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Enumerating protonation states and calculating microstate pKa values of small molecules
is an important yet challenging task for lead optimization and molecular modeling.
Commercial and non-commercial solutions have notable limitations such as restrictive
and expensive licenses, high CPU/GPU hour requirements, or the need for expert
knowledge to set up and use. We present a graph neural network model that is
trained on 714,906 calculated microstate pKa predictions from molecules obtained
from the ChEMBL database. The model is fine-tuned on a set of 5,994 experimental
pKa values significantly improving its performance on two challenging test sets. Combining
the graph neural network model with Dimorphite-DL, an open-source program for
enumerating ionization states, we have developed the open-source Python package
pkasolver, which is able to generate and enumerate protonation states and calculate pKa

values with high accuracy.
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1 INTRODUCTION

The acid dissociation constant (Ka), most often written as its negative logarithm (pKa), plays a
significant role in molecular modeling, as it influences the charge, tautomer configuration, and
overall 3D structure of molecules with accessible protonation states in the physiological pH range. All
these factors further shape the mobility, permeability, stability, and mode of action of substances in
the body (Manallack et al., 2013). In case of insufficient or missing empirical data, the correct
determination of pKa values is thus essential to correctly predict the aforementioned molecular
properties.

Authors and studies disagree on the exact percentage of drugs with ionizable groups, but a
conservative estimate suggests that at least two-thirds of all drugs contain one or more ionization
groups (in a pH range of 2–12) (Manallack, 2007). The importance of pKa predictions for drug
discovery has been widely recognized and has been the topic of multiple blind predictive
challenges—most notable the Statistical Assessment of Modeling of Proteins and Ligands
(SAMPL) series SAMPL6 (Işık et al., 2021), SAMPL7, (Bergazin et al., 2021) and ongoing
SAMPL8 1 challenge.

Multiple methods have been developed to estimate pKa values of small molecules, ranging from
physical models based on quantum chemistry calculations (Selwa et al., 2018; Tielker et al., 2018)
and/or free energy calculations (Prasad et al., 2018; Zeng et al., 2018) to empirical models based on
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linear free energy relationships using the Hammet-Taft equation
or more data driven methods using quantitative structure-
property relationship (QSPR) and machine learning (ML)
approaches like deep neural network or random forest models
(Liao and Nicklaus, 2009a; Rupp et al., 2011; Mansouri et al.,
2019; Baltruschat and Czodrowski, 2020a; Bergazin et al., 2021).
In general empirical methods require significantly less
computational effort than their physics-based counterparts
once they are parameterized but require a relatively large
number of high-quality data points as training set (Bergazin
et al., 2021).

In recent years, machine learning methods have been widely
applied to predict different molecular properties including pKa

predictions. Many of these approaches learn pKa values on
fingerprint representations of molecules (Baltruschat and
Czodrowski, 2020a; Yang et al., 2020). The pKa value of an
acid and conjugate base pair is determined by the molecular
structure and the molecular effects on the reaction center exerted
by its neighborhood, including mesomeric, inductive, steric, and
entropic effects (Perrin et al., 1981). Ideally, these effects should
be included and encoded in a suitable fingerprint or set of
descriptors. For many applications, extended-connectivity
fingerprints (ECFPs) in combination with molecular features
have proven to be a suitable and powerful tool to learn
structure-property relationships (Rogers and Hahn, 2010; Jiang
et al., 2021).

The emergence of graph neural networks (GNNs) has shifted
some focus from descriptors and fingerprints designed by domain
experts to these emerging deep learning methods. GNNs are a
class of deep learning methods designed to perform inference on
data described by graphs and provide straightforward ways to
perform node-level, edge-level, and graph-level prediction tasks
(Wu et al., 2019; Wieder et al., 2020; Zhou et al., 2020). GNNs are
capable of learning representations and features for a specific task
in an automated way eliminating the need for excessive feature
engineering ((Gilmer et al., 2017)). Another aspect of their
attractiveness for molecular property prediction is the ease
with which a molecule can be described as an undirected
graph, transforming atoms to nodes and bonds to edges
encoded both atom and bond properties. GNNs have proven
to be useful and powerful tools in the machine learning molecular
modeling toolbox (Gilmer et al., 2017; Deng et al., 2021).

Pan et al. (Pan et al., 2021) have shown that GNNs can be
successfully applied to pKa predictions of chemical groups of a
molecule, outperforming more traditional machine learning
models relying on human-engineered descriptors and
fingerprints, developing MolGpka, a web server for predicting
pKa values. MolGpka was trained on molecules extracted from
the ChEMBL database (Gaulton et al., 2012) containing predicted
pKa values (predicted with ACD/Labs Physchem software2). Only
the most acidic and most basic pKa values were considered for the
training of the GNN models.

