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Abstract

Background: Transcriptional regulation involves protein-DNA and protein-protein interactions.
Protein-DNA interactions involve reactants that are present in low concentrations, leading to
stochastic behavior. In addition, multiple regulatory mechanisms are typically involved in
transcriptional regulation. In the GAL regulatory system of Saccharomyces cerevisiae, the inhibition
of glucose is accomplished through two regulatory mechanisms: one through the transcriptional
repressor Miglp, and the other through regulating the amount of transcriptional activator Gal4p.
However, the impact of stochasticity in gene expression and hierarchy in regulatory mechanisms
on the phenotypic level is not clearly understood.

Results: We address the question of quantifying the effect of stochasticity inherent in these
regulatory mechanisms on the performance of various genes under the regulation of Miglp and
Gal4p using a dynamic stochastic model. The stochastic analysis reveals the importance of both the
mechanisms of regulation for tight expression of genes in the GAL network. The mechanism
involving Gal4p is the dominant mechanism, yielding low variability in the expression of GAL genes.
The mechanism involving Miglp is necessary to maintain the switch-like response of certain GAL
genes. The number of binding sites for Miglp and Gal4p further influences the expression of the
genes, with extra binding sites lowering the variability of expression. Our experiments involving
growth on various substrates show that the trends predicted in mean expression and its variability
are transmitted to the phenotypic level.

Conclusion: The mechanisms involved in the transcriptional regulation and their variability set up
a hierarchy in the phenotypic response to growth on various substrates. Structural motifs, such as
the number of binding sites and the mechanism of regulation, determine the level of stochasticity
and eventually, the phenotypic response.

Background trations within a cell. When low numbers of molecules are
It is well known that gene expression is a highly stochastic, ~ present, continuum rate expressions based on mass action
or noisy, process [1]. The cause of this stochasticity liesin  kinetics are no longer valid. For simple systems, consisting
the fact that many components are present in low concen-  of the expression of 1-2 genes, the stochasticity has been
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characterized as 'intrinsic noise' [1,2]. Fluctuations in the
states of other cellular components may also affect the
gene expression indirectly, and this effect is classified as
‘extrinsic noise'. However, in real systems composed of
multiple genes with multiple interactions, it is of primary
importance to study and quantify the effect of the stochas-
ticity due to intrinsic noise, and separate its effect from
that of extrinsic noise [3,4]. For well-studied systems
where the interactions are known, intrinsic noise can be
computed using simulation methods such as the Stochas-
tic Simulation Algorithm (SSA) of Gillespie [5], and other
exact and approximate stochastic simulation methods [6-
13]. One such system is the GAL network of Saccharomyces
cerevisiae. In this work, we characterize the intrinsic noise
of the GAL network in response to variations in glucose
concentration.

