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Abstract
Preferential attachment is a stochastic process that has been proposed to explain certain

topological features characteristic of complex networks from diverse domains. The system-

atic investigation of preferential attachment is an important area of research in network sci-

ence, not only for the theoretical matter of verifying whether this hypothesized process is

operative in real-world networks, but also for the practical insights that follow from knowl-

edge of its functional form. Here we describe a maximum likelihood based estimation

method for the measurement of preferential attachment in temporal complex networks. We

call the method PAFit, and implement it in an R package of the same name. PAFit consti-

tutes an advance over previous methods primarily because we based it on a nonparametric

statistical framework that enables attachment kernel estimation free of any assumptions

about its functional form. We show this results in PAFit outperforming the popular methods

of Jeong and Newman in Monte Carlo simulations. What is more, we found that the applica-

tion of PAFit to a publically available Flickr social network dataset yielded clear evidence for

a deviation of the attachment kernel from the popularly assumed log-linear form. Indepen-

dent of our main work, we provide a correction to a consequential error in Newman’s original

method which had evidently gone unnoticed since its publication over a decade ago.

Introduction
The de factomaxim of network science is ‘all systems are networks.’ For those who are well-
acquainted with this network view of reality, recognizing the network nature of virtually any
real-world system borders on reflexive. But network scientists are not interested in studying
just any old networks. Network scientists habitually confine themselves to the study of complex
networks, that is, large-scale networks with emergent topological features that are not found to
occur in simple networks [1]. Complex network research turns more or less on the study of
two related problems: first, the modelling of dynamical processes taking place on static com-
plex networks in a manner that makes judicious use of known topological features [2], and sec-
ond, the study of how topological features emerge in temporal complex networks and
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subsequently evolve over time [3]. It is the latter problem that concerns us in this paper. To be
plain: we focus on understanding the extent to which a process know as preferential attach-
ment (PA) explains the emergence of those heavy-tailed degree distributions, best exemplified
by power-laws, that are commonly observed in temporal complex networks across nature, soci-
ety, and technology [3].

It is reasonable to describe a wide variety of real-world systems as temporal (complex) net-
works. In formal terms, a temporal network represents an evolving system as a sequence of
static (complex) networks. This sequence, which we denote by G0, G1, . . ., GT, is best envi-
sioned as a progression of snapshots of a given system taken at discrete time-steps, t = 0, 1, . . .,
T. The model at this level of generality is purely descriptive and serves only to frame our think-
ing about complex systems. Raising it up to the status of an explanatory model with predictive
power requires the setting forth of laws governing node generation and the formation of node-
to-node connections in the transition from Gt−1 to Gt. This, however, is a subject to which we
must return after a brief digression on some important empirical findings.

By the late 1990s, temporal networks in diverse domains of learning were observed to enjoy
some universal topological features [4]. The most publicized of these features at the time was
the so-called scale-free property [5]. A network, it will be noted, is scale-free when its degree
distribution follows a particular kind of heavy-tailed function called a power-law [6]. The pur-
ported universality of scale-free networks was soon, however, called into question when it was
pointed out that distinguishing a power-law degree distribution from alternative heavy-tailed
functional forms, such as the log-normal distribution, is a matter of considerable subtlety [5–
8]. In light of this consideration, we will proceed on the supposition that the temporal networks
in the world around us are commonly found to have heavy-tailed degree distributions with
those following power-laws constituting an interesting special case.

What was interpreted as mounting empirical evidence for scale-free networks had every-
body in network science scurrying to propose explanatory temporal network models that
account for them in terms of domain independent processes. The first and most influential of
these is known as the Barabási-Albert (BA) model [4]. It is essentially a toy model that gener-
ates scale-free networks by appealing to a simple growth law for node generation and a special
case of PA to govern the formation of node-to-node connections.

Consider a generalization of the BA model that allows for networks with a wider range of
heavy-tailed degree distributions [9]. Let Gt denote a static network at time-step t = 0, 1, . . ., T.
Starting from a seed network G0, for each time-step 1� t< T, the network Gt−1 is ‘grown’ by a
new node v0 that is subsequently connected to an already existing node to form Gt. Note that,
in order to review the precise results about the degree distribution, here we only consider the
case in which one node is added at each time-step. Later in the Materials and Methods section,
we will describe a model that more closely reflects real-world networks, in which multiple new
nodes can appeared at the same time. The PA rule then states that v0 connects to a node vk of
degree k in Gt−1 with probability proportional to Ak:

Prðv0 connects to vkÞ / Ak: ð1Þ

The function Ak is called the attachment kernel. Strictly speaking, PA is only said to occur
when Ak is an increasing function on average. It has been shown that the functional form of the
attachment kernel can have dramatic effects on temporal network topology. Let us consider the
log-linear model Ak = kα with attachment exponent α> 0 as an important example. When Ak =
k (α = 1) the resulting network is scale-free [9]. This is called linear PA and it is this form that
it is assumed in the BA model. On the other hand, sub-linear PA (0< α< 1) gives rise to a
class of stretch-exponential degree distributions, while super-linear PA (α> 1) leads to a

PAFit: A Statistical Method for Measuring Preferential Attachment

PLOS ONE | DOI:10.1371/journal.pone.0137796 September 17, 2015 2 / 18



winner-take-all phenomena whereby a handful of nodes acquire all the connections [9]. The
limiting case Ak = 1 for all k (α = 0) corresponds to a version of the classical Erdös-Rényi ran-
dom network model [10]. In this case, the network is also not scale-free.