The goal of this work was to extend the scope of predicting pKa

values for independently ionizable atoms (realized in MolGpka)

and develop a workflow that is able to enumerate protonation
states and predict the corresponding pKa values connecting them
(sometimes referred to as “sequential pKa prediction”). To
achieve this we implemented and trained a GNN model that is
able to predict values for both acidic and basic groups by
considering the protonated and deprotonated species involved
in the corresponding acid-base reaction. We trained the model in
two stages. First, we started by pre-training the model on
calculated microstate pKa values for a large set of molecules
obtained from the ChEMBL database (Gaulton et al., 2012). The
pre-trained model already performs well on the two independent
test sets used to measure the performance of the trained models.
To improve its performance we fine-tuned the model on a small
training set of molecules for which experimental pKa values were
available. The fine-tuned model shows excellent and improved
performance on the two test sets.

We have implemented the training routine and prediction
pipeline in an open-source Python package named pkasolver,
which is freely available and can be obtained as described in the
Code and data availability section. Due to the terms of its licence
agreement we are unable to distribute models trained using
results generated with Epik. Users with an Epik licence can
follow the instructions outlined in the data repository to
obtain the fine-tuned models. For users without such a licence
we provide models trained without Epik. We also provide a
ready-to-use Google Colab Jupyter notebook which includes
trained models and can be used to predict pka values for
molecules without locally installing the package (for further
information see the Code and data availability section)
(Bisong, 2019).

2 RESULTS AND DISCUSSION

We will start by discussing the performance of the model on the
validation set of the ChEMBL data set (which contains pKa values
calculated with Epik on a subset of the ChEMBL database) and
the two independent test sets: the Novartis test set (280
molecules) and the Literature test set (123 molecules). This
will be followed by a discussion of the fine-tuned model on its
validation set (experimental data set), on both test sets, and on the
ChEMBL data set. Subsequently, we will discuss the performance
of the models trained only on the monoprotic experimental data
set (without transfer learning). Finally, we will discuss the
developed pkasolver package, its use cases, and limitations.

Performance of the different predictive models is subsequently
reported using the mean absolute error (MAE) and root mean
squared error (RMSE). For each metric (MAE and RMSE) the
median value from 50 repetitions with different training/
validation set splits is reported and the 90% confidence
interval is shown. To visualize training results a single training
run (out of the 50) was randomly selected and the results on the
validation set plotted.

In the following sections we will use the term pkasolver to
describe the sequential pKa prediction pipeline using trained
GNN models. To distinguish between the transfer learning
approach (models trained both on the and experimental data2version 12.01, Advanced Chemistry Development Inc. 2010ACD/Labs
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set) and the models trained only on the experimental data set we
will indicate the former with pkasolver-epic and the latter with
the keyword pkasolver-light.

2.1 Pre-Training Model Performance
The initial training of the GNN model was performed using the
ChEMBL data set (microstate pKa values calculated with Epik).
Supplementary Figure S3A shows the results of the best

performing model on the hold-out validation set. The MAE
and RMSE are 0.29 [90% CI: 0.28; 0.31] and 0.45 [90% CI:0.44;
0.49] pKa units shows a good fit across the reference pKa

values. The kernel density estimates (KDE) of the distribution
of the reference and predicted pKa values shown in
Supplementary Figure S3A highlights the ability of the
GNN to correctly learn to predict pKa values throughout
the investigated pH range.

TABLE 1 | Performance of state-of-the-art knowledge-based approaches and commercial software solutions to predict pKa values on the Novartis and Literature test sets
are shown. For each data set, the mean absolute error (MAE) and root mean squared error (RMSE) is calculated. For MolGpKa, Epik, pkasolver-epic, and pkasolver-light
the median value and the 90% confidence interval are reported.