The GAL system codes for genes that are responsible for
protein expression involved in the Leloir pathway (see
Figure 1 for the schematic). The GAL network of S. cerevi-
siae is activated by galactose and inhibited by glucose. In
a wildtype strain, Gal4p is a transcriptional activator
whose synthesis is regulated by glucose concentration.
The synthesis is repressed at high glucose concentrations.
The activity of Gal4p as a transcriptional activator is con-
trolled by a repressor, Gal80p, which is also a member of
the GAL system. Gal3p, a galactose sensor, binds to
Gal80p to release its effect on Gal4p. Thus, in the presence
of galactose, Gal3p and Gal80p are bound to each other,
and this allows the free Gal4p to bind to the upstream
activating sequence (UAS) to express GAL genes. The
binding of Gal3p and Gal80p is initiated by intracellular
galactose. The amount of intracellular galactose is control-
led by the amount of permease Gal2p (synthesized by
GAL2 gene), which transports it from the extracellular
medium. However, in the presence of glucose, a kinase
(Mig1p) binds to the upstream repressing sequence (URS)
of certain GAL genes and GAL4 to repress their synthesis.
Miglp is a constitutively expressed [14] global repressor
protein, whose activity is regulated through a phosphor-
ylation-dephosphorylation cycle [15-18]. In the presence
of glucose, it is believed that Snfl kinase (a homologue of
ADP-AMP kinase in humans) is inactivated through a
mechanism that is not clearly understood [16,17]. Under
these conditions, Miglp is predominantly in the dephos-
phorylated state and translocates into the nucleus [17,19]
to repress genes by binding to the URS of various genes. In
S. cerevisiae, three different mechanisms can be observed
for glucose repression through Miglp. Expression is
repressed directly by binding of Mig1p to the URS of genes
such as SUC2 and GAL4 [14,20,21]. In the GAL/MEL reg-
ulon, Miglp represses the structural (such as MEL1, GAL1,
GAL?7) and regulatory (such as GAL3, GAL80) genes indi-
rectly through Gal4p. In this case, Miglp represses only
the expression of the activator, and thus indirectly
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represses the structural genes (like in GAL2 and GAL7)
[22]. In addition, a set of structural genes (GAL1, MEL1)
as well as a regulatory gene (GAL3) have a URS for Miglp
binding as well as an upstream activation sequence (UAS)
for the transcriptional activator [15,20,21]. Intuitively, by
repressing the genes through a common activator such as
Gal4p, the cell achieves the repression in a coordinated
fashion, instead of repressing each gene through an inde-
pendent URS. However, the above reason alone does not
explain why only a few genes are repressed through an
activator. An analysis based on steady state modeling of
the Miglp dependent repression revealed that a transcrip-
tional hierarchy could be established solely through the
various mechanisms existing for glucose repression, with-
out sacrificing amplification and sensitivity [22].

Stochastic analysis of the GAL system has also been
reported; however, studies have focused on the response
of the system to galactose (inducer), and on the role of the
Gal3p and Gal80p regulatory mechanisms [23-26]. Other
studies include a study of the transcriptional regulation of
the metabolism of galactolysis and glucolysis and their
integration with the GAL genetic network [27]. In the cur-
rent study, to analyze the role of various mechanisms of
glucose repression on the stochastic behavior of the GAL
network, we consider a mutant strain of S. cerevisiae lack-
ing Gal80p. It should be noted that in the absence of
Gal80p, the activity of the transcriptional activator Gal4p
is solely controlled through the effect of glucose concen-
tration. Further, the role of Gal3p is also negated due to
the absence of Gal80p; thus, such a mutant strain will
constitutively express GAL genes even in the absence of
galactose, and will respond only to variations in glucose
concentration. The stochastic analysis reveals mecha-
nisms for which the effect of inherent stochasticity is high.
Both the regulators, Gal4p and Miglp, are essential for
complete repression by glucose with low noise. We also
present experiments to determine whether the noise in the
gene expression can be correlated to the variability at the
phenotypic level.

Results

The stochastic model was simulated to obtain steady state
distributions of the GAL gene expression at various glu-
cose concentrations. These distributions were computed
as fractional gene expressions. The steady state distribu-
tions of fractional protein concentrations were computed
from the fractional gene expression in the manner
described in the section on simulation. Figure 2 shows the
mean of the distributions for the expression of MELI
gene. Shown in the figure are the expression of individual
simulations (500 in all), and the mean expression from
these simulations. We also present representative distribu-
tions of the expression across the simulations at three spe-
cific glucose concentrations (0.33, 2.0 and 5.33 mM).
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A schematic of the glucose inhibition of the GAL reg-
ulatory system in a mutant strain of Saccharomyces
cerevisiae lacking GALB80. It should be noted that GAL2 and
GAL7 share a similar mechanism of regulation with two bind-
ing sites for Gal4p. MEL| and GAL3 also share a similar mech-
anism with one binding site for Gal4p and Miglp.

These distributions may be taken to represent the distribu-
tions in a cell population. We have chosen a low glucose
concentration (high expression), an intermediate concen-
tration in the sensitive region for expression, and a high
glucose concentration indicating low expression for the
distributions. The maximum mean fractional expression
of MEL1 is 70%, which matches reasonably well with
steady-state experimental data [22]. At lower glucose con-
centrations, the variability in the distribution is high (first
histogram in panel 'b' of Figure 2). At high glucose con-
centrations, the variability is much lower (third histogram
in panel 'b'). The variability decreases along with the level
of expression as glucose concentration is increased. The
sensitivity of the response, reported in terms of Hill's coef-
ficient, is 1.7, which indicates a steep response.

