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Context: Boys with XXY have greater adiposity and a higher risk of cardiovascular disease. Infants
with XXY have lower testosterone concentrations than typical boys, but no studies have evaluated
adiposity in infants with XXY or the physiologic effects of giving testosterone replacement.

Objective: To determine the effect of testosterone on body composition in infants with XXY.

Design: Prospective, randomized trial.

Setting: Tertiary care pediatric referral center.

Participants: 20 infants 6 to 15 weeks of age with 47,XXY.

Intervention: Testosterone cypionate 25 mg intramuscularly monthly for three doses vs no treatment.

Main Outcome Measures: Difference in change in adiposity (percent fat mass z scores); other body
composition measures, penile length, and safety outcomes between treated and untreated infants; and
comparison with typical infants.

Results:The increase in percent fatmass (%FM) z scores was greater in the untreated group than in the
treated group (10.926 0.62 vs20.126 0.65, P5 0.004). Increases in secondary outcomes were greater
in the testosterone-treated group for total mass, fat-free mass, length z score, stretched penile length,
and growth velocity (P, 0.002 for all). At 5 months of age, adiposity in untreated infants with XXY was
26.7% compared with 23.2% in healthy male infants of the same age (P 5 0.0037); there was no dif-
ference in%FMbetween the treated XXY boys and controls. Reported side effects wereminimal and self-
limited; no serious adverse events occurred.

Conclusions:Adiposity of untreated infants was 15% greater than that of male controls by 5 months of
age. Testosterone treatment for infants with XXY resulted in positive changes in body composition.
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The number of infants recognized to have sex chromosome aneuploidies has rapidly in-
creased with the commercialization of noninvasive prenatal screening [1]. The most
common sex chromosome aneuploidy, karyotype 47,XXY, also known as Klinefelter syn-
drome, occurs in 1 of every 600 male births [2]. The extra X chromosome affects testicular
development, resulting in infertility and hypergonadotropic hypogonadism in adult men
[3]. Boys with 47,XXY also have a higher risk of developmental delays, learning disabilities,
and cardiometabolic disease [4]. Whether hypogonadism is present in boys with 47,XXY
before puberty is debated [5]. Supporting evidence includes a higher prevalence of
micropenis and cryptorchidism than in the general population, slower penile growth in
infancy, and frequent hypotonia, all which may be attributable to relative testosterone
deficiency in early life [3, 5].

The mini-puberty period describes the transient activation of the hypothalamic-pituitary-
gonadal axis resulting in testicular testosterone production from ;1 to 4 months of life [6].
Animal models and human studies suggest this is a critical window of programming with
lifelong implications [7–13]. Although one study of 10 infants with XXY reported high normal
testosterone, other studies assessing serum hormone concentrations in the mini-puberty
period have concluded testosterone is on average lower for boys with 47,XXY [14–17].
Therefore, it is biologically plausible, and observational reports suggest, that testosterone
treatment may be beneficial for cardiometabolism and neurodevelopment in 47,XXY [5, 18,
19]. However, there have been no intervention trials, particularly in infancy, to guide clinical
management in this population. The aim of this study was to evaluate the immediate effects
of a short course of testosterone treatment for infants with 47,XXY on physical outcomes,
including body composition, growth velocity, and penile size.

1. Methods

A. Overall Study Design

This was a randomized clinical trial of testosterone cypionate IM injections compared with no
treatment for 20 infants with nonmosaic karyotype 47,XXY. Study visits occurred at baseline
and after completion of a 3-month course of treatment (25 mg IM every 28 days for a total of
three doses). The primary outcome was change in percent fat mass (%FM) z scores between
study visits. Secondary outcomes included change in total mass, fat mass (FM), fat-free mass
(FFM), %FM, length z scores, and stretched penile length z scores, as well as parent-reported
side effects. Body composition parameters for infants with XXY at the final study visit were
also compared with those of healthy controls [20].

B. Setting, Recruitment, and Participants

The study took place at the University of Colorado/Children’s Hospital Colorado, home of the
eXtraordinarY Kids Clinic and Research Program [21]. Participants were recruited through
local and national advertisements, parent support groups, targeted social media groups, and
genetic counseling offices. Study enrollment occurred from May 2015 through September
2017. Infants between 6 and 15 weeks of age were identified to have had an increased risk for
aneuploidy prenatally through noninvasive prenatal screening and had a postnatal di-
agnostic karyotype from either cord blood or a venous sample to confirm nonmosaic 47,XXY
karyotype before study enrollment. Additional inclusion criteria were gestational age
$37 weeks, birth weight 2.5 to 97.5 percentile for gestational age, and no exogenous
androgen exposure outside the study protocol. The study was approved by the local in-
stitutional review board (COMIRB 14-1720) and registered on ClinicalTrials.gov
(NCT02408445), and the protocol is on file with the US Food and Drug Administration
(Investigational New Drug file 124260). Written informed consent was provided from the
parents of all participants.
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C. Randomization

Block randomization into two blocks of 10 was used to allocate participants 1:1 to receive or
not receive testosterone treatment. The parents and principal investigator were aware of the
treatment status; however, coinvestigators assessing length, weight, body composition, and
penile length remained blinded to treatment status throughout the study.