Model Novartis data set Literature data set

MAE RMSE MAE RMSE

Random Forest1,3 1.15 1.51 0.53 0.76
ChemAxon Marvin (V20.1.0)3 0.86 1.17 0.57 0.87
MolGpKa Pan et al. (2021) 0.87 [0.77;0.97] 1.27 [1.08;1.45] 0.49 [0.40;0.65] 1.00 [0.56;1.53]4

Epik2 Pan et al. (2021) 0.83 [0.75;0.91] 1.16 [1.06;1.26] 0.58 [0.48;0.67] 0.92 [0.74;1.12]
pkasolver-epic 0.71 [0.64;0.74] 0.93 [0.85;0.97] 0.52 [0.49;0.56] 0.82 [0.76;0.86]
pkasolver-light 0.86 [0.81;0.94] 1.13 [1.04;1.20] 0.56 [0.51;0.64] 0.82 [0.71;0.93]

1Used a random forest implementation with 1,000 estimators and the FCFP6 fingerprint. Values for the best performing random forest implementation are shown.
2Epik identified different protonation centers than were reported in the data sets for the Novartis data set for 26 out of 280 molecules. These molecules were excluded from the MAE and
RMSE calculation for Epik.
3values were obtained from Baltruschat and Czodrowski (Baltruschat and Czodrowski, 2020a).
4the reason for the large confidence interval is the incorrect prediction for a single molecule (Isomeric Smiles: CCNC) by MolGpKa with an error of 8.86 pKa units

FIGURE 1 | The fine-tuned GNNmodel is able to predict the pKa values of the Novartis and Literature test set with high accuracy. Panel (A) shows the performance
of the fine-tuned model (initially trained with the ChEMBL data set and subsequently fine-tuned on the experimental data set) on the Literature test set. Panel (B) shows
the performance of the samemodel on the Novartis test set. The solid red line in the scatter plot indicates the ideal behavior of the reference and predicted pKa values, the
dashed lines mark the ±1 pka unit interval. Mean absolute error (MAE) and root mean squared error (RMSE) is shown, the values in bracket indicate the 90%
confidence interval calculated from 50 repetitions with random training/validation splits. N indicates the number of investigated samples.
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The performance of the trained GNNmodel was assessed on two
independent test sets: the Novartis and the Literature test set (both
test sets are described in detail in the Methods section) (Baltruschat
and Czodrowski, 2020a). The trained model performs well on both
test sets with a MAE of 0.62 [90% CI:0.57;0.67] and a RMSE of 0.97
[90% CI:0.89;1.10] pka units on the Literature test set and a MAE of
0.82 [90% CI:0.77;0.85] and a RMSE of 1.13 [90% CI:1.05;1.21] pka
units on the Novartis test set (shown in Supplementary Figure S2).
The performance is comparable to the performance of Epik and
Marvin on both test sets (shown in Table 1).

2.2 Fine-Tuned Model Performance
While the performance on the test sets of the pre-trained model
was already acceptable we were able to further increase model
accuracy by fine-tuning the pre-trained model using a data set of
experimentally measured pKa values. The performance of the
fine-tuned model on the validation set of the experimental data
set is shown in Supplementary Figure S3B. The median
performance of the fine-tuned model was improved from a
RMSE of 0.97 [90% CI:0.89;1.10] to 0.82 [90% CI:0.76;0.88]
pKa units on the Literature test set and from a RMSE of 1.13
[90% CI:1.05;1.21] to 0.93 [90% CI:0.85;0.97] pKa units on the
Novartis test set (shown in Figure 1).

In order to avoid model performance degradation on the
ChEMBL data set we randomly added molecules from the
ChEMBL data set during the fine-tuning workflow. Adding
molecules from the ChEMBL data set to restrict model
parameters and avoid overfitting decreased the performance of
the fine-tuned model on the ChEMBL data set only slightly
(shown in Supplementary Figure S4). This was necessary
since previous attempts without regularization showed
decreased accuracy of the fine-tuned model in regions outside
the limited pH range of the experimental data set while improving
the performance on the test sets (details to the pH range of both
the ChEMBL and experimental data set are shown in
Supplementary Figure S6). An example of the performance of
the fine-tuned model on the ChEMBL data set without
regularization is shown in Supplementary Figure S7.

To set the performance of the fine-tuned model in context we
compare its performance with two recent publications
investigating pKa predictions using machine learning. In
Table 1 the results are summarized for the methods presented
in both Baltruschat and Czodrowski (Baltruschat and
Czodrowski, 2020a) and Pan et al. (Pan et al., 2021). We
extracted data from these publications where appropriate and
recalculated values if needed. Pan et al. (Pan et al., 2021) split the
reported results into basic and acidic groups making it necessary
to recalculate the values reported there for MolGpKa and Epik,
the values for Marvin were taken directly from reference
(Baltruschat and Czodrowski, 2020a) (reported values were
calculated without confidence interval). The fine-tuned GNN
model (shown as pkasolver-epic in Table 1) performs on a
par with the best performing methods reported there.