Next, we conduct a similar analysis for the expression of
GAL1 gene, and the results are shown in Figure 3. Gallp is
fully expressed at low glucose concentrations and almost
completely repressed at high glucose concentrations, as
has been demonstrated in experiments [22]. The variabil-
ity is low at low and high glucose concentrations, and
Gallp demonstrates switch-like behavior at intermediate
concentrations (see the panel of histograms in Figure 3b).
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The switch-like behavior is seen in the second histogram,
where the frequency for intermediate expressions is very
low, but higher frequency is observed at the extremes
(close to 0 or 1 fractional expression). This is because of
the steep nature of the response curve, indicative of a sen-
sitive response (Hill's coefficient n; = 3.4). Figure 4 shows
the expression of Gal2p, which is a permease that trans-
ports galactose from the extracellular medium. Gal2p has
two binding sites for Gal4p and none for Miglp, while
Gallp has one binding site for Miglp along with two
binding sites for Gal4p. Gal2p is fully expressed at low
glucose concentrations, but has a leaky expression (mean
= 10%) at high glucose concentrations. Also, the variabil-
ity in the expression at intermediate glucose concentra-
tions is relatively high, indicating a broad distribution.
This is in direct contrast to the behavior of Gallp. The
Hill's coefficient is 2.5, much lower than that for Gallp.

Figure 5 shows the results for the expression of SUC2 gene
at various glucose concentrations. Suc2p has two binding
sites for Miglp and none for Gal4p. Suc2p is also fully
expressed at low glucose concentrations, but the response
is leaky (mean = 15%) at high concentrations. The
response is closer to a Michaelis-Menten type response,
with ny; = 1.5. The distribution shows similar characteris-
tics to that of Gal2p.

Figure 6 shows the variation of the total number of Gal4p
molecules (in bound and unbound states) with respect to
glucose concentration. Gal4p has one binding site for
Miglp. The mean number of molecules ranges from 200
at low glucose concentrations to 10 at high glucose con-
centrations. This corresponds to approximately 100 Gal4p
dimers and 5 dimers at the two extremes. This is in agree-
ment with experimental observations in the literature
[28,20]. The Hill's coefficient is 1.7, which indicates
higher sensitivity than SUC2, but lower than the other
GAL genes. Unlike other GAL genes, Gal4p demonstrates
relatively broad distributions at all glucose concentra-
tions, with the variability being highest at the intermedi-
ate concentrations.

Since there are two mechanisms of repression of GAL
genes, our next studies attempt to decipher the individual
role of each of the repressors, Gal4p and Miglp. Figure 7
shows the distribution of the MEL1 gene for an in silico
mutant strain lacking the UAS for Gal4p. In such a strain,
it can be observed from the figure that glucose cannot
completely repress the expression of Mel1p. The degree of
leakiness in the response is very high (mean = 40%). The
histograms shown in panel 'b' demonstrate that there is
high variability at all glucose concentrations. The variabil-
ity at low glucose concentration (high expression) is com-
parable to or smaller than that in the original strain (see
Figure 2), but the variability at other concentrations has
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Figure 2

(a) Simulated steady state protein expression for Mellp at different glucose concentrations, and (b) distribu-
tion of expression at 0.33, 2.0 and 5.33 mM glucose. In figure (a), the blue dots represent the range of expression values
over 500 simulations, and the red line represents the mean expression.
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increased. Figure 8 shows the expression of Gallp for the
same in silico mutant strain lacking Gal4p. The expression
is again very leaky (mean = 35%) at high concentrations,
and glucose cannot completely repress the expression of
Gallp, either. An important observation is that the switch-
like behavior of Gal1lp is lost, and the variability is higher
at all concentrations, but especially so at higher glucose
levels. This implies that Gal4p is essential for complete
repression of GAL genes and to obtain crisper switching
between the expression states.

