than the detection
limit. It was previously shown that for single-cell qPCR data,
it is crucial to explicitly model the population of non-detects

when performing a statistical test of univariate differential ex-
pression (McDavid et al., 2013). To date no approaches for deal-
ing with this issue for multivariate analyses such as PCA have

been proposed. We evaluated our new approach for two different
real-world datasets comprising measurements of single-cell
qPCR data. For both datasets, the PCA representations better

reflected the known structure of the data when the censoring was
explicitly considered. We evaluated using a linear as well as a
non-linear kernel, and for both datasets accounting for non-lin-

earities resulted in better visualizations. In contrast to using a
linear kernel (i.e. PCA), this comes at the price of losing inter-
pretability—although in the linear case loadings can be easily

visualized in a bi-plot, in the non-linear case this is more difficult
because loadings change across the 2D plot. Whether trading off
interpretability for complexity is beneficial depends highly on the
dataset under consideration and any non-linearities present. In

the context of single-cell qPCR data, our analyses suggest that a
non-linear kernel is necessary to capture the typical complex de-
pendency structure of such data.

For linear kernels (corresponding to standard PCA) as well as
for non-linear kernels (allowing for interactions), our new ap-
proach yielded considerably lower nearest neighbour error

rates with reductions of up to 29% in the linear case.
Furthermore, in the case of mESC data, the structure of
subpopulations was reflected better in the case when censoring

was taken into account in the non-linear case: in contrast to non-
linear probabilistic PCA with the substitution approach, two
subpopulations corresponding to cells from the 16-cell stage

with high Id2 expression and cells in the ICM with high Fgf4
expression could be identified. These known subpopulations
were previously identified in a univariate analysis of cells from

the same cell stage. However, this standard approach has several
drawbacks because it can become unfeasible when too many
genes are measured simultaneously. Furthermore, only univari-

ate patterns can be identified, whereas important information
may lie in multivariate patterns, which could be defined by the
differential expression of several genes. Finally, when analysing

univariate distributions or correlations between two genes for
cells from the same cell stage, the identified subpopulations
cannot be put in context with other cells from other cell stages.

In contrast, when performing a probabilistic (kernel) PCA of all
cell stages, it is possible to identify complex multivariate subpo-
pulations, and by simultaneously displaying all cells, the PCA

plot provides an intuitive illustration of the relation between all
cell populations.
This was achieved by implementing a GPLVM with different

kernels for each dimension. Censoring was accounted for by a
probit noise level. The steepness parameter of the probit function
was learnt together with other kernel parameters, resulting in a

parameter-free approach for PCA of censored data.
Although our approach was designed for accounting for

uncertainties in single-cell qPCR data, related issues can be

found in single-cell RNA-Seq data. In contrast to single-cell
qPCR, however, high levels of technical noise are present in all
commonly used protocols for single-cell RNA-Seq (Brennecke

et al., 2013). This technical noise is particularly strong for low

Fig. 5. Difference in gene expression between the two subclusters at the

16-cell stage for different mappings. The error bars show the variation of

gene expression within the smaller subcluster (one standard deviation in

each direction). For convenience, genes with the greatest differences are

labelled in the plots
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levels of expression and dominates all other uncertainties (like

censoring). Although these uncertainties are inherently different

from the censoring found in single-cell qPCR, the flexible frame-

work of Gaussian processes allows us to account for these uncer-

tainties in a straightforward manner by using an additional term

in the (Gaussian) noise model reflecting the technical noise,

which can be estimated using the approach suggested by

Brennecke et al. (2013). Although single-cell RNA-Seq data are

generated in the form of read counts, it is crucial to perform

normalization steps accounting for different cell sizes, different

sequencing depth and, depending on the protocol, different tran-

script lengths (Brennecke et al., 2013; Yan et al., 2013). Such

normalization can be performed by calculating reads per kilo

base per million (RPKM) and fragments per kilobase of exon

per million fragments mapped (FPKM) or using DEseq-inspired

normalization procedures (Anders and Huber, 2010; Brennecke

et al., 2013). After normalization, gene expression is measured on

a continuous scale such that—after an appropriate variance-

stabilizing transformation (e.g. log-transformation)—GPLVM

can be applied without modification. Because efficient implemen-

tations allow fast processing of datasets with tens of thousands of

genes and hundreds of cells without overfitting, it is a promising

tool for analysing such datasets.
The main drawback of our proposed approach is that it scales

cubically with the number of cells, which may be prohibitive

when the number of analysed cells is very large (44104).

Although standard GPLVMs are time-consuming, too, signifi-

cant speed-ups can be achieved because of sharing the kernel

across all dimensions and using a spherical noise model.

However, if necessary, approximations resulting in sparse covari-

ance matrices commonly used in Gaussian process literature

could be applied for our framework, too. For the application

to single-cell qPCR data, we found that this was not necessary

because computation times were in the order of only a few hours

on a standard laptop. We acknowledge that this is a considerable

increase of time compared with standard PCA, which can be

performed when using the substitution approach to deal with

censored data. In applications with only a small fraction of

A B C

D E F

G H I

Fig. 6. (A–C) Distribution of residuals between posterior means and the normalized LODs for different approaches. (D–F) PCA with censored data from

blood dataset. Standard PCA with substitution approach (D), taking censoring into account with probit noise model and fixed � (E) and probit noise

model with � learnt from data (F). (G–J) GPLVM with RBF kernel for blood data. Standard GPLVM with substitution approach (G), taking censoring

into account with probit noise model and fixed � (H) and probit noise model with � learnt from data (I). The background intensity indicates the relative

uncertainty of the mapping with black pixels corresponding to the highest uncertainty of the mapping
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censored data points, this rather large increase in runtime may
result in only minor changes of the PCA representation, and
simpler approaches such as the substitution approach or treating
the data as missing may be a valid alternative if runtime is an

issue. However, in the case of single-cell qPCR data, we have
shown that taking censoring into account avoids a potential bias
in low-dimensional representations due to the censoring. This in

turn can result in better biological insights: first, our approach
can yield a better separation of different cell types; second, it may
even reveal new biologically meaningful subpopulations that

may be obscured because of a bias introduced by the censoring.
When designing single-cell qPCR experiments, the quantification
of heterogeneities and the reliable identification of new subpopu-

lations are often key goals. That is why we believe that our ap-
proach will be of interest for many practitioners working with
censored data, especially in the field of high-throughput single-
cell qPCR.

5 CONCLUSION

We have presented a new approach for performing probabilistic
PCA for censored data within the framework of GPLVMs.

Therefore, we implemented an appropriate noise model and
allowed different kernels for each dimension. We showed that
for single-cell qPCR data with a high fraction of censored data

points, the resulting probabilistic (kernel) PCA representations
reflected the true structure of the data better than conventional
approaches. In two real-world datasets, known cell types could

be better separated when censoring was taken into account, and
in one dataset several distinct subpopulations could be revealed
that could not be resolved with standard PCA.
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