D. Intervention

All participants randomly assigned to treatment were given testosterone cypionate 200 mg/
mL IM injection of 25 mg (0.125 mL) in the vastus lateralis at the end of the initial (en-
rollment) study visit and then every 4 weeks for a total of three doses. This dosage was
selected because it is commonly used for the treatment of micropenis, with noted efficacy and
minimal side effects [22].

E. Study Assessments

Prenatal, neonatal, and early infant history was obtained from parent report and review of
medical records, including genetic test results confirming nonmosaic 47,XXY. All partici-
pants underwent a physical examination and body composition assessment at baseline and
after 3 months. Length was measured to the nearest millimeter with a recumbent infant
stadiometer. Length z scores were calculated according to the 2006 World Health Organi-
zation growth standards [23]. Whole body composition was assessed via air displacement
plethysmography (PEA POD; COSMED USA, Inc., Concord, CA) [24]. FM and FFM to the
nearest gram were estimated from total body mass and volume, and %FM was calculated by
dividing the FM by the total body mass. Infants were measured twice for each study visit,
and a third measurement was completed if the %FM differed by more than 5 percentage
points. The first measurement was used in the analysis unless there were concerns for
validity due to excessive infantmovement. Because of the range of age at enrollment, age- and
sex-derived %FM z scores were calculated from published norms [25]. Stretched penile length
was measured to the nearest millimeter by a pediatric endocrinologist blinded to the
treatment status. Testicular volume was estimated with a Prader orchidometer. Parents of
the infants randomly assigned to receive treatment were asked to report any perceived side
effects of testosterone throughout the study period, and adverse events were collected at the
final study visit.

F. Statistical Analyses

Frequency distributions for each continuous variable were generated and assessed for
normality visually and by the Shapiro-Wilk normality test; if assumptions were not met,
nonparametric tests were used. Data points were examined for outliers andmissing data, but
because of the small sample size of this study, no data points were excluded. Baseline
summary statistics for demographic variables, covariates known to affect body composition,
and outcomes of interest were generated and reported as mean and SD unless otherwise
noted. Individual change scores were calculated for primary and secondary outcomes as
appropriate. For the primary outcome, Welch’s two-sided, two-tailed t test was used to
compare the change in %FM z scores between treated and untreated groups, with an a priori
level of significance set at 5%. With a sample size of 10 participants per group, we had 80%
power to detect a difference in change scores of 0.75 between groups for our primary outcome.
Secondary outcomeswere compared between groups in a similar fashion, withWelch t tests or
Mann-Whitney tests for continuous outcomes and Fischer exact tests for categorical out-
comes. We did not adjust for multiple comparisons.

As a secondary exploratory analysis to assess how untreated infants with XXY compared
with boys in the general population at 5 months of age, body composition parameters (%FM,
FM, FFM, and total mass) at the final study visit were compared via Welch two-sided t tests
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for untreated boys with XXY and 296male infants from the Healthy Start Study. In brief, the
Healthy Start Study is a large cohort study of healthy mother-infant pairs recruited pre-
natally from the Denver metropolitan area and followed longitudinally to examine infant
health and metabolism [26]. Although genetic testing was not specifically performed in these
participants, given the prevalence of sex chromosome aneuploidies, this group of healthy boys
is assumed to have a karyotype predominantly, if not exclusively, 46,XY. The Healthy Start
Study protocol included body composition assessed with the same PEA POD equipment and
identical methods at 4 to 6months of age, and those data have been previously published [20].
Data were managed in Research Electronic Data Capture, and analysis was conducted in
Prism GraphPad version 8.1.1.

2. Results

Baseline demographics and characteristics for participants by randomization status are
shown in Table 1. Twenty male infants with a mean age of 72 6 22 days enrolled, and all
completed the study without protocol deviations. All mothers had cell-free fetal DNA
screening revealing an increased risk for 47,XXY; the majority were screened because of
advanced maternal age. No pregnancies were exposed to tobacco smoke, one pregnancy was
complicated by gestational diabetes, and two pregnancies were induced because of maternal
hypertension or preeclampsia. No infants had prenatal or perinatal complications, and there
were no congenital malformations.