We have also conducted simulations for the correspond-
ing expressions of these genes in another in silico mutant
strain lacking the URS for Mig1p. The expression is similar
to that observed for the original GAL80 mutant strain,
with marginally higher variability (Figure S1 in Additional
file 1). The leakiness and variability are obviously lower
than in the other in silico mutant strain lacking the UAS for
Gal4p. In the case of the in silico mutant strain lacking the
URS for Miglp, ny;is 2.9 for GAL1 expression and 1.7 for
MELT1. This indicates that Miglp imparts a part of the sen-
sitivity seen in the original GAL80 mutant strain. The in sil-
ico mutant strains analyzed did not demonstrate any
significant change in the half saturation constants as com-
pared to the original GAL80 mutant strain. These results
indicate that Gal4p is a more dominant regulator than
Mig1p for these two genes.

The above simulation results demonstrate that stochastic
effects in the gene expression are significant in the GAL
system for the GAL80 mutant strain of S. cerevisiae. A rele-
vant question that can be raised at this point is whether
this stochastic variability is transmitted to the phenotypic
level of growth. To investigate this, experiments were con-
ducted using a GAL80 mutant strain precultured on differ-
ent glucose concentrations (see details in methodology).
The precultured cells were streaked on plates containing
melibiose (for MEL1 response), galactose (for GAL2
response) and sucrose (for SUC2 response). Figure 9 over-
lays the mean and variability (represented by the standard
deviations) of the normalized number of colonies formed
on the plates on the simulated distributions from Figures
2, 4 and 5. It must be noted that we have normalized the
mean expression of the simulations based on the simula-
tions yielding higher than 5% protein expression. This is
to ensure a fair comparison with the experimental data.
The normalization for the experimental CFU (based on
the maximum CFU formed at steady state) only takes into
account cells that have expressed and grown, and the nor-
malization described above places the simulation results
on the same basis. This is because we assume that the cells
with lower than 5% expression do not grow. For all the
three substrates, the simulation trends of the response
were in close agreement with the colonies experimentally
observed. For the melibiose plates, the variability in the
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colonies formed was high for cells precultured at low glu-
cose concentrations, and reduced for cells precultured on
high glucose concentrations. This is in agreement with the
trends for the expression of MEL1 predicted by the simu-
lations. For the galactose plates, the cells precultured at
intermediate glucose concentrations (1 mM) have the
largest variability, and the variability reduces significantly
in both directions. For the sucrose plates, the variability in
colonies formed increases slightly in the direction of
increasing precultured glucose concentration.

Figure 10 shows the dynamic progression of the colonies
formed on the plates with melibiose and galactose. Since
the plates do not contain any glucose, the variability in the
final steady state colonies formed should indicate the low
glucose concentration limit of the steady state gene
expression predicted by the simulations. Figures 10a and
10b show the dynamics for the melibiose plates for pre-
culturing at 27.8 mM and 1 mM glucose, respectively. Fig-
ures 10c and 10d show the dynamics for the galactose
plates at 27.8 mM and 1 mM, respectively. The trends in
expression predicted by simulation match with the exper-
imental trends in normalized CFU. The mean expressions
of the simulation also fall within the error bounds in the
experimental data, except for cells grown on melibiose
after preculturing at 27.8 mM glucose concentration. The
dynamics are shown only from 44 hours onwards, since
this is the time at which the first colonies became visible.
Counting can obviously not be done prior to this time.
Also, simulated profiles were shifted by 40 hours to
account for this lag. Similar to the mean, the variability in
the simulated expressions (light colored lines in Figure
10) also shows the same trends as the variability in exper-
imental CFU. For MELI1, the variability increases with
time for both preculturing states, which is similar to the
trend observed (in steady state) in Figure 9(a) with
decreasing glucose concentration. For GAL2, variability
does change appreciably with time for preculturing at
27.8 mM glucose. However, the variability is high at lower
times, and decreases significantly with time at 1 mM glu-
cose. The high variability at lower times matches with the
high variability observed at intermediate glucose concen-
trations (similar to 1 mM) in Figure 9(b), which was
observed to be due to the steepness of the response curve
at those concentrations.