It is difficult to rationalize MAE/RMSE differences between
different methods/models shown in Table 1) since training sets
and methods are different. The small difference in performance
between pkasolver-epic and MolGpka could be attributed to the

transfer learning routine which added experimentally measured
pKa values. The random forest model was trained on significantly
less data (only on the 5,994 pka values present in the experimental
data set) than either pkasolver or MolGpka yet performs
comparably to both on the Literature data set while
significantly worse on the Novartis data set. This might
highlight the complexity of the Novartis data set, an
observation previously made and investigated in Pan et al.
(Pan et al., 2021).

Both Epik and Marvin perform well on both test data sets. It
is surprising that pkasolver-epic can slightly outperform Epik,
even though its initial training was based on data calculated by
Epik. We think this emphasizes the potential of transfer
learning as used in this work and data-driven deep learning
in general.

2.3 Training on the Experimental Data Set
Without Transfer Learning
To provide a ready-to-use pKa prediction pipeline for which we
can distribute the trained models under the MIT licence we
trained models exclusively on the experimental data set. The
performance on the Novartis and Literature data set of these
models is shown in Supplementary Figure S5 and summarized
in Table 1 (shown as pkasolver-light). While the results are
comparable to Epik and MolGpKa on the test sets it is
important to stress that both test sets contain only
monoprotoic molecules (Baltruschat and Czodrowski, 2020a).

2.4 Sequential pKa Predictions With
Pkasolver
Combining the trained GNNmodels with Dimorphite-DL, a tool
that identifies potential protonation sites and enumerates
protonation states, enabled us to perform sequential pKa

predictions. A detailed description of this approach is given in
the Detailed methods section. We investigated multiple mono-
and polyprotic molecules for qualitative and quantitative
agreement between prediction and experimental data. The
results for the investigate systems were of excellent consistency
using pkasolver-epic and of reasonable accuracy using pkasolver-
light. The list of molecules that we tested is included in the
pkasolver repository and a subset of molecules of general interest
for drug discovery are discussed in detail in the Supplementary
Materials section.

2.5 Limiations of Pkasolver
The sequential pKa prediction of pkasolver generates microstates
and the calculated pKa values are microstate pKa values. One
limitation of pkasolver is that only a single microstate per
macrostate is generated. Tautomeric and mesomeric states are
never changed during the sequential de-/protonation (i.e., double
bond positions are fixed). For each protonation state the bond
patter of the molecule that was proposed by Dimorphite-DL at
pH 7.4 is used. This shortcoming has several consequences. First,
it leads to unusual protonation states. One example that has been
observed throughout the sequential pKa prediction tests with
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pkasolver-epic are amide groups with a negative charge on the
nitrogen atom. The more likely position of the charge is the more
electronegative oxygen atom. This has little practical consequence
since this pattern was also present in the pKa prediction training
set generated with Epik (the mesomeric state was fixed in training
too). A far more severe limitation is the fact that it is not possible
to model microstates within a singe macrostate, since tautomers
can not be changed (Gunner et al., 2020). To overcome this
limitation it is necessary to enumerate tautomers for each
protonation state and estimate their relative population.
Solving this particular problem will be part of future work.

2.5.1 Limitations of Pkasolver-Light
The training set of pkasolver-light contains only monoprotic pKa

data with themajority of pKa values between 4 and 10 (as shown in
Supplementary Figure S6) (Baltruschat and Czodrowski, 2020a).
The trained models are not necessarily suitable for polyprotic
molecules. This limitation becomes apparent in the in depth
discussion of some mono- and polyprotic molecules discussed
in the Supplementary Materials section. For polyprotic molecules
it is highly recommended to use pkasolver-epic instead of the
pkasolver-light.

2.5.2 Limitations of Pkasolver-Epic
The pre-training data set imposes limitations on the applicability
domain of the pKa predictions with pkasolver-epic. The selection
criteria of the pre-training data set are described in the Methods
section. In Supplementary Figure S8 the distribution of several
molecular properties (molecular weight, number of heteroatoms,
number of hydrogen bond acceptor/donor, frequency of
elements) are shown. The transferability of the trained models
for molecules outside these distributions has not been tested and
the usage of pkasolver-epic for such molecules is not
recommended.

3 DETAILED METHODS

3.1 Data Set Generation and Pre-processing
Four different data sets were used in this work: the ChEMBL data
set, the experimental data set, the Novartis data set and the
Literature data set.