The point is that the Barabási-Albert family of models explain the emergence of a robust
class of heavy-tailed degree distributions in temporal networks in terms of two generic pro-
cesses: growth and PA. It is, moreover, plausible that these processes operate in many real-
world temporal networks. In expanding social networks, for example, it is reasonable to pre-
sume that a person with many acquaintances already will tend to make new ones at a faster
rate, than a person with few. Or, in citation networks of research papers, to take another exam-
ple, a paper with many citations may acquire new citations more readily, than a comparatively
lesser known paper. The same argument is easily specialized to other sorts of temporal net-
works by reasoning along similar lines.

Let us suppose for the sake of argument that heavy-tailed degree distributions of this kind
prevail in growing temporal networks in the real world. This would not prove that PA was
responsible for their generation, because it is always possible that a different process was at
work. Rather, the presence of PA in the generative process must be confirmed by observation.
In practice, this amounts to estimating the attachment kernel, Ak, from observed data.

The problem of estimating Ak from observed data is one of great importance to the working
network scientist. For one thing, there are practical applications in link prediction algorithms
[11], and more generally, it gives us valuable insights into the global characteristics of networks
[9]. But the core questions surrounding the PA process are these: does PA actually exist in real-
world temporal networks; or, in other words, is Ak really increasing in k? If so, then what ele-
mentary functional form, if any, does it take? Is it the widely accepted log-linear model Ak = kα,
or something else? In order to investigate these questions scientifically, a rigorous statistical
method to estimate the functional form of Ak with confidence bounds is necessary. However,
to the best of our knowledge, no such method has yet been advanced in the literature.

Nevertheless, detecting the hand of PA in temporal networks has attracted the attention of
many researchers, and a number of estimation methods for Ak have been proposed [12–17].
Table 1 shows a summary of the existing methods. The primary drawback of most of these
methods is that they explicitly assume the log-linear form Ak = kα and focus only on estimating
the attachment exponent α [14–17]. Massen et al. [14] used a fixed point iterative algorithm for
the purpose, Sheridan et al. [15] a Markov chain Monte Carlo method, Gomez et al. [16] a
maximum likelihood (ML) approach to estimate the value of α. Lastly, Kunegis et al. [17]

Table 1. Summary of the existing attachment kernel estimationmethods.

Method Form of Ak Estimation method

Newman [12] Nonparametric Weighted sum of multiple histograms

Jeong et al. [13] Nonparametric Single histogram

Massen et al. [14] Ak = kα Iterative fixed-point algorithm

Sheridan et al. [15] Ak = kα Markov chain Monte Carlo

Gomez et al. [16] Ak = kα ML by grid search

Kunegis et al. [17] Ak = kα Regression

Summary of the existing methods for estimating the attachment kernel Ak. Nonparametric methods are

methods that do not assume a functional form for Ak.

doi:10.1371/journal.pone.0137796.t001
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estimated α by fitting a function that relates the number of new connections a node obtains in
the future with its current degree.

The remaining methods [12, 13] do not assume any functional form for Ak. As invaluable as
these methods are, they are ad-hoc methods that are not without their problems. Newman’s
method [12] is among the first methods proposed to estimate Ak. In real-world examples, New-
man’s method appears to be able to estimate Ak well for small k, but systematically underesti-
mates Ak when k is large [18, 19]. This is thought to be an artifact of the method [19]. We will
explain the reason for this artifact in detail below. On the other hand, while Jeong’s method
[13] is the most widely-used method in practice [19–31], as we will explain in the Materials
and Methods section, it suffers from a kind of bias-variance trade-off.

Our contributions in this paper are twofold.
First and foremost, we propose a nonparametric estimation method called PAFit that

employs the ML approach of [32] to fit the functional form of the attachment kernel. PAFit is
nonparametric in the sense that it does not make any assumptions on the functional form of
Ak. The method works instead by estimating the value of Ak separately for each k. The algo-
rithm underlying PAFit is the Minorize-Maximization [33, 34] (MM) algorithm. We prove
that our algorithm converges to a global maximizer of the log-likelihood function and provide

a fast approximation to the confidence intervals of the estimated attachment kernel Âk. This
last step is essential for the analysis of large datasets. What is more, we present the results of
extensive Monte Carlo simulations that demonstrates how PAFit outperforms the state-of-the-
art methods, namely Jeong’s method and Newman’s method, at the task of estimating Ak for a
variety of different functional forms. Lastly, we used PAFit to analyze a publicly available Flickr
social network dataset [35], and found that the estimated attachment kernel differed consider-
ably from the functional form Ak = kα. This result immediately suggests that it is important to
look beyond the classical log-linear form when modelling the attachment kernel.