Discussion

S. cerevisiae is capable of growing on various carbon
sources in its natural habitat. The organism prefers to
grow on glucose in the presence of other carbon sources
such as galactose, melibiose and sucrose. This requires the
existence of a transcriptional mechanism to regulate the
uptake of the other sugars. This transcriptional mecha-
nism is known and well-studied [35] in yeast. Specific to
the glucose regulation of the uptake of the three carbon
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(a) Simulated steady state protein expression for Gallp at different glucose concentrations, and (b) distribu-
tion of expression at 0.33, 3.43 and 6.55 mM glucose. In figure (a), the blue dots represent the range of expression val-
ues over 500 simulations, and the red line represents the mean expression.
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(a) Simulated steady state protein expression for Gal2p at different glucose concentrations, and (b) distribu-
tion of expression at 0.33, 4.31 and 8.0 mM glucose. In figure (a), the blue dots represent the range of expression values
over 500 simulations, and the red line represents the mean expression.
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tion of expression at 0.33, 2.67 and 6.55 mM glucose. In figure (a), the blue dots represent the range of expression val-
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sources (galactose, melibiose and sucrose), two mecha-
nisms have been identified. For example, Miglp, a repres-
sor activated by glucose, and Gal4p, a transcriptional
activator inhibited by Miglp, are independent regulators
in the regulation of MEL1 (for melibiose). In this case, the
MEL1 gene has one binding site for both Miglp and
Gal4p. Also, for the regulation of GAL1 (for galactose),
there are two binding sites for Gal4p and one for Miglp.
In the case of SUC2 (for sucrose), there are two binding
sites for Miglp, and the regulation is independent of
Gal4p. Thus, the regulation of SUC2 is controlled by only
one mechanism, but with two binding sites. These varied
mechanisms and their hierarchy allow the organism to
efficiently utilize and switch from one carbon source to
the other [20,36-38].

Our current study provides insights into the stochastic
effects of the various mechanisms described above on the
expression of GAL and SUC2 genes. The analysis clearly
demonstrates that the glucose repression on the uptake of
other sugars is indeed noisy, resulting in high variability
in the gene expression. Furthermore, the stochastic noise
is directly dependent on the mechanism prevailing for a
specific gene. The conservation of signal amplification
and sensitivity observed in the steady state analysis was
also confirmed in our stochastic simulations. For MEL1,
the variability is high at low glucose concentrations, and
lower at high glucose concentrations. For GAL1, the varia-
bility is lower than that for MEL1 at both extremes of glu-
cose concentration. The only difference in the mechanism
of glucose repression of GAL1 and MEL]1 is the presence of
an extra Gal4p binding site on GALI. This additional
binding site essentially helps in lowering the variability
for GAL1 expression. This result is similar to one described
in [24], where it was shown that basal transcription levels
(and variability) for gal7p were reduced with extra bind-
ing sites. Thus, the presence of both the repression mech-
anisms for expression of Gallp leads to a switch-like
response to glucose, with the expression residing either in
the completely expressed or repressed states. Gal2p, which
only has binding sites for Gal4p, shows a steep response
curve; however, there is considerable variability at inter-
mediate glucose concentrations, and the response is not
switch-like as for Gallp. This implies that the repression
mechanism involving Mig1p plays a role in establishing a
switch-like response in protein expression. A possible rea-
son for the absence of Migl1p in the regulation of Gal2p is
that the galactose uptake must be metabolized in a graded
manner. Gallp, which is downstream of Gal2p in the
metabolic pathway, catalyzes intracellular galactose and
ATP to galactose-1-phosphate, thus determining the
amount of intracellular substrate and the energy status.
This makes Gallp a crucial enzyme in the Leloir pathway
of galactose uptake, as it determines whether the pathway
is switched on or not. Also, the expression of Gal2p is
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Dynamic experimental data (44 — 100 hrs) for growth (in normalized CFU) on melibiose (Mell p) and on galac-
tose (Gal2p), along with simulations of Mell p and Gal2p expression, at two glucose concentrations (I mM and
27.8 mM). Figures (a) and (b) show results for Mellp at 27.8 mM and | mM, respectively. Figures (c) and (d) show the results
for expression of Gal2p at 27.8 mM and | mM, respectively. Light colored lines show results of individual simulations, the solid
line shows the mean of these simulations, and the dashed line with error bars shows the experimental data.