The ChEMBL data set used for pre-training was obtained from
the ChEMBL database using the number of Rule-of-Five
violations (set to a maximum of one violation) as filter criteria
(Gaulton et al., 2012; Davies et al., 2015). For each of the
molecules, a pKa scan for the pH range between zero and 14
was performed using the Schrodinger tool Epik (Shelley et al.,
2007; Greenwood et al., 2010) (Version-2121-1). The sequential
pKa scan indicated for 320,800 molecules one or multiple
protonation state/s, resulting in a total of 729,375 pKa values.
For each pKa value, Epik further indicated the protonation center
using the atom index of the heavy atom at which either a
hydrogen is attached or removed.

To perform transfer learning we obtained a second data set
with experimental pKa values. This data set (subsequently called

‘experimental data set‘) was developed by Baltruschat and
Czodrowski (Baltruschat and Czodrowski, 2020b) and can be
acquired from their GitHub repository3. For a detailed
description of the curating steps taken to generate this data
set, we point the reader to the Methods section of (Baltruschat
and Czodrowski, 2020b). The experimental data set consists of
5,994 unique molecules, each with a single pKa value and an atom
index indicating the reaction center. Some of the molecules had to
be corrected to obtain their protonation state at pH 7.4 (examples
shown in ??).

To test the performance of the models, two independent data
sets were used, which were provided and curated by Baltruschat
and Czodrowski (Baltruschat and Czodrowski, 2020b). The
Literature data set contains 123 compounds collected by
manual curating the literature. The Novartis data set contains
280 molecules provided by Novartis (Liao and Nicklaus, 2009b).
For each molecule, a pKa value and atom index indicating the
reaction center was provided. To avoid training the model on
molecules present in the Literature or Novartis data set we filtered
the ChEMBL data set using the InChIKey and canonical SMILES
strings of the neutralized molecules as matching criteria. 50
molecules were identified and removed from the ChEMBL
data set. All checks were performed using RDKit (RDKit and
Open-Source Chemiformatics, 2022).

3.2 Enumerate Protonation States During
Training/Testing
The goal of calculating microstate pKa values is to find the pH
value at which the concentration of two molecular species is
equal. To do this efficiently, we provide as input the protonated
and deprotonated molecular species of the acid-base pair for
which we want to calculate the pKa value (the Brønsted acid/base
definitions are used here and subsequently (McNaught and
Wilkinson, 2014)). This approach enables a consistent
treatment of acids and bases with a single data structure (the
acid-base pair).

This workflow made it necessary that we generate the
molecular species at each protonation state starting from the
molecule at pH 7.4 by removing or adding hydrogen to the
reaction center (which was calculated by Marvin for the
experimental, Novartis, and Literature data set and Epik for
the ChEMBL data set). We do this by sequentially adding
hydrogen atoms from highest to lowest pKa for acids (i.e., at
pH = 0 all possible protonation sites are protonated) and
removing hydrogen atoms from lowest to highest pKa value
for bases on the structure present at pH 7.4 (at pH = 14 all
possible protonation sites are deprotonated).

This approach presented challenges for the ChEMBL data
set for which sequential pKa values and reaction centers were
calculated with Epik. Epik calculates the microstate pKa value
on the most probable tautomeric/mesomeric structure. This
leads to potential protonation states that require changes in the
double bond pattern and redistribution of hydrogen. Since we

3https://github.com/czodrowskilab/Machine-learning-meets-pKa
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do not consider tautomeric changes to the molecular structure
in the present implementation, such tautomeric changes can
introduce invalid molecules in either the sequential removal or
addition of hydrogen atoms. Whenever such molecular
structures were encountered we removed these protonation
states from further consideration. Additionally, we used
RDKit’s sanitize function to identify cases for which
protonation state changes introduce invalid atom valences.
In other cases in which the protonation state change on a
mesomeric structure introduces valid yet improbable
molecular structures (e.g. protonating the oxygen in an
amide instead of the nitrogen) we keep these structures.
This reduced the number of molecules and protonation
states in the ChEMBL data set to 286,816 molecules and
714,906 protonation states. The distribution of pKa values

for the ChEMBL and experimental data set is shown in
Supplementary Figure S6.

3.3 Training and Testing With PyTorch
Geometric
We use PyTorch and PyTorch geometric (subsequently
abbreviated as PyG) for model training, testing, and prediction
of pKa values on the graph data structures (Fey and Lenssen,
2019; Paszke et al., 2019).