Baseline body composition parameters (FM, FFM, and %FM) were all within the normal
ranges previously published for age and not significantly different between groups (Table 1)
[25]. Figure 1 illustrates the primary outcome, change in %FM z scores. The difference in %
FM z score change from before randomization was 11.04 in the untreated group compared

Table 1. Demographics and Baseline Characteristics for Infants With XXY

All (n 5 20)
No Testosterone

Treatment (n 5 10)
Testosterone

Treatment (n 5 10) P

Pregnancy and birth characteristics
Maternal age, y 35.5 6 3.5 35.1 6 2.7 35.9 6 4.3 0.62
Race and ethnicity 0.99
Non-Hispanic White, n (%) 17 (85%) 9 (90%) 8 (80%)
Other, n (%) 3 (15%) 1 (10%) 2 (20%)

Reason for prenatal screening, n (%) 0.58
Advanced maternal age 13 (65%) 7 (70%) 6 (60%)
Elective 6 (30%) 3 (30%) 3 (30%)
In vitro fertilization 1 (5%) 0 (0%) 1 (10%)

Maternal weight gain in pregnancy, kg 16.1 6 5.6 16.2 6 6.6 16.1 6 4.9 0.94
Gestational diabetes, n (%) 1 (5%) 1 (10%) 0 (0%) 0.99
Gestational age at birth, wk 39.3 6 1.1 39.2 6 1.0 39.3 6 1.3 0.79
Birth weight, kg 3.22 6 0.42 3.35 6 0.39 3.09 6 0.44 0.17
Birth length, cm 50.7 6 1.9 51.1 6 1.6 50.4 6 2.1 0.42

Infant characteristics at enrollment (baseline)
Infant age, d 72 6 22 70 6 23 73 6 22 0.80
Feeding method 0.63
Breastfed only, n (%) 14 (70%) 8 (80%) 6 (60%)
Formula or combination, n (%) 6 (30%) 2 (20%) 4 (40%)

Total body mass, kg 5.4 6 0.8 5.4 6 0.7 5.3 6 0.9 0.76
Length, cm 57.8 6 2.9 58.6 6 1.8 57.0 6 3.6 0.21
FFM, kg 4.3 6 0.5 4.3 6 0.5 4.2 6 0.5 0.55
FM, kg 1.1 6 0.4 1.1 6 0.4 1.1 6 0.4 0.88
%FM 19.8 6 5.1 19.7 6 5.9 20.2 6 4.6 0.75
Stretched penile length, cm 2.7 6 0.5 2.8 6 0.6 2.7 6 0.3 0.43

Data presented are mean 6 SD or number (%).
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with infants treated with testosterone (P5 0.002). Absolute %FM at the final visit was higher
in the untreated infants, but this difference did not reach statistical significance (P 5 0.061,
Fig. 1). The difference in %FM between groups was attributable primarily to the larger
increase in FFM in the testosterone-treated group rather than a direct difference in FM.
Change in secondary outcomes were significantly different for total mass, FFM, length z
score, and stretched penile length (Fig. 2). Growth velocity between the two study visits was
26.7 6 2.5 cm/y in the untreated group and 34.2 6 7.9 cm/y in the treated group (P , 0.001).
Testicular volumes were unchanged from baseline to final visit and did not differ between
groups (1.5 6 0.6 mL for both groups).

Summary data for FM, FFM, and total body mass for infants with XXY at the final study
visit compared with published data from the Healthy Start Study are presented in Table 2.
At a median age of 5 months, untreated boys with XXY had a %FM 3.5 percentage points
greater than that of boys in the Healthy Start Study (P 5 0.037, Fig. 3), representing a
relative difference in adiposity of 15%. The %FM of untreated male infants was even higher
than that of typical female infants (Fig. 3). There was no difference in %FM between the
treated boys with XXY and healthy controls.

All testosterone injections were given per protocol and were well tolerated. In the
treatment group, there was a total of three emergency department visits deemed to be not
related to the intervention [final diagnoses: eczema (n 5 1), viral upper respiratory illness
(n 5 1), and conjunctivitis (n 5 1)]. No hospitalizations or surgeries were reported. Potential
self-limited side effects endorsed by parents in the treatment group included noticing penile
erections (n 5 3), acne (n 5 2), change in appetite (n 5 1), stool pattern (n 5 1), and sleep
pattern (n5 1). There were no reports of pubic, axillary, or facial hair and no local reactions to
the injections.

