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As opposed to acute respiratory infections, the persistent bacterial infections of the lung that characterize cystic fibrosis (CF) pro-
vide ample time for bacteria to evolve and adapt. The process of adaptation is recorded in mutations that accumulate over time in 
the genomes of the infecting bacteria. Some of these mutations lead to obvious phenotypic differences such as antibiotic resistance 
or the well-known mucoid phenotype of Pseudomonas aeruginosa. Other mutations may be just as important but harder to detect 
such as increased mutation rates, cell surface changes, and shifts in metabolism and nutrient acquisition. Remarkably, many of the 
adaptations occur again and again in different patients, signaling that bacteria are adapting to solve specific challenges in the CF 
respiratory tract. This parallel evolution even extends across distinct bacterial species. This review addresses the bacterial systems 
that are known to change in long-term CF infections with a special emphasis on cross-species comparisons. Consideration is given 
to how adaptation may impact health in CF, and the possible evolutionary mechanisms that lead to the repeated parallel adaptations.
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In the 1960s, Robert Doggett and colleagues [1] first described a 
strong association of unusual Pseudomonas aeruginosa isolates 
that produced copious amounts of a mucoid material with cystic 
fibrosis. The association was striking because P. aeruginosa was 
considered to be only rarely encapsulated [2]. This material was 
later identified as alginate [3, 4], a polysaccharide originally iso-
lated from brown seaweeds [5]. In addition, there seemed to 
be a clear progression, with nonmucoid P. aeruginosa isolated 
in early disease and mucoid strains appearing later, sometimes 
present alongside nonmucoid strains and sometimes on their 
own. The crucial question was whether this observed “change” 
was due to the introduction of mucoid P. aeruginosa replacing 
or outcompeting existing nonmucoid strains, or whether it was 
possible that the infecting strains had gained, newly, the ca-
pacity to make alginate. The paucity of mucoid environmental 
strains led initially to the suspicion that strains were converting, 
rather than being replaced, which was confirmed with the ad-
vent of molecular typing techniques [2].

The finding that many mucoid strains were highly sim-
ilar to nonmucoid strains from the perspective of sequence 

type, suggested that this was evidence of “intra–host” evo-
lution, and the repeated (parallel) evolution in multiple pa-
tients argued that there were strong selective pressures at 
work that made mucoidy highly beneficial to the infecting or-
ganisms. The fitness benefits proposed focus on the physical 
barrier provided by alginate, with protection from immune 
cells such as neutrophils and alveolar macrophages, reduced 
penetration of antibiotics, and immune molecules such as 
complement and immunoglobulins [2, 6]. Adherence and 
production of a difficult to remove biofilm also may be im-
portant for persistence [7].

That a major phenotypic change could occur in P. aeruginosa 
opened up the possibility that other pathogens were adapting 
genetically to the CF niche, and that other phenotypic changes 
might be occurring. The recent development of whole genome 
sequencing as a major tool for understanding long-term infec-
tion in CF has helped to clarify the major patterns of genomic 
and phenotypic evolution, in addition to identifying new types 
of adaptations that had gone unnoticed before [8–10]. The crit-
ical quality of in-host evolution is that it occurs recurrently in 
multiple individuals with the same disease and even within 
the same patient in distinct infecting lineages, providing the 
strongest evidence we have that these specific changes are bene-
ficial to infecting organisms [10–14].

WHAT IS THE CF RESPIRATORY TRACT LIKE?

To understand bacterial adaptation to the CF airway, it is im-
portant to understand what the niche is like from the bacte-
rial perspective, and therefore what fitness obstacles need to 
be overcome. First, the CF respiratory niche is probably best 
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described as multiple niches that extend from the upper airway 
all the way through to the deepest alveolae, with multiple dis-
tinct environments and atmospheres. There are areas of high 
oxygen with nearby areas that, after a steep oxygen gradient, 
are effectively anaerobic. In this milieu, there is a lack of critical 
nutrients such as iron and zinc, and areas with high concentra-
tions of oxygen radicals [15], varying levels of antibiotics, and 
immune molecules and cells. There are also other organisms 
replicating and occupying this space that compete for some of 
the same nutrients, and that may directly attack with bacteri-
ocins or other toxic molecules. Areas of the lung with different 
amounts of mucous plugging, bronchiectasis, and aeration may 
present very distinct niches. The heterogeneity of the CF airway, 
the relative lack of movement between spaces, and the failure 
to clear bacteria quickly sets up the perfect environment for 
hundreds of local evolutionary experiments to play out. Indeed, 
multiple studies have shown phenotypic and genomic diversity 
in distinct parts of the lung upon explant [16–18].