3.3.1 Graph Data Structure
A graph G is defined as a set of no the nodes V and edges E
connecting the nodes. Each node v ∈V has a feature vector xv, which

FIGURE 2 | Panel (A) shows the general workflow used to train the GNN on pKa values for a single molecule. During the training and testing phase, each molecule
was provided in the structure dominant at pH 7.4 with atom indices indicating the protonation sites and corresponding pKa values connecting them. In the Enumeration
of protonation states phase we generate the protonation state for each pKa value. The molecular species for each of the protonation states are then translated in their
graph representation using nodes for atoms and edges for bonds, with node feature vectors encoding atom properties in the Graph representation phase. In the
pKa prediction phase graphs of two neighboring protonation states are combined and used as input for the GNN model to predict the pKa value for the acid-base pair
[using the Brønsted–Lowry acid/base definition (McNaught and Wilkinson, 2014)]. The architecture of the GNN model is shown in detail in panel (B). For a pair of
neighboring protonation states two independent GIN (graph isomorphism network) convolution layers and ReLU activation functions are used for the protonated and the
deprotonated molecular graph to pass information of neighboring atoms and achieve the embedding of the chemical environment of each atom (Xu et al., 2019). The
output of the convolutional layer is summarized using a global average pooling layer, generating the condensed input for the multilayer perceptron (MLP). To add
regularization and to prevent co-adaptation of neurons a dropout layer was added.
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encodes atom properties like element, charge, number of hydrogen,
as well as the presence of particular SMARTS patterns as a one-hot-
encoding bit vector (all atom properties are shown in
Supplementary Table S1). The adjacency matrix A defines the
connectivity of the graph.A is defined as a quadratic matrix withAuv

= 1 if there is an edge between node u and v andAuv = 0 if there is no
edge between node u and v.

We used RDKit to generate a graph representation of the
molecule with atoms represented as nodes and bonds as edges (in
coordinate list format 4 to efficiently represent the spares matrix).

3.3.2 Graph Neural Network Architecture
To predict a single pka value the graph neural network (GNN)
architecture takes as input two graphs representing the conjugated
acid-base pair as shown in Figure 2. Figure 2B shows the high-level
architecture of the used GNN.

There are three phases to predict a pKa value from a pair of
molecular graphs. The first stage involves recurrently updating
the node states using GIN (graph isomorphism network)
convolution layers and ReLU activation functions (Xu et al.,
2019). We used 3 GIN layers with an embedding size of 64
bits each to propagate information throughout the graph and
update each node with information about the extended
environment. In the second stage, a global average pooling is
performed to produce the embedding of the protonated and
deprotonated graph, resulting in two 32 bit vectors.
Concatenating the two 32 bit vectors produces the input for
the third stage, the multilayer perceptron (MLP) with 3 fully
connected layers (each with an embedding size of 64). To add
regularization and to prevent co-adaptation of neurons a dropout
layer randomly zeros out elements of the pooling output vector
with p = 0.5 during training. Additionally, batch normalization is
applied as described in (Ioffe and Szegedy, 2015).

3.3.3 GNN Model Training
Before each training run the ChEMBL and experimental data set
were shuffled and randomly split in training (90% of the data) and
validation set (10% of the data). To ensure that we can reproduce
these splits the seed for each split was recorded.

The mean squared error (MSE) of predicted and reference pKa

values on the training data set was calculated and parameter
optimization was performed using the Adam optimizer with
decoupled weight decay regularization (Loshchilov and Hutter,
2019) as implemented in PyTorch.

Model performance was evaluated on the validation set and
the model with the best performance was selected either for fine-
tuning or further evaluation on the test data sets. The
performance on the evaluation data set was calculated after
every fifth epoch and the corresponding weights were saved.
The learning rate for all training runs was dynamically reduced by
a factor of 0.5 if the validation set performance did not change
within 150 epochs (validation set performance threshold was set
to 0.1).

Pre-training of the GNN was performed on the ChEMBL data
set with a learning rate of 1x10−3 and a batch size of 512molecules
for 1,000 epochs. Fine-tuning was performed using the
experimental data set with a learning rate of 1x10−3 and a
batch size of 64 molecules for 1,000 epochs. All parameters of
the GNN models were optimized during fine-tuning. To avoid
overfitting to the experimental data set we added to each batch of
the fine-tuning data set a randomly selected batch (1,024
molecules) of the pre-training data set.

To calculate the confidence intervals of the model
performance, pre-training and fine-tuning were repeated 50
times, each with a random training-validation set split
resulting in 50 independently fine-tuned models.

3.4 Sequential pKa Value Prediction With
Pkasolver
We use Dimorphite-DL to identify the proposed structure at pH
7.4 and all de-/protonation sites for a given molecule (Ropp et al.,
2019).