3. Discussion

This randomized, prospective testosterone intervention trial in infants with XXY dem-
onstrates that a 3-month course of low-dose testosterone affected physical parameters in
infants with XXY. In this study, change in adiposity (%FM z scores) was significantly
greater for untreated infants than for treated infants. Testosterone treatment also resulted
in increased FFM, growth velocity, and penile length, and side effects were minimal
and self-limited.

Figure 1. (A) Change in %FM z scores was significantly greater in untreated (open squares)
than in testosterone-treated (closed circles) boys with XXY. Bars and error bars represent
mean and SD, respectively, and symbols represent individual participants. (B) Absolute %FM
was similar at baseline but higher in the untreated boys after 3 mo, although this difference
did not reach statistical significance (P 5 0.061). Error bars represent SEM. T, testosterone
treatment.
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Prenatal identification of sex chromosome aneuploidies, including XXY, has increased
exponentially because of the increasing availability and use of cell-free fetal DNA prenatal
screening [27]. Therefore, the demand for timely evidence-based clinical care is high.
Testosterone treatment in infancy has emerged as a popular off-label treatment for boys
with XXY, with observational reports of benefits in neurodevelopmental features [18, 19].
Animal models and limited clinical research have found that postnatal activation of the
hypothalamic-pituitary-gonadal axis (known as the mini-puberty period of infancy) is a
critical window of testosterone exposure during male development necessary for sexual
differentiation of multiple tissues systemically [9, 11, 28]. The full implications of the
mini-puberty period are still being studied, and rigorous research methods are desper-
ately needed to guide standards of clinical care in XXY, as well as other populations that
have impaired gonadal function in infancy [29]. However, no prospective, randomized
trials of testosterone treatment in infants at risk for testosterone deficiency have been
previously conducted.

Figure 2. Change between the baseline (;2 mo of age) and final visit (;5 mo of age) in
secondary outcomes including (A) total body mass, (B) FM, (C) FFM, (D) length, and (E)
stretched penile length (SPL) between the untreated (open squares) and treated (black
circles) infant boys with XXY. Bars and error bars represent the mean and SD, with symbols
representing individual participants. T, testosterone treatment.

Table 2. Body Composition Measures (Mean 6 SD) at ∼5 Mo of Age in XXY and Healthy Start Study

Typical Girlsa

(n 5 306)
Typical Boysa

(n 5 296)
XXY, No Testosterone
Treatment (n 5 10)

XXY, Testosterone
Treatment (n 5 10)

Age, mo 4.98 6 0.92 4.89 6 0.94 4.79 6 0.87 5.05 6 0.70
Total body mass, kg 6.57 6 0.82 6.92 6 0.81 6.78 6 0.82 7.23 6 0.89
Length, cm 63.1 6 2.5 64.4 6 2.6 64.0 6 1.9 64.4 6 2.3
FFM, kg 4.88 6 0.53 5.29 6 0.54 4.96 6 0.61 5.57 6 0.63
FM, kg 1.70 6 0.50 1.63 6 0.50 1.82 6 0.43 1.69 6 0.36

aReference data from the Healthy Start Study [20].
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Adiposity has consistently been shown to be approximately 1 SD higher in boys and men
with XXY from childhood through adulthood [30, 31]. Given that testosterone production is
impaired in XXY and is an anabolic steroid that promotes lean mass and decreases FM,
testosterone deficiency is often assumed to be the cause of the body composition differences
seen in XXY. Furthermore, both adiposity and testosterone deficiency have been correlated
with adverse cardiometabolic health, including dyslipidemia, insulin resistance, and cardiac
dysfunction [32, 33]. This study examined body composition in infants with XXY. Although
adiposity was within the normal range at 2 months of age, by 5 months of age the 10 untreated
infants with XXY already had a relative difference in adiposity of 15%more than healthy male
infants. In a subanalysis of the Healthy Start Study, we found sex differences in body com-
position becomemore disparate in the first 5 months of life, potentially reflecting differences in
hormone exposure during the mini-puberty period of infancy. It is possible the high adiposity
seen throughout the lifespan in XXY originates from insufficient testosterone exposure during
the mini-puberty period of infancy, although longitudinal studies would be needed to confirm
this hypothesis. Testosterone treatment did prevent the adiposity gain the untreated infants
experienced. Because of the short-term nature of the current study, it is unknown whether the
positive effects of testosterone on body composition are sustained beyond the treatment period.

Sex differences in growth velocity and projected adult height were recently directly at-
tributed to testosterone exposure in boys during the mini-puberty