ANTIBIOTIC RESISTANCE AND TOLERANCE

Antibiotic resistance is the most obvious clinical problem that 
arises from intra-host evolution. CF patients have very high 
levels of antibiotic exposure, which selects for pathogens that can 
evade antibiotic toxicity. Indeed, one reason that P. aeruginosa 
is a common pathogen in CF is likely because of its inherent 
antibiotic resistance to multiple drugs. Likewise, multidrug re-
sistant (MDR) organisms are favored under standard CF treat-
ment regimens, which not only consist of periodic treatments 
with broad spectrum antibiotics for pulmonary exacerbations 
but also long-term use of aminoglycosides (e.g., inhaled tobra-
mycin and amikacin), monobactams (e.g., inhaled aztreonam), 
and oral azithromycin [19–21].

High exposure to antibiotics does not just lead to invasion 
of MDR pathogens. It can also lead to mutations in existing 
populations true antibiotic resistance or tolerance. Antibiotic 
tolerance is defined here as either an increased, but interme-
diate, minimal inhibitory concentration (MIC) or the ability 
to survive antibiotic challenge. The mechanisms of antibi-
otic resistance are as diverse as the mechanisms of resistance 
themselves. Mutations in genes for multidrug efflux pumps 
and associated proteins have been noted in P. aeruginosa, 
Burkholderia species, Stenotrophomonas maltophilia, and 
Achromobacter xylosoxidans [9, 12, 22–24]. These mutations 
often result in changes in MIC to multiple antibiotics at the 
same time. Mutations in porin genes, which diminish the dif-
fusion of antibiotics into the bacterial cell, have been described 
for P. aeruginosa [9] and Burkholderia spp. [23]. In addition, 
point mutations for aminoglycoside, macrolide, and rifampin 
resistance have been described for nontuberculous mycobac-
teria (NTM) [25]. Point mutations in ampD, whose protein 
product controls the beta-lactamase AmpC expression, have 

been described for B. multivorans [23]. For Staphylococcus 
aureus, point mutations for linezolid and azithromycin have 
been described [26].

Several other adaptations seem to affect the ability of bacteria 
to weather an antibiotic challenge. Adaptations that enhance bi-
ofilm formation are the most recognized form of antibiotic tol-
erance in that they provide a barrier to diffusion of antibiotics 
[27, 28]. Biofilms also harbor distinct populations of cells, some 
of which may be less metabolically active and less susceptible 
since antibiotics preferentially kill metabolically active or di-
viding cells [29]. In general, bacteria with a less active metabolic 
state may be more tolerant to antibiotics, and this has led to the 
study of small colony variants (SCVs), metabolic auxotrophs, 
and, so-called persister cells in several organisms including S. 
aureus and P. aeruginosa [30–33].

EXTRACELLULAR APPENDAGES AND CELL 
ENVELOPE CHANGES

Bacteria present multiple molecules and appendages on their 
surface that can trigger an immune and inflammatory response 
[34], but these same surface factors (pili, flagella, LPS) are crit-
ical for bacterial motility, colonization, and interaction with 
their surroundings. Therefore, while they enable infection [35], 
they are also a liability for pathogens once they have established 
a stable infection. For P. aeruginosa, a recurrent and predict-
able change associated with adaptation to the host is the loss 
of flagella [9, 36], a major stimulator of the Toll-like receptor 5 
(TLR5) [37], and type IV pili [9, 38, 39], for which an innate im-
mune response is not well characterized. Loss of motility, due to 
the loss of flagella [40] has also been observed in Burkholderia 
spp., along with reduced TLR5 stimulation for nonmotile 
strains, although only a minority of the observed strains under-
went this transition [41].