We iteratively protonate each of the proposed de-/
protonation sites generating a molecular pair consisting of
the protonated and deprotonated molecular species (in the first
iteration the deprotonated molecule is the molecule at pH 7.4).
For each of the protonate/deprotonated pairs a pKa value is
calculated. The protonated structure with the highest pKa

value (but below pH 7.4) is kept and the protonation site is
removed from the list of possible protonation sites. This
is repeated until either (1) all protonation sites are
protonated, (2) no more valid molecules can be generated,
or (3) the calculated pKa values are outside the allowed
pKa range.

To enumerate all deprotonated structures we start again with
the structure at pH 7.4 and start to iteratively deprotonate each of
the proposed de-/protonation sites. Here, we always keep the
deprotonated structure with the lowest pKa value that is
above 7.4.

pKa values are calculated using 25 of the 50 fine-tuned GNN
models. For each protonation state, the average pKa value is
calculated and the standard deviation is shown to enable the user
to identify molecules or protonation states for which the GNN
model estimates are uncertain.

We provide a ready to use implementation of pkasolver to
predict sequential pKa values in our GitHub repository (for
further information see the Code and data availability section).

4 CONCLUSION

We have shown that GNNs can be used to predict mono- and
polyprotic pKa values and achieve excellent performance on
two external test sets. Training the GNN model in two stages
with a pre-training phase using a large set of molecules with
calculated pKa values and a fine-tuning phase on a small set of
molecules with experimentally measured pKa values improves
the performance of the GNN model significantly. This
performance boost is especially noteworthy on the

4https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.
html
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challenging Novartis test set (the RMSE was decreased from
1.18 [1.05;1.27] to 0.93 [0.85;0.97] pka units). A direct
comparison with other software solutions and machine
learning models on the two test sets shows that the fine-
tuned GNN model performs consistently on a par with
the best results of other commercial and non-
commercial tools.

We have implemented pkasolver as an open-source and
free-to-use Python package under a permissive licence (MIT
licence). We provide two versions of the package: pkasolver-
epic and pkasolver-light. The former performs best on both
test sets and is suitable for sequential pKa prediction on
poloyprotic molecules. It was pretraind on a subset of the
ChEMBL data set for which pKa values were predicted using
Epik and fine-tuned on experimental monoprotic pKa values.
Due to the terms of the licence agreement of Epik we are unable
to supply the trained models but provide the training pipeline
to reproduce the models (which requires an active Epik
license). pkasolver-light performs well on both test sets but
its application domain is limited to monoprotic molecules.
These are the trained models distributed with the pkasolver
package.
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Supplementary Figure S1 | Protonation state errors in the experimental data set.
This exemplary selection shows molecules from the experimental data set provided
by Baltruschat and Czodrowski (Baltruschat and Czodrowski, 2020a) for which the
protonation state provided does not correspond to the state at pH 7.4. For examples
1, 2, 4 and 5 with experimental pKa values below 7.4 protonation at the reaction
center would result in highly unlikely pentavalent nitrogen. For example 3 and 6 with
pKa values above 7.4 deprotonation at the reaction site can not be performed
because of the lack of a suitable hydrogen. These error were corrected during our
data preparation.

Supplementary Figure S2 | Performance of the pre-trained GNN model on the
Novartis and Literature test set is shown. 50 training runs with different training/
validation splits were performed and for each training run the best model was
selected based on its performance on the validation set (shown here is a single,
randomly selected training run). Panel (A) shows the performance of the GNNmodel
on the Literature data set. Panel (B) shows the performance of the GNN model on
the Novartis data set. The solid red line in the scatter plot indicates the ideal behavior
of the reference and predicted pKa values, the dashed lines mark the ±1 pka unit
interval. Mean absolute error (MAE) and root mean squared error (RMSE) are shown,
the values in bracket indicate the 90% confidence interval calculated from 50
repetitions with random training/validation splits. N indicates the number of
investigated samples.

Supplementary Figure S3 | Performance of the pre-trained and fine-tuned
models are shown on the respective validation sets. 50 training runs with
different training/validation splits were performed and for each training run the
best model was selected based on its performance on the validation set
(shown here is a single, randomly selected training run). Panel (A) shows the
validation set performance of the best GNN model trained on the ChEMBL
data set. Panel (B) shows the validation set performance starting from the
same pre-trained model after fine-tuning on the experimental training set. The
solid red line in the scatter plot indicates the ideal behavior of the reference
and predicted pKa values, the dashed lines mark the ±1 pka unit interval.
Mean absolute error (MAE) and root mean squared error (RMSE) are shown,
the values in bracket indicate the 90% confidence interval calculated from 50
repetitions with random training/validation splits. N indicates the number of
investigated samples.