A second contribution of ours that should not be overlooked is an explanation of the artifact
observed in the Newman’s method. In particular, we show that this artifact can be completely
eliminated by a simple mathematical correction. This is important because researchers have
been using Newman’s method to estimate Ak in real-world networks for the better part of 15
years. It will be noted that while PAFit outperformed the corrected version of Newman’s
method in the simulated examples, the corrected version was found to work better than uncor-
rected version.

In summary, PAFit is a statistically sound method for estimation of the attachment kernel
in temporal complex networks. We have demonstrated its potential in this paper to uncover
interesting findings about real-world complex networks. This method is implemented in the R
package PAFit [36].

Before entering into the details of PAFit in the next sections, we note some recent develop-
ments in the field of complex networks. In this paper, we estimate the growth mechanism, in
particular the PA mechanism, of a network given its growth process, that is, the observed data
are the final network and all previous networks in the growth process. There is another line of
research that considers a somewhat opposite problem: the underlying network is unknown and
the task is to estimate it. This line of research includes, for example, estimating the unknown
gene regulatory network from observed omics data [37, 38]. Complex networks have also
found applications in many other areas, including economics [39], image analysis [40] and epi-
demiology [2, 3, 41, 42]. Beside the scale-free property, which only concerns the degree distri-
bution of a network, other topological features which concern higher order of information
have also been studied extensively in the literature [43–46].
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Materials and Methods
In this section, we begin by introducing the temporal network model underlying the PAFit
method. We follow that with an illustrative example to demonstrate the workings of PAFit in
comparison with previous methods. From there we explain the mathematical details of PAFit
and call attention to its important properties. The similarities between PAFit and previous
methods are discussed. It is there that the correction to Newman’s method is outlined. Next,
fast calculations for the confidence intervals of the estimated values are explained. We then
proceed to discuss binning and regularization, which are two important techniques for stabiliz-
ing the PAFit estimation. Finally, we mention how to estimate the attachment exponent α of

the log-linear model Ak = kα from Âk.

The general temporal model
The statistical estimation method we present in this paper is tailored for the following temporal
model for directed networks. Note, however, that our method can be easily adapted to work for
undirected networks. The model is a simplified version of a model that we introduced in a pre-
vious publication [32]. Starting from a seed network at time-step t0 = 0, we grow the network
by adding n(t) nodes andm(t) edges at every time-step t, for t = 1, . . ., T. Note that our method
allowsm(t) to be consisted of both new edges that emanate from the n(t) new nodes and emer-
gent edges between existing nodes. This is important since a large number of real-world net-
works have emergent edges between existing nodes. At time-step t, the probability that an
existing node v with in-degree k acquires a new edge is

Prðv acquires a new edgeÞ / Ak; ð2Þ
where Ak is the value of the attachment kernel at degree k. We call this model the general tem-
poral (GT) model. The GT model includes a number of important network models as special
cases. When Ak = kα, the GT model corresponds to Price’s model [47, 48] or Barabási-Albert
(BA) model [4] in the undirected case. Furthermore, when Ak = 1 for all k, then it reduces to
the classical Erdös-Rényi random network model [10].

Here we note a quick remark on an assumption about the joint probability distribution of
n(t) andm(t). We will return to this assumption later when we discuss the MLE for Ak. Let θ(t)
denote the parameter vector that governs the joint distribution of n(t) andm(t). We assume
that θ(t) does not involve Ak. This very mild assumption allows broad and realistic models for
m(t) and n(t). For example,m(t) and n(t) can be random variables whose means and variances
depend on Gt−1.

A final remark is that, although we do not incorporate deletions of nodes and edges into the
formal specification of the GT model, this is purely for simplicity. The PAFit method is able to
estimate Ak even when there are deletions of nodes and edges, as long as the deletion mecha-
nism is independent of the addition mechanism and the parameters govern the deletion mech-
anism do not involve Ak, which are reasonable assumptions. The current R implementation of
PAFit [36] can be easily adapted to work in these cases.

An illustrative example
In this section we present a simulated example of a GT model network. The purpose being to
demonstrate the workings of our proposed method, PAFit. The network generative process fol-
lows the GT model with Ak = 3(log(max(k, 1)))2 + 1. Starting from a seed network with 20
nodes, at each time-step,m(t) = 5 new edges and n(t) = 1 new node were added, until a total of
T = 2000 nodes is reached. We measure how well a method performs by using the average

PAFit: A Statistical Method for Measuring Preferential Attachment

PLOS ONE | DOI:10.1371/journal.pone.0137796 September 17, 2015 5 / 18



relative error between the true Ak and the estimated Âk, defined as eA ¼ 1
K

PK
k¼1

ðAk�ÂkÞ2
A2
k

where K

is the maximum degree that appears in the growth process.
We first apply Jeong’s method. Here we choose the time window between when the 1500-th

and 2000-th nodes are added. After a suitable normalization, the histogram of the degrees of

nodes to which new edges appeared in this window connect will give us Âk. The average rela-
tive error eA for Jeong’s method is 0.337, which is the highest among four methods considered
in this example. From Fig 1A, one can see that Jeong’s method did capture the shape of Ak, but
the estimated function was sparse and fluctuated considerably. These are inherent drawbacks
of the method that follow from using only a small time window to estimate Ak.