Changes in the surface exposed cell envelope is most well-
known for lipopolysaccharide (LPS) in the outer membrane of 
gram-negative bacteria. P. aeruginosa strains have been observed 
that change the molecular conformation of their LPS, becoming 
less immunostimulatory [42–46]. Strains of P. aeruginosa iso-
lated from CF lungs often do not express high molecular weight 
O antigen (displayed on LPS) which may make these strains 
more susceptible to killing in human serum [47, 48]. Loss of the 
LPS O antigen has also been noted to occur in B. multivorans 
infection through mutations in the wbi gene cluster [12]. Larger 
surveys have suggested that rates of loss of O antigen may be 
specific for each Burkholderia species with B. cenocepacia and B. 
multivorans having particularly high rates of conversion [49]. O 
antigen loss may lead to lower immunogenicity and evasion of 
the host immune response [50], or potential increased persist-
ence through increased intracellular survival [51].

For gram-positive organisms such as S. aureus, innate im-
mune responses linked to sensing by TLR2 of peptidoglycan 
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might be expected, but no such adaptive changes have been 
described. However, for nontuberculous mycobacteria (NTM) 
there have been changes noted in the glycopeptidolipids 
(GPL) of the outer cell envelope that lead to changes in 
immunostimulation as well as other phenotypic properties such 
as rough and smooth colony morphologies, biofilm formation, 
aggregation, and survival of macrophage killing [52].

While the pervasive changes in the superficial or exposed 
aspects of a bacterial cell in the CF lung are likely to be tightly 
linked to the immune response, it is worthwhile considering 
other possible advantages that losses or changes in these fac-
tors may have for bacteria. Indeed, some changes associated 
with LPS may arise simply because of selection for biofilms 
and CF-like nutritional regimes [53, 54]. Also, once established 
in a thriving community in the lungs, bacteria may no longer 
need to expend the energy for appendages that are primarily 
advantageous for colonization and motility. Other adaptations 
such as deep embedding in an alginate matrix may make these 
activities much less relevant. In general, reductive or degrada-
tive genomic evolution appears to be a theme for CF pathogens 
(see below). In this type of evolution, especially in bacteria 
with higher mutation rates or more active transposition or re-
combination, genes that are not needed are easily lost. It seems 
possible that many of the losses observed and taken as signs of 
adaptation are merely the consequence of random inactivation 
of unneeded systems.

MUCOIDY, BIOFILM FORMATION, AND QUORUM 
SENSING

As noted above, mucoidy in P. aeruginosa was the first attribute 
that appeared to arise in a highly parallel fashion in CF patients. 
The mechanism of the transition to mucoidy has been deeply 
studied, and has been shown to originate from derepression of 
regulatory genes of alginate production, particularly algU, algW, 
mucA, mucB, mucD [55, 56]. These mutations have been seen 
repeatedly in multiple recent whole genome studies with loss 
of function mutations arising in multiple genes involved in the 
regulation of the production of the exopolysaccharide (EPS) al-
ginate [14]. Organisms grown in an alginate biofilm are less sus-
ceptible than planktonic cells to antibiotic challenge and more 
protected from the immune system response [28, 57, 58].

While B. cepacia complex isolates have been shown to form 
biofilms [59–61], mucoid isolates were previously thought to 
be rare, especially in the environment [2]. However, some CF 
centers have reported that more than 80% of isolates from CF 
patients make EPS [62, 63], and culture conditions also greatly 
impact EPS production with environmental strains also pro-
ducing EPS [64–66]. The most widespread B. cepacia EPS, 
cepacian [67, 68], is involved in the thickness and maturity of 
biofilms in some strains but not all [63]. Murine models show 
increased persistence of mucoid isolates compared to isogenic 

controls [69], and EPS has also been implicated in scavenging 
oxygen radicals and interfering with neutrophil chemotaxis 
[70]. However, the mucoid phenotype is complex, and in sur-
veys from CF patients, Burkholderia species have highly vari-
able biofilm-forming capacity, colony morphology, and levels of 
EPS production [63, 64]. Thus, while the impact of EPS remains 
unclear the virulent species B. cenocepacia has a high frequency 
of EPS producing isolates [64]. However, one study showed that 
patients with nonmucoid strains had more rapid lung function 
decline and worse outcomes [71]. Interestingly, unlike the pat-
tern of change in P. aeruginosa, longitudinal Burkholderia iso-
lates appear to switch both from mucoid to nonmucoid and vice 
versa, with the majority of phenotypic changes occurring from 
mucoid to nonmucoid [64].