leaky at high glucose concentrations, indicating that the
system is ready for galactose uptake as soon as Gallp
expression switches on in response to the absence of glu-
cose. For expression of Suc2p, the response is similar to
that for Gal2p in terms of variability and leakiness. How-
ever, the steepness of the response curve is lower than that
of Gal2p. SUC2 is regulated only by Mig1p with two bind-
ing sites, and the higher sensitivity associated with the
Gal4p repression mechanism is not seen here. Since
sucrose is a carbon source not linked to the galactose met-
abolic pathway, it may have evolved to be regulated only
by Miglp, so as to provide a graded response. Gal4dp
expression is leaky at high glucose concentrations, as it is

a global transcriptional activator and needs to be available
to switch on the system. There is variability at all glucose
concentrations, which is the result of having only one
binding site for Miglp. Tight regulation of Gal4p is any-
way not essential, since all that is required is a graded
response to glucose.

The roles of the various mechanisms were also investi-
gated by simulating the stochastic model on in silico
mutant strains generated by eliminating individual mech-
anisms. The results clearly indicate that both the mecha-
nisms are necessary for complete repression at high
glucose concentrations. The mechanism involving Gal4p
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is a more dominant mechanism to regulate noise and sto-
chastic effects than the mechanism involving Miglp.
However, at low glucose concentrations, the two binding
sites present for Mig1p are sufficient to lower the noise in
the expression. This is in contrast to the expression of
MEL1 (which has only one binding site for Miglp) at low
glucose, which shows high variability. To conclude, the
study indicates that multiple mechanisms tightly regulate
the variability and expression at high glucose concentra-
tions, while multiple binding sites for the regulators con-
trol the variability at lower glucose concentrations. The
motif of multiple regulatory mechanisms having a role in
reducing variability has been observed in simulations on
the Gal3p and Gal80p mechanisms in a wild type strain of
S. cerevisiae [24,25].

We also conducted growth experiments on agar plates to
investigate the variability at the phenotypic level. Such
experiments would indicate if the noise introduced at the
transcriptional level is transmitted to the phenotype. Our
experiments indicate a similar trend in the variability in
growth as that of the simulated gene expression for all the
three substrates. For example, high variability was
observed in the MEL1 expression in the simulations at low
glucose concentrations. This was also observed in the
growth experiments on melibiose for cells precultured on
low glucose concentrations. The dynamics of the growth
experiments also confirmed that the cells demonstrate
similar variability as observed in simulations, and tend
towards the variability observed in the low glucose limit
with time.

Specific mechanisms utilized by the cell to regulate
expression of different genes responsible for the uptake of
various carbon sugars by glucose demonstrate different
levels of noise. The hierarchy in the variability introduced
in the transcriptional mechanism sets up a corresponding
hierarchy in the uptake of different sugars. In the case of
glucose repression, the variability is highest for sucrose at
high glucose concentrations, followed by galactose and
melibiose. This results in sucrose being taken up before
galactose and melibiose. However, at low glucose concen-
trations, the variability observed for growth on galactose
was lower than that observed for melibiose, resulting in
galactose being taken up before melibiose. Thus, the pre-
vailing mechanisms result in a hierarchical uptake of sug-
ars, in the order glucose, sucrose, galactose and melibiose.

Thus, the different mechanisms demonstrated different
noise characteristics at the gene expression level, and this
differentiation was carried through to the phenotypic
level of growth. This may have important implications on
the understanding of the effect of 'intrinsic' and 'extrinsic'
noise [1,2] in the glucose repression in the regulation of
GAL/SUC2 genes. The experiments showed the same

http://www.biomedcentral.com/1752-0509/2/97

trends as the simulations, but with slightly lower variabil-
ity, possibly implying modulation of the noise through
metabolism and cell division, leading to the phenotypic
response.