Supplementary Figure S4 | The accuracy of the fine-tuned GNN model only
decreases slightly when molecules from the ChEMBL data set are used for
regularization. 50 fine-tuning runs with different training/validation splits were
performed, each initialized using the parameters of 50 pre-training runs, and for
each training run the best model was selected based on its performance on the
validation set. In order to generate a single plot we selected randomly a single fine-
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tuning run and generated the scatter plot with the best performing model on the
validation set. The solid red line in the scatter plot indicates the ideal behavior of the
reference and predicted pKa values, the dashed lines mark the ±1 pka unit interval.
Mean absolute error (MAE) and root mean squared error (RMSE) are shown, the
values in bracket indicate the 90% confidence interval calculated from 50 repetitions
with random training/validation splits.N indicates the number of investigated samples.

Supplementary Figure S5 | The performance of the GNNmodel trained exclusively
on the experimental data set is shown. 50 training runs with different training/
validation splits were performed. To generate a single plot a randomly selected
training run is shown. The solid red line in the scatter plot indicates the ideal behavior
of the reference and predicted pKa values, the dashed lines mark the ±1 pka unit
interval. Mean absolute error (MAE) and root mean squared error (RMSE) are shown,
the values in bracket indicate the 90% confidence interval calculated from 50
repetitions with random training/validation splits. N indicates the number of
investigated samples.

Supplementary Figure S6 | The pka distribution of ChEMBL and experimental data
set are shown.

Supplementary Figure S7 | The performance of the fine-tuned GNN model on the
ChEMBL data set is shown. In contrast to the results obtained with the fine-tuned
models shown in Supplementary Figure S4 the models shown here did not use
regularization. The performance of the GNN model decreased significantly on the
ChEMBL data, shifting pKa values above 12 and below 2. The solid red line in the
scatter plot indicates the ideal behavior of the reference and predicted pKa values,
the dashed lines mark the ±1 pka unit interval. Mean absolute error (MAE) and root
mean squared error (RMSE) are shown, the values in bracket indicate the 90%
confidence interval calculated from 50 repetitions with random training/validation
splits. N indicates the number of investigated samples.

Supplementary Figure S8 | The distribution of molecular weight, the number of
hetereoatoms, hydrogen bond acceptors (HBAs) and hydrogen bond donors
(HBDs) and distribution of elements per molecule are shown for the ChEMBL
data set.

Supplementary Figure S9 | Results are shown for a sequential pKa prediction
using pkasolver-epic for ethylenediaminetetraacetic acid (EDTA). For each
protonation state the base-acid pair is shown and the consensus prediction for
the pKa value with the standard deviation is shown. The protonation site is
highlighted for each protonation state.

Supplementary Figure S10 | Results are shown for a sequential pKa prediction
using pkasolver-epic for lisdexamfetamine.

Supplementary Figure S11 | Results are shown for a sequential pKa prediction
using pkasolver-epic for cocaine.

Supplementary Figure S12 | Results are shown for a sequential pKa prediction
using pkasolver-epic for tyrosine.

Supplementary Figure S13 | Results are shown for a sequential pKa prediction
using pkasolver-epic for taurine.

Supplementary Figure S14 | Results are shown for a sequential pKa prediction
using pkasolver-epic for aspergillic acid.

Supplementary Figure S15 | Results are shown for a sequential pKa prediction
using pkasolver-epic for ketamine.

Supplementary Figure S16 | Results are shown for a sequential pKa prediction
using pkasolver-epic for levodopa.

Supplementary Figure S17 | Results are shown for a sequential pKa prediction
using pkasolver-epic for furosemide.

Supplementary Figure S18 | Results are shown for a sequential pKa prediction
using pkasolver-light for furosemide.

Supplementary Figure S19 | Results are shown for a sequential pKa prediction
using pkasolver-epic for an aryl guanidine (SMILES: C1CNC(N1)
=NC1=CC=CN=C1 ).

Supplementary Figure S20 | Results are shown for a sequential pKa prediction
using pkasolver-epic for pyridine.

Supplementary Table S1 | List of one-hot-encoding of atom features used for the
node feature vector deposited in the node feature matrix X.

Supplementary Table S2 | Experimental and calculated pKa values for the 24
compounds of the SAMPL6 pKa challenge (Işık et al., 2018). pKa values were
calculated using pkasolver-epic. pKa values and standard distribution (shown in
parenthesis) are rounded to one significant digit. The pKa value used to match the
experimental pKa value is shown in red.
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