Biofilms can take different forms and have distinct extra-
cellular matrix components including exopolysaccharides 
other than alginate, and other important components such as 
pili or DNA [7, 72–74]. Another phenotypic switch noted for 
persistent P. aeruginosa infections in CF is the transition to 
rugose small colony variants (RSCVs), which is tied to the ex-
pression of nonalginate exopolysaccharides Psl and Pel [75–77]. 
RSCVs of P. aeruginosa form strong attachments to surfaces and 
pneumocytes, autoaggregate, and have been found in significant 
quantities in CF patients [78, 79]. Some are hyperpiliated and 
have increased twitching motility [78]. RSCVs have also been 
shown to be more resistant to phagocytosis [80, 81]. Multiple 
other phenotypes have been associated with P. aeruginosa 
RSCVs including both increases and decreases in cytotoxicity 
and virulence [31]. The original RSCV phenotype was described 
as the result of overproduction of cyclic–diGMP and linked to 
the genes pvrR, encoding a cyclic-di-GMP phosphodiesterase, 
and wspR, encoding a diguanylate cyclase [82, 83]. Multiple 
additional naturally occurring mutations have been linked to 
the RSCV phenotype, the most common are loss-of-function 
mutations in genes whose products negatively regulate cyclic-
di-GMP production (e.g., wspF, fleQ, yfiN, yfiR) [9, 80, 81]. The 
second messenger cyclic-di-GMP is involved in the control of 
multiple processes that are central to the adaptive processes 
of P. aeruginosa to the CF environment including elaboration  
of extracellular appendages, exopolysaccharide, adhesins, viru-
lence and cytotoxicity systems among others [31]. Interestingly, 
recent work ties the mutations that lead to loss of flagella to Pel 
and Psl production, suggesting that the loss flagella may just be 
a “side effect” of the true fitness benefit of creating a Psl/Pel bio-
film [75]. Burkholderia cenocepacia has also been noted to easily 
produce RSCVs in in vitro evolution studies that are due to wsp 
locus genes [84], and there are reports of cystic fibrosis patients 
with the SCV phenotype [85].

Bacteria living in close proximity are well known to com-
municate with each other through small molecules gener-
ally known as quorum sensing. In long-term infections in CF, 
P. aeruginosa has been noted to lose quorum sensing abilities 
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through mutation of lasR and rhl genes [38, 86–89]. The loss 
of quorum sensing has multiple impacts including modulation 
of expression of many other genes including those with an im-
pact on virulence [90, 91]. It also may lead to increased growth 
rates due to more efficient use of amino acids, ability to use 
nitrate as an electron acceptor, and increased antibiotic resist-
ance [87, 92]. While quorum sensing changes have been seen in 
Burkholderia spp. infections, inactivation may not be the norm 
in long-term infections [93].

S. aureus biofilms produce more heterogeneous biofilms in 
CF that involve both adhesive proteins, surface polysaccharides 
such as poly-N-acetyl-1,6 glucosamine surface polysaccharide 
(PIA/PNAG), wall teichoic acids, and DNA with the relative 
importance of each varying between strains [94]. Activation, of 
the quorum sensing system agr in S. aureus leads to biofilm dis-
persal and it is notable that agr mutants are often found in CF 
samples. In biofilms, agr transcriptional activity is low, and agr 
mutants are known to be enhanced for biofilm formation [95].