Fig 1. Estimation of the attachment kernel when the true model is Ak = 3(log(max(k, 1)))2 + 1. A: Jeong’s method. B: Newman’s method. C: Corrected
Newman’s method. D: PAFit. The solid line depicts the true model. The plots are on a log-log scale. The gray vertical lines are the estimated confidence
intervals of the estimated values by PAFit. Confidence intervals are not available in the remaining methods.

doi:10.1371/journal.pone.0137796.g001
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Second, we apply Newman’s method. His method can be interpreted as estimating the
attachment kernel by a weighted sum of multiple histograms created at multiple time-steps. In

Fig 1B, Âk follows the true function very closely, but the value of Ak starts to fall off when the
degree k becomes large. This phenomenon can also be seen in other papers [18, 19], and is
thought to be an artifact of the method [19]. The value of eA for Newman’s method is 0.168,
which is the second highest error among four methods used in this example. With a simple cor-
rection, we can eliminate this artifact. As can be seen from Fig 1C, the corrected Newman’s
method estimated the attachment kernel well the entire range of k. The value of eA for this cor-
rected version is 0.016, which is much smaller than those of Jeong’s method and the original
method of Newman.

Unlike all the other methods, PAFit estimates the attachment kernel by maximum likeli-

hood estimation (MLE), and can give quantifications of the uncertainties in the value of Âk in
the form of confidence intervals. In Fig 1D, the estimated attachment kernel follows the true
function comparatively well, even in the high degree region. The average relative error eA of
PAFit is 0.015, which is the smallest error among four method considered here.

Maximum likelihood estimation
Here we derive the MLE for the GT model as described in the previous section. Recall that K is
the maximum degree that appears in the growth process. Let A = [A0, A1, . . ., AK] be the
parameter vector we want to estimate. The likelihood of the data at time-step t� 1 is the prod-
uct of P(m(t), n(t)jGt−1, θ(t)) and P(GtjGt−1,m(t), n(t), A). The likelihood of the data at the
starting time t = 0 is the product of P(m(0), n(0)jθ(0)) and P(G0jm(0), n(0), θ�), with θ� the
parameter vector governing the distribution of G0. Thus the log-likelihood function of the data-
set is

lðAÞ ¼
XT
t¼1

logPðGtjGt�1;mðtÞ; nðtÞ;AÞ þ
XT
t¼1

logPðmðtÞ; nðtÞjGt�1; θðtÞÞþ

logPðmð0Þ; nð0Þjθð0ÞÞ þ logPðG0jmð0Þ; nð0Þ; θ�Þ:
ð3Þ

As previously mentioned, we assume that θ(t), the parameter vector governing the joint distri-
bution ofm(t) and n(t), does not involve A. We also assume that θ� does not involve A. When
deriving the MLE of A, these two assumptions allow us to ignore all but the first term in the
right hand side of Eq (3). At the onset of time-step t, denotemk(t) and nk(t) as the number of
new edges that connect to a node with degree k and the number of existing nodes with degree
k, respectively. The term P(GtjGt−1,m(t), n(t), A) corresponds to a multinomial distribution.
This follows from the observation that givenm(t), the quantitiesm0(t),m1(t), . . .,mK(t) follow
a multinomial distribution with parameters p0(t), p1(t), . . ., pK(t), where pk(t), the probability
that a newly added edge at time t connects to a node with degree k, is

pkðtÞ ¼
nkðtÞAkPK
j¼0 njðtÞAj

: ð4Þ

After dropping constant terms, we can write down the log-likelihood function in detail:

lðAÞ ¼
XT
t¼1

XK
k¼0

mkðtÞ logAk �
XT
t¼1

mðtÞ log
XK
j¼0

njðtÞAj

 !
: ð5Þ

Note that the Ak are only identifiable up to a multiplicative constant, as can be seen from
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Eq (4). We can enforce uniqueness by fixing Ak = 1 for some k that satisfies
PT

t¼1 mkðtÞ > 0. In
practice, we can often set, for example, A1 = 1.

We find the MLE by solving the following likelihood equation.

@lðAÞ=@A ¼ 0()Ak ¼
PT

t¼1 mkðtÞPT
t¼1

mðtÞnkðtÞPK
j¼0 njðtÞAj

k ¼ 1; . . . ;K: ð6Þ

But before that we have the following observation.
Proposition 1 Any A0 that satisfies @l(A)/@A = 0 is a global maximizer of l(A).
The implication of this proposition is that even though the log-likelihood function l(A)

might be not concave, any local maximizer is guaranteed to be a global maximizer.
Proof.We consider the one-to-one re-parametrization β = β(A) = [logA0, . . ., logAK]

T.
From Eq (5) and the inverse relation Ak = exp βk, the log-likelihood function under this new
parametrization is

lβðβÞ ¼
XT
t¼1

XK
k¼0

mkðtÞbk �
XT
t¼1

mðtÞ log
XK
j¼0

njðtÞ expbj

 !
:

The second derivative of the log-sum-exponential term log
PK

j¼0 njðtÞexpbj

� �
can be shown to

be non-negative semi-definite (a similar calculation can be found on page 74 of [49]). There-
fore the second derivative Δ2 lβ(β) of lβ(β) is non-positive semi-definite. Thus lβ(β) is concave.
Now the likelihood equation of the re-parametrized log-likelihood function lβ is

@lβ=@β ¼ 0() expbk ¼
PT

t¼1 mkðtÞPT
t¼1

mðtÞnkðtÞPK
j¼0 njðtÞ expbj

k ¼ 1; . . . ;K: ð7Þ

One can see that any A0 satisfying Eq (6) will give a reparametrization β0 that satisfies Eq (7).
This β0 is a global maximizer since lβ(β) is concave. Thus the A0 is also a global maximizer.