Conclusion

Transcriptional regulation involves protein-DNA interac-
tions, and these involve reactants that are present in low
concentrations, leading to the presence of stochasticity.
This stochasticity may influence the phenotypic response
of an organism. We have demonstrated that the stochas-
ticity at the transcriptional level in glucose repression on
the uptake of other substrates in yeast is transmitted to its
growth. This implies that the intrinsic noise propagates
through the metabolism and growth. The mechanisms
involved in the transcriptional regulation and their varia-
bility set up a hierarchy in the phenotypic response. More
experiments are needed in a single cell to measure the var-
iability at the transcriptional, translational and metabolic
levels. Further, studies on mutants obtained by disrupting
specific mechanisms will provide more insights into the
relationship between mechanisms and stochasticity. Stud-
ies on other transcriptional regulation systems and organ-
isms are needed to generalize the relationship between
noise and the phenotypic response. Finally, simulations
incorporating models of metabolism [27] and dynamic
experiments elucidating transitions between protein dis-
tributions [39] will provide a quantitative link between
the genetic and the phenotypic levels.

Methods

The schematic of the GAL network in the mutant strain of
S. cerevisiae that we consider for the stochastic modeling is
shown in Figure 1. Extracellular glucose is first transported
into the cell, and then dephosphorylates Miglp in the
cytoplasm. The dephosphorylated Miglp is transported
into the nucleus, where it binds to various URS for the
GAL and SUC2 genes. It should be noted that SUC2 has
two URS for Miglp, while GAL1, GAL4 and MEL1 have
one each. The Gal4p synthesized interacts with the UAS of
the GAL genes. In this case, MEL1 has one binding site for
Gal4p, while the remaining seven GAL genes, including
GAL1 and GAL2, have two binding sites. To reiterate, glu-
cose represses the GAL and SUC2 genes by two mecha-
nisms - by recruiting the repressor Miglp into the
nucleus, and by repressing the synthesis of the transcrip-
tional activator Gal4p. These mechanisms were incorpo-
rated into our stochastic model to obtain insights on their
relative importance.

Simulation

We assume a Miglp concentration in the nucleus as an
input to our stochastic model. This nuclear Miglp is
related to the extracellular glucose (Glu) through a steady
state Michaelis-Menten type relationship as given below:
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Miglp  Glu
Miglpmax  Ks+Glu

(1)

where Miglp,, .. is the maximum concentration of Miglp
in the cell (assumed to be equivalent to approximately
100 molecules), and K is the half-saturation constant. We
then consider all the interactions described above (see Fig-
ure 1), and include them in our model (Additional file 1
lists all the species and reactions considered in our simu-
lations). We consider the binding of the repressor, nuclear
Miglp, and Gal4p, to the respective binding sites as
reversible stochastic reactions. The stochastic rate con-
stants used to compute the propensities for each of the
reactions (forward and backward) are estimated by the
following procedure: First, the deterministic dissociation
constants for the reversible reaction are obtained from the
literature [28,29], the forward rate constants are estimated
using information from the dynamic deterministic model
of Ruhela et al. [29] where available, and the backward
rate constants are set to satisfy the relation between rate
constants and dissociation constants. For those reactions
for which forward rate constants are not available, the val-
ues were set to match predicted expression to the mean
steady state profiles obtained by Verma et al. [30]. We
have included reactions that represent the transcription
process; specifically, the binding of RNAP to the promoter
site. Further, to quantify the translation, we assume that a
fixed logarithm of fold change in mRNA would yield a net
logarithm fold change in protein concentration.

log,(Ap) = xlog,o(AmRNA) (2)

Ap represents the fold change in protein expression, and
AmRNA represents the fold change in mRNA expression,
while x is the co-response coefficient [31] of protein
expression and mRNA. It has been reported that the value
of x is about 0.3 when all the mRNA is translated to pro-
tein in S. cerevisiae [32]. The value of x has been recalcu-
lated as 0.5 for GAL genes from the data of Ideker et al.
[17]. In terms of fractional translation, the fractional pro-
tein expression can be related to the fractional transcrip-
tion as follows,

fh=F (3)

where f, and f are the fractional protein expressed by a
gene and the fractional mRNA synthesized, respectively.