OTHER TYPES OF SMALL COLONY VARIANTS, 
AUXOTROPHS, AND METABOLISM

Confusingly, the small colony phenotype (SCV) that arises in S. 
aureus from CF patients appears to have a very different biolog-
ical underpinning than the RSCVs noted above for P. aeruginosa 
[96–99]. S. aureus SCVs have several critical advantages as 
residents of the CF lung including higher tolerance to antibi-
otic challenges, and increased intracellular survival [94]. These 
strains often have slower growth, decreased hemolysin produc-
tion, less pigmentation, increased intracellular survival, and in-
active agr systems all suggesting a quiescent, biofilm forming 
lifestyle [94]. The genetic basis of SCVs is heterogeneous, and 
the associated mutations cause defects in amino acid or nucle-
otide synthesis and electron transport. SCVs are often auxo-
trophs, meaning that they cannot synthesize critical molecules 
needed for growth, which they need to acquire from exogenous 
sources. S. aureus SCVs are most usually auxotrophs of the nu-
cleic acid thymidine with mutations in the thyA gene [100, 101]. 
These isolates are associated with long-term trimethoprim sul-
famethoxazole treatment, are found mostly in older patients, 
tend to be have higher rates of antibiotic resistance, and have 
long-term persistence [98, 100, 102]. More recently, S. aureus 
SCVs have been found to be strongly associated with worse lung 
function [103, 104]. An interesting observation has been that 
interactions between P. aeruginosa and S. aureus may select for 
S. aureus SCVs and protecting them from toxicity of the very 
commonly used aminoglycoside tobramycin [105].

S. maltophilia has been reported to produce small colony 
variants that seem more similar to S. aureus SCVs than those 
reported for P. aeruginosa or Burkholderia spp. These are 
auxotrophs for hemin, methionine and thymidine and are as-
sociated with trimethoprim sulfamethoxazole exposure [106].

Auxotrophy also develops in P. aeruginosa isolates from CF, 
which mostly require amino acids (methionine, lysine, argi-
nine) for growth [107–109]. It has been hypothesized that these 
forms can arise because the high levels of amino acids in the 
lung remove selection pressure [110]. Metabolomic studies 
have also shown evidence of metabolic adaptation with acetate 
production being negatively correlated with length of infection, 
and an increase in efficient uptake of amino acids that would be 
found in the human lung [111]

REACTIVE OXYGEN SPECIES

In addition to exogenous antibiotics, bacteria face an environ-
ment that is replete with damaging molecules released from 
neutrophils such as myeloperoxidase, elastase, leukocyte pro-
tease, and ROS [112, 113]. In general, bacteria must develop 
strategies to ameliorate this damage. Adaptive mutations for the 
oxidative stress (in katG, yedY, moeA) have been documented 
in Burkholderia cenocepacia [114]. One metabolic change 
noted in P. aeruginosa is mutations in the genes for the pyruvate 
dehydrogenase (aceE and aceF), which through reduction of 
glycolysis and the tricarboxylic acid (TCA) cycle can help resist 
reactive oxygen species [14, 115].

Because ROS can damage DNA, chronic ROS exposure can 
lead to mutations in many genes, which may happen to be in 
DNA repair genes that increase mutation rates even further 
[116]. Reactive oxygen stress has been shown to lead to muta-
tions that create mucoid strains [117], and other experimental 
evolution studies done with chronic H2O2 have shown gen-
eration of mutants that result in a rough small colony variant 
phenotype (mediated by the wspF gene) [118]. However, some 
mucoid mutants have been shown to be even more susceptible 
to reactive oxygen stress [119].

HYPERMUTATION AND GENOME DEGRADATION

A recurrent theme in intra-host evolution is the generation of 
strains with higher rates of mutation. This phenomenon has 
been observed or inferred by sequence changes in P. aeruginosa 
[116, 120–125], Haemophilus influenzae [126], Burkholderia 
spp. ([12, 23, 127, 128] though see [129]) and S. aureus [26, 
94] with the consequences being more rapid gain of muta-
tions associated with antibiotic resistance [120] and other po-
tentially beneficial traits. The genetic changes associated with 
hypermutability are associated with deletion or inactivation of 
DNA mismatch repair (MMR) genes (mutLS, uvrD) or the GO 
system (mutMTY), of oxidative damage repair and have been 
described in both gram-positive and negative CF pathogens 
[130–132].