Turning now to how to solve for Ak, since Ak appears in both sides of Eq (6), an explicit

solution for A is difficult to obtain. DefineAðiÞ ¼ AðiÞ
1 ; . . . ;A

ðiÞ
K

h i
as the estimated parameter

vector at iteration i. Starting from some initial value A(0), at iteration i� 1 we can iteratively

update AðiÞ
k using Eq (6):

AðiÞ
k ¼

PT
t¼1 mkðtÞPT

t¼1

mðtÞnkðtÞPK
j¼0 njðtÞAði�1Þ

j

k ¼ 1; . . . ;K: ð8Þ

We repeat Eq (8) until the following convergence condition is met.

jlðAðiÞÞ � lðAði�1ÞÞj
jlðAði�1ÞÞj þ 1

� �: ð9Þ

This iterative algorithm turns out to be an instance of Minorize-Maximization (MM) [33, 34]
algorithms, which are used in maximization problems. In MM algorithms, instead of maximiz-
ing a complicated objective function, at each iteration we find and maximize a minorize func-
tion of the objective function. A minorize function is a function that is equal to the objective
function at the current point, and is the lower bound of the objective function at all other
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points. The minorize function is often chosen so that we can maximize it easier than the origi-
nal objective function. For our problem, we have the following proposition:

Proposition 2 Using the aforementioned algorithm, the log-likelihood function is guaranteed
to increase with number of iterations. In particular,

lðAðiÞÞ � lðAðiþ1ÞÞ:
Furthermore, the stopping pointA(M) which satisfiesA(M) = A(M−1) is a global maximizer of l(A).

Proof.We find a minorize function Qi(A), which is a function that satisfies l(A)� Qi(A) for
all A, and l(A(i)) = Qi(A

(i)). Define

QiðAÞ ¼
XT
t¼1

XK
k¼0

mkðtÞ logAk �
XT
t¼1

mðtÞ log
XK
j¼0

njðtÞAðiÞ
j

 !
�

XT
t¼1

mðtÞ
PK

j¼0 njðtÞAjPK
j¼0 njðtÞAðiÞ

j

þ
XT
t¼1

mðtÞ:
ð10Þ

Applying the inequality −logx� −logy − x/y + 1, 8x, y> 0 with x ¼PK
j¼0 njðtÞAj and

y ¼PK
j¼0 njðtÞAðiÞ

j , one can verify that l(A)� Qi(A). By substitution, one can check that l(A
(i)) =

Qi(A
(i)). It is also easy to verify that the A(i+1) computed by Eq (8) is the solution of @Qi/@A = 0,

and thus satisfiesA(i+1) = argmaxQi(A). Therefore,

lðAðiÞÞ ¼ QiðAðiÞÞ � QiðAðiþ1ÞÞ � lðAðiþ1ÞÞ:
Suppose that the algorithm stops at iterationM such that A(M) = A(M−1). From Eqs (8) and (6),
we can see that A(M) satisfies Eq (6). Combining this with Proposition 1, this means that A(M) is a
global maximizer l(A).

It is instructive to look at Eq (8). If we only have one time-step t, then the MLE solution is
Ak =mk(t)/nk(t), which is an intuitive formula. When there are multiple time-steps, things
become less obvious. In this case, the MLE solution for Ak sums up all themk(t) then divides
this number by a weighted sum of the nk(t). Looking at the weights, we notice that a weight is

larger when the number of new edgesm(t) is large and the normalizing factor
PK

j¼0 njðtÞAj is

small. This can be interpreted as the MLE solution naturally emphasizing nk(t) of the time-step
t that has a lot of information.

Related work
In this section, we discuss in detail the two most important methods for estimating the attach-
ment kernel: Jeong’s method and Newman’s method. We then provide a simple mathematical
correction to the Newman’s method. Finally, we discuss how PAFit fits in the framework of
these previous methods.

Jeong’s method. Jeong’s method [13] estimates Ak by building a histogram of the degrees
of nodes to which new edges connect. They choose a time window T0 and call all nodes in the
network at that time T0-nodes. Next they choose a time window T1 > T0 and a window length
ΔT� T1, then call all nodes added in the interval [T1, T1 + ΔT] the T1-nodes. For a degree k,
they record the number of times a degree k T0-node is linked to by a T1-node, and then nor-

malize this number by nk(T0) to give Âk. No guidelines are offered for choosing T0, T1 and ΔT.
This method very clearly suffers a type of bias-variance trade-off. In order to negate the

effect of fixing the degrees of T0-nodes at time T0, one should use a very small window time
ΔT. But if the number of new edges in ΔT is small, then the estimation will be unstable. We can
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increase the number of new edges by increasing the length of ΔT, but this will inevitably intro-
duce a bias into the estimation.