We have accounted for the change in cell volume and con-
centrations of components during cell growth and divi-
sion by assuming a dilution effect on all the components
through a simple first order degradation rate. The deter-
ministic equation representing this is integrated along
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with the stochastic reactions using the methodology of
Haseltine and Rawlings [33].

Simulations were also carried out for in silico mutant
strains wherein the Mig1p binding sites were deleted from
the MEL1 and GAL1 genes. Also, simulation studies were
carried out with elimination of Gal4p binding sites for
these two genes. These simulations help in determining
the extent of repression through these two mechanisms.

All the simulations were performed using the direct
method of the stochastic simulation algorithm (SSA) of
Gillespie [5,7]. For the GAL system, the SSA provided
results in reasonable time; thus, using approximate algo-
rithms (e.g., tau-leaping) to speed up the simulation was
not necessary. Since the system is stochastic, each run is a
particular realization of the true dynamics of the system.
Thus, the results over multiple (500) runs in an ensemble
were averaged to obtain the mean values and distributions
of the component populations. Past studies on steady
state GAL gene response to glucose concentrations [22]
have demonstrated that the sensitive range of glucose con-
centrations in which the GAL system is responsive is
approximately 0.1 mM to 15 mM. This range was used to
set the initial condition for the equivalent Miglp nuclear
concentrations using Equation (1).

Experiments

Yeast Strains

GAL80 mutant strain of S. cerevisae Sc285 with genotype
MATa ura3-52 leu2-3 2-112gal80 [34] was used in the
study. It should be noted that Sc285 strain contains natu-
ral MEL1 in its genome, and can grow on melibiose as a
carbon source.

Inoculum

The strains were stored in 20% (v/v) glycerol at -80°C in
micro centrifuge tubes. The cells were precultured in YPD
broth and streaked out onto YPD plate, from which a sin-
gle colony was picked up to inoculate the shake flask.

Medium for the preculture

A cotton-stoppered, 500 ml Erlenmeyer flask containing
100 ml medium of following composition: 25 mg/L ade-
nine, 5.0 g/L Yeast extract, 10.0 g/L peptone and 30.0 g/L
glycerol was used. The pH was adjusted to 5.5 with 1 M
HCI. The cells were grown in a shake flask at 240 rpm on
a rotary shaker at 30°C for 12-16 h, until the cell concen-
tration reached 1.0-1.5 OD at 600 nm. Subsequently, the
bioreactor was inoculated with 10% cell mass of OD 1.0
at 600 nm.

Cultivation Conditions
Initially, S. cerevisae was grown in a batch bioreactor until
biomass reached about 0.5-0.85 OD at 600 nm in a
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medium of composition 25 mg/L adenine, 5.0 g/L Yeast
extract, 10.0 g/L peptone and 30.0 g/L glycerol. After this,
the bioreactor was operated in a fed-batch mode by main-
taining different average glucose concentrations (+ 10%).
The glucose concentration in the reactor was maintained
by continuous feeding of standard glucose solution using
calibrated peristaltic pumps (Watson Marlow 101U)
through a feedback control mechanism. Different average
glucose concentrations (with a set point for each) were
maintained by altering the feed rate and the concentration
of standard glucose solution. Steady state glucose concen-
tration was thus maintained by feeding two standard glu-
cose solutions (10 and 100 fold of required
concentrations) by using peristaltic pumps. The glucose
concentrations maintained in the fed-batch reactor were
0,1,4.4,10and 27.8 mM.

Plate Experiments

The inoculums from the fermentor, on reaching a fixed
steady state glucose concentration, were streaked onto
plates containing three different carbon sources, melibi-
ose, galactose and sucrose at 20 g/L. The colonies were
counted as colony forming units (CFU) beginning from
44 hours up to the time that the colonies reached a steady
state number. It should be noted that the colonies were
counted for different preculturing states depending on the
glucose concentration used for their growth in the fed-
batch reactor. Ten experiments with three sets in each of
these experiments were carried out. Thus, the data is pre-
sented as a mean of thirty plates with their respective
standard deviations, normalized with respect to the max-
imum number of colonies formed on the individual
plates.
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