Of course, while hypermutability offers a more rapid gen-
eration of beneficial point mutations, it is more likely to re-
sult in deleterious mutations. Therefore, the fitness cost of a 
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hypermutable phenotype is high [124] though this may be 
offset by other benefits in certain selective regimes [133]. It is 
interesting to speculate that a strategy that allows for a tran-
sient increase in mutation rate might be ideal. In this regard, it 
would be interesting to find evidence of restored MutLS activity, 
or antimutator phenotypes [134].

An area that has only started to be considered is the im-
pact of recombination on rapid DNA change. If foreign DNA is 
available, then recombination is the fastest way to affect massive 
genomic change. One study of a single CF patient with chronic 
B. multivorans infection showed a significant genomic signal 
supporting recombination of more than 15% of the genomic se-
quence [23]. In P. aeruginosa, recombination as the dominant 
mode of sequence change has also been detected [135, 136].

Another mode of evolution is through insertion of transpos-
able elements insertion elements (IS). Evolution through active 
IS elements in P. aeruginosa during CF infection has aids in the 
genesis of antibiotic resistance and the inactivation of genes 
[137–141]. In B. cenocepacia, transposition of IS elements leads 
both to gene inactivation if inserted into a coding or regulatory 
sequence, and also as loci of sequence homology that can un-
dergo recombination leading to large genomic deletions [114, 
129].

The combined action of mutation, transposition, and recom-
bination in CF leads to genome degradation that is often seen 
as organisms become specialists, adapting to a specific environ-
ment where a more diverse set of genes (and possible functions) 
is no longer needed [141].

DIVERGENCE AND THE MAINTENANCE OF DIVERSITY

Divergence of the initial infecting population and long-term 
persistence of that diversity is another common pattern in CF 
[12, 142, 143], which signals that the CF lung environment fur-
nishes positive (or diversifying) selective forces [12, 144] as 
well as the potential that selective forces work differently on 
closely related bacteria. For P. aeruginosa, multiple studies have 
shown a large amount of phenotypic diversity in sputum sam-
ples [16–18, 142, 143, 145–147], which has also been shown in 
other pathogens including Burkholderia [148, 149], and at least 
in one case of nontuberculous mycobacteria [150]. Diversity in 
S. aureus has been less well characterized with only a handful 
of studies characterizing within-host or longitudinal diversity 
[151–154].

What evolutionary forces generate this diversity? One possi-
bility is that distinct changes occur in distinct biogeographical 
locations in the lung where populations experience different 
conditions as well as the stochastic effects associated with pop-
ulation bottlenecks [16, 155]. While anatomical regions can 
create subdivisions in bacterial populations, it is also possible 
that there are smaller subdivisions such as aggregates of bacteria 
or even in different regions of the airway lumen [141, 156]. In 

a subdivided population the existence of periodic selection that 
occurs with intermittent use of antibiotics, or recurrent periods 
of inflammation and immune response, might lead to selective 
sweeps, in which variants arise from mutation that dominate 
the population because of their increased fitness [157]. A sub-
divided population also favors diversification through genetic 
drift over selection [141].

An alternative explanation for increased and stable diver-
sity is that the organisms with different phenotypes could be 
occupying different niches within the lung, however testing this 
hypothesis will require demonstrating differences in spatial or-
ganization or nutrient utilization.

Yet another possibility is that diversity arises from social 
interactions between organisms, which could take the form of 
mutualisms (divisions of labor) or unequal relationships such 
as with social cheaters who acquire benefits from the popula-
tion while reducing any cost to themselves [158]. Interesting 
new work on P. aeruginosa populations suggests that genes for 
relatively cooperative functions are more likely to vary and have 
inactivating mutations than genes that largely function in the 
context of one bacterium, suggesting that social interactions be-
tween bacteria may be critical for diversification [159].

HOW DOES ADAPTATION AFFECT HEALTH AND 
TREATMENT?