One natural way to overcome this drawback is to use multiple histograms calculated at mul-
tiple time-steps, but then the question arises as to how to combine those histograms into a sin-
gle estimation of Ak while the normalizing factor at each time-step depends on A (and thus
unknown). Newman’s method provides an answer to this question.

Newman’s method. Instead of using only one histogram at a single time window, New-
man’s method can be interpreted as estimating Ak by a weighted sum of multiple histograms
created at multiple time-steps. Let N(t) denote the number of nodes in the network at the onset
of time-step t. Consider creating a histogram at time-step t. Denote Ak(t) as the value of Ak at
time t. Newman’s argument, written in the notation used here, is that Ak(t) can be estimated as

AkðtÞ ¼
mkðtÞNðtÞ
nkðtÞmðtÞ ð11Þ

if nk(t) 6¼ 0 or Ak(t) = 0 if nk(t) = 0, using the following approximations [12].

mkðtÞ
mðtÞ � pkðtÞ � AkðtÞ

nkðtÞ
NðtÞ : ð12Þ

The final result of the procedure proposed by Newman [12] is equivalent to the formula

Ak ¼
1

C

XT
t¼1

wkðtÞAkðtÞ ð13Þ

with the weight wk(t) =m(t)1nk(t) 6¼ 0, using the convention 0/0 = 0. Note that, in Newman’s
argument, the normalized constant C in Eq (13) is a constant that does not depend on k. In
real-world examples, this procedure seems to work well for small k, but the value of Ak starts to
fall off when k is large [18, 19] (cf. Fig 1B). Although this phenomenon is often thought to be
an artifact of the method [19], an explanation of its cause has yet to be provided.

The corrected Newman’s method. Surprisingly, we can completely eliminate the artifact
in Newman’s original method by a applying a simple mathematical correction (cf. Fig 1C).
Immediately from Eq (13), one can recognize that the summation is incorrectly normalized.
The constant C should depend on k. The correct normalization is as follows:

Ak ¼
1P

twkðtÞ
XT
t¼1

wkðtÞAkðtÞ: ð14Þ

Newman’s original method (see Eq (13)) implicitly assumes that all the degrees already appear
in the network from time t = 0. This is of course not generally true. In a typical network that
grows from a small initial network, the small degrees will appear far sooner than the large
degrees. In such cases, the sum ∑t m(t)1nk(t) 6¼ 0, which is a weighted sum of the number of
time-steps that contain nodes with degree k, is larger for small k and smaller for large k. For-
getting to normalize each Ak in Eq (13) by ∑t m(t)1nk(t) 6¼ 0 will cause the waterfall artifact as
observed in Fig 1B. In Eq (14), correctly normalizing each Ak by this number completely elimi-
nates the artifact. We will prefer to Eq (14) as the corrected Newman’s method.

Relation of PAFit to previous methods. Using almost the same route as in deriving New-
man’s method, one can deduce a similar equation to PAFit’s MLE Eq (6). Starting from Eq
(12),mk(t) is equal to Ak(t)m(t)nk(t)/N(t). Summing over all time-steps t, we see that
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PT
t¼1 mkðtÞ is equal to

PT
t¼1 AkðtÞmðtÞnkðtÞ=NðtÞ. Assuming Ak(t) = Ak for all t, we have

Ak ¼
PT

t¼1 mkðtÞPT
t¼1

mðtÞnkðtÞ
NðtÞ

: ð15Þ

The only difference between Eqs (15) and (6) is the normalizing factor at time t:
PK

j¼0 njðtÞAj

versus N(t). This difference is the result of the approximation in Eq (12).

If the ratio
PK

j¼0 njðtÞAj

� �
=NðtÞ is independent of t, then Eqs (15) and (6) are equivalent.

Notice that
PK

j¼0 njðtÞAj=NðtÞ is equal toPK
j¼0 Aj njðtÞ=NðtÞ

� �
where nj(t)/N(t) is the propor-

tion of nodes with degree j at time t. Interestingly, this proportion has been shown to be inde-
pendent of t when t is large in the case of asymptotically linear or sub-linear attachment
kernels, that is, Ak * kα with α� 1 [9]. In such cases, Eqs (15) and (6) are asymptotically
equivalent. The two equations are not asymptotically equivalent when Ak is super-linear, that
is, Ak * kα with α> 1, since in this case the proportion nj(t)/N(t) depends on t [9].

Fast approximation of the confidence intervals

We provide a fast approximation for the confidence intervals of Âk. Our approximation works
quite well in practice. In many real-world datasets, our approximation can provide a huge gain

in speed. In standard statistical theory, the confidence intervals of Â can be calculated as the
diagonal entries of the inverse ofD, whereD = −@2 l(A)/@A@A. Define the following matrices
B,C,U as:

B ¼ diag

PT
t¼1 m1ðtÞ
Â2

1

; . . . ;

PT
t¼1 mKðtÞ
Â2

K

 !
;U ¼

n1ð1Þ � � � n1ðTÞ

..

. . .
. ..

.

nKð1Þ � � � nKðTÞ

0
BBBB@

1
CCCCA;

C ¼ diag
�mð1ÞPK
j¼1 njð1ÞÂj

; . . . ;
�mðTÞPK
j¼1 njðTÞÂj

 !
;

then we have

D ¼ BþUCUT : ð16Þ

The form of Eq (16) makes it quite natural to calculate the inverse ofD by the Woodbury for-
mula [50]:

D�1 ¼ ðBþUCUTÞ�1 ¼ B�1 �B�1UðC�1 þUTB�1UÞ�1
UTB�1: ð17Þ

Note that B and C are both diagonal matrices. This makes inverting them trivial. A direct
inversion ofD will require O(K3) operations, while using Eq (17) will require O(KT2). We pro-
pose to approximateD by B. This reduces the required number of operations to O(K).

Estimation of the attachment exponent

Given Âk and their estimated variances vk, if we assume that the attachment kernel is indeed
Ak = kα, it is an important task to correctly estimate the attachment exponent α. Jeong’s
method proposes to fit kα+1 to the cumulative functionP(k) = ∑j:j � k Aj in order to estimate α.
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To take advantage of the estimated variances given by PAFit, we propose to find α by

weighted least squares method. The variance of log Âk can be estimated by

varðlogAkÞ � vk=Â
2
k . The uncertainties in log Âk can be naturally incorporated into the fitting

process by using weights that are inversely proportional to variances of log Âk. In particular, we
minimize the following objective function with respect to α and d:X

k

1

varð log ÂkÞ
ð log Âk � a log k� dÞ2:

It is important to note that the idea of using estimated variances as weights in weighted least
squares methods can also be applied when estimating parameters of models that are different
from the model Ak = kα.

Binning
For more stable estimation of the attachment kernel, we use logarithmic binning in order to let
the Ak borrow information from the ones that are near them. In logarithmic binning, the length
of the i-th bin is c times the length of the (i − 1)-th bin. We freely choose the number of bins B,
then c is determined from B and the maximum degree K. We set Ak = ωi for all k in the i-th bin.
Choosing B small helps with stabilizing the estimation result at the risk of loosing fine details
in the attachment kernel. For the sake of simplicity we have been using Ak in our equations,
but the readers should keep in mind that unless stated otherwise, we always use binning, so in
fact Ak should be replaced by ωi.

Regularization
After binning is performed, another important technique to reduce the variances of the esti-
mated result is regularization. We add the following regularization term

�l
1PK�1

k¼1 wk

XK�1

k¼1

wkð logAkþ1 þ logAk�1 � 2 logAkÞ2 ð18Þ

to the log-likelihood function l(A) (see Eq (5)), and maximize the resulted function. This pen-
alty term penalizes the second order differentiation of logAk, and by doing so, it encourages lin-
earity in logAk.

The weight wk can be any positive number. In this paper, we set wk to be proportional to the

number of data points of the degree k: wk /
PT

t¼1 mkðtÞ. Intuitively, we want to emphasize the
regularization where there is plenty of data (when k is small) and de-emphasize it where the
data is scarce (when k is large).

We are still able to derive an MM algorithm for maximizing the penalized log-likelihood
function. The details are given in S1 Appendix. As a property of MM algorithms, the penalized
log-likelihood function is also guaranteed to increase with number of iterations.

Turning now to how to choose λ, the ratio of the strength of the regularization term (mea-

sured by λ) and the number of observed data (measured by
PT

t¼1

PK
k¼0 mkðtÞ) can be used as a

heuristic, reasonable criterion for choosing λ. The ‘right’ amount of regularization depends on
many factors: the number of data points for each degree, the number of time-steps, the shape
of the true attachment kernel, etc. We found that a reasonable amount of regularization with
ratio ranges from 0 to 1 often leads to satisfactory results.
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Results and Discussion

Monte Carlo simulation
Here we compare five methods: Jeong’s method, Newman’s method, the corrected Newman’s
method, PAFit without regularization (ratio = 0) and PAFit with regularization (ratio = 0.1).
We examine two different bin settings: B = 100 and B = 20. And we perform comparisons in
three different functional forms of the true attachment kernels Ak. Table 2 shows the true
attachment kernels we used in this experiment. For each true attachment kernel, we generate
100 networks according to the GT model. Starting from a seed network with 20 nodes, at each
time-step,m(t) = 5 new edges and n(t) = 1 new node were added, until a total of 2000 nodes is

reached. We compare the average relative error, defined as 1
K

PK
k¼1

ðAk�ÂkÞ2
A2
k

, between the true

value Ak and Âk.
We note some remarks about the implementation of the methods. First, due to the inherent

sparse nature of Jeong’s method, even with binning, sometimes the estimated result of Jeong’s
method has more 0 than those of the other methods. In such cases, to ensure fair comparison,

we perform linear interpolation on the log scale to interpolate the value of those zero-value Âk.
Second, in Jeong’s method we choose T0 as the time when the 1500-th node is added, T1 = T0

+ 1 and ΔT = 500. Third, convergence condition for PAFit is � = 10−5.
The result is shown in Fig 2. Overall, PAFit with regularization outperformed all remaining

methods. This suggests that a small amount of regularization is indeed needed to reduce the
error in the estimated result. We also notice that binning helps reduced the error in all meth-
ods. The fewer number of bins we used, the better the estimated result was found to be.

PAFit without regularization performed better than the corrected Newman’s method. In the
functional form Ak = kα, when α is up to about 1.2, PAFit without regularization delivered
almost the same error as that of the corrected Newman’s method, but when α> 1.2, PAFit
without regularization was better, especially when the number of bins is 20. In the remaining
two functional forms, PAFit without regularization also performed better or at least similar to
the corrected Newman’s method.

When B = 100, except the functional form Ak = min(100, max(k, 1))β, Jeong’s method per-
formed reasonably well in comparison with PAFit without regularization and the corrected
Newman’s method. When B = 20, Jeong’s method became worse than those two methods.
Newman’s method (uncorrected) performed the worst in almost all cases, due to its underesti-
mating Ak when k is large.

The Flickr social network
In this section we present the results from our analysis of a publicly available Flickr social net-
work dataset [35]. It consists of a simple directed network of friendship relations between

Table 2. Summary of true attachment kernels used in the Monte Carlo simulation.

Attachment kernel Parameter Value

Ak = max(k, 1)α α 0.5, 0.6, . . ., 1.5 (11 values)

Ak = min(100, max(k, 1))β β 0.8, 1.0, 1.2

Ak = 3(log(max(k, 1)))b + 1 b 2, 3

Summary of true attachment kernels used in the Monte Carlo simulation. There is a total of 16 different

kernels.

doi:10.1371/journal.pone.0137796.t002
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Flickr users. The dataset contains T = 133 days of growth. Table 3 shows some important sum-
mary statistics of the dataset. The results are shown in Fig 3. We also implemented a quasi-
Newton speed-up scheme [51] for the MM algorithms used in PAFit. The convergence condi-
tion for PAFit is � = 10−7.

For Jeong’s method, we use all the available data by choosing T0 = 0, T1 = 1 and ΔT = 132. It

found a sub-linear attachment kernel Âk. The value of Âk fluctuated considerably for large

value of k, however. Note that the domain of Âk of Jeong’s method is smaller than in other
methods, since the degrees of T0-nodes are fixed at T0.

In the estimated result of Newman’s method, we once again spotted the falling off Âk when
k is large. This phenomenon is, of course, completely eliminated in the corrected Newman’s
method.

For PAFit, we performed regularization with ratio equal to 0.1. Although the estimation

result of PAFit looks very similar to that of the corrected Newman’s method, the Âk in the high

Fig 2. Comparison between five methods in average relative error. A: B = 100. B: B = 20. See Table 2 for the details of the true attachment kernels Ak

used here.

doi:10.1371/journal.pone.0137796.g002

Table 3. Summary statistics for the Flickr social network dataset.

jVj jEj T ΔjVj ΔjEj γ̂

2302925 33140018 134 815867 16105211 2.15

Summary statistics for the Flickr social network dataset [35]. This is a directed simple network. The

numbers jVj and jEj are the total number of nodes and edges in the final network, respectively. Meanwhile,

T is the number of observed time-steps, while ΔjVj and ΔjEj are the increments of nodes and edges after

time t = 0, respectively. The value ĝ is the power-law exponent of the degree distribution of the final

network [6].

doi:10.1371/journal.pone.0137796.t003
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degree region of PAFit are less fluctuated and more compact than those of the corrected New-
man’s method. It is worth noting that we spotted a clear signal of deviation from the log-linear
model Ak = kα here.

Conclusion
We proposed a statistically sound method, called PAFit, for estimating the attachment kernel Ak

in temporal networks. The method is nonparametric in the sense that it does not assume any par-
ticular functional form for Ak. In this way it is able to detect different types of functional forms.
We proved that the log-likelihood function is concave under a suitable re-parametrization, and
provided a Minorize-Maximization algorithm for its maximization. The proposed algorithm is

Fig 3. Estimation of the attachment kernel in the Flickr social network dataset. A: Jeong’s method. B: Newman’s method. C: Corrected Newman’s
method. D: PAFit. The plots are on a log-log scale. The solid line corresponding to Ak = k is plotted as a visual guide.

doi:10.1371/journal.pone.0137796.g003
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shown to increase the log-likelihood function monotonically with the number of iterations. It
also has the property that if it converges, it will converge to global maximum of the log-likelihood
function. We also investigated binning and regularization, and showed that these two simple
techniques considerably improve the quality of the estimation. We reported clear evidence for
the presence of PA in the Flickr social network. We also found that the functional form of the
attachment kernel differs from the classically assumed log-linear form, Ak = kα.

In this paper, we focused on estimating the attachment kernel. Another important ingredi-
ent related to temporal network evloution is node fitness [52–55]. In the future, we would like
to consider a natural generalization of the method of this paper, in which we can propose a
method to estimate jointly the attachment kernel and node fitness. Another potential research
direction is theoretical justifications of the superiority of PAFit over Jeong’s method and New-
man’s method. We expect that PAFit and its future extensions will become useful tools for ana-
lyzing many types of temporal networks in the real-world.

Supporting Information
S1 Appendix. Derivation of the MM algorithm when the regularization term in Eq (18) is
added.
(PDF)
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