Many studies use the word “pathoadaptation” to describe the 
process of adaptation to the host environment, but this term 
can be confusing since it also implies enhanced fitness that 
leads to worse disease [160, 161]. In the sense that the increased 
fitness of specific phenotypic changes make infections last 
longer than probably all in host adaptation can be considered 
pathoadaptation [162]. However, some phenotypic changes 
may decrease or change the overall virulence of the organism 
[163]. For instance, some hypermutator phenotypes have been 
directly tied to increased persistence but reduced or changed 
virulence [164].

The phenotypic differences that are well documented for P. 
aeruginosa can lead to significant differences in antibiotic sus-
ceptibility, which has an impact on susceptibility testing and 
likely treatment as well [165–168]. Similar diversity has been 
noted in nontuberculous mycobacteria isolated from the same 
individual [150] as well as in S. maltophilia [169], and it is prob-
ably a general feature of chronic lung infections.

A recent report [170] highlights the possibility that mutations 
can result in increased pathogenicity and antibiotic resistance. In 
this case report, whole genome sequencing revealed mutations 
in the exsD gene whose product acts to negatively regulate type 
III secretion (T3S), a major virulence factor for P. aeruginosa 
that is often lost earlier in infection and may be linked to worse 
outcomes [171, 172]. The authors note that this mutation could 
have led to hyperactivity of T3S that coincided with an acute 
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worsening in the patient’s status. Interestingly, mutation of the 
OprD porin was also observed in this report, which likely had 
an impact on the susceptibility of this strain to carbapenem anti-
biotics, suggesting that the exsD mutation may have genetically 
“hitch–hiked” along with an antibiotic resistance gene.

This example evokes themes that repeatedly confound our 
ability to gauge the impact of mutations and putative adaptation 
in cystic fibrosis. First, adaptations tend to occur later in disease 
when lung function is already declining, thus it is not always 
clear whether adaptation is causal or just a marker worsening 
disease. Second, mutations occur linked to one another in a ge-
nomic (and even microbial population) context. Therefore, it 
may be difficult to discern which mutations are beneficial to the 
organism, which are harmful to the host, and which are neutral 
or even beneficial to the host. As such, while phenotypes such as 
the mucoid phenotype in P. aeruginosa [6, 162, 173–183] or the 
SCV phenotype [103, 104] in S. aureus are strongly associated 
with worsening disease, it is difficult to assign them a causal 
relationship. Likewise, associations between P. aeruginosa auxo-
trophs, RSCVs, and quorum sensing and more severe disease 
remain associations [79, 102, 108, 184, 185].

It is also interesting to consider that some of the mutations 
that occur may actually lead to less inflammatory or destructive 
phenotypes. For instance, the loss of flagella might lead to less in-
flammation due to the immune response through TLR5 [37] or 
the differences in Lipid A acylation might decrease inflammation 
due to TLR4 signaling [42–46]. There have been no clinical studies 
to gauge the impact of these changes on disease progression.

WHAT IS NEXT?

As genomic and phenotypic data accumulate the next steps will 
be to clearly delineate the impact of bacterial adaptations on 
disease with the goal of using this information to make clinical 
decisions and interventions. The critical clinical studies will 
include careful determination of which adaptations are asso-
ciated with clinical decline, and which are not. This will re-
quire large-scale studies that consider intra-host diversity and 
change over time. Once these associations are well established, 
they can be targeted with treatments and decision making. For 
instance, it may be possible to target specific phenotypes to 
aid in eradication of adapted strains. It may also be possible 
to monitor for specific adaptations to guide clinical decision 
making. Some adaptations may signal the need for more ag-
gressive treatment, and some may change the risk benefit 
analysis of aggressive therapy leading to more judicious use 
of antibiotics or other drugs. These types of approaches will 
require truly translational research that includes rigorous ge-
nomic, basic, and clinical studies. There should also be more 
attention paid to emerging and less well-studied pathogens 
such as nontuberculous mycobacteria, S. maltophilia, and S. 
aureus, as well as other underappreciated members of the CF 

respiratory microbiome, such as anaerobes. It is important to 
note that microbial adaptations not only allow us to under-
stand the process of intra-host evolution, but they also give a 
window into the underlying biology of the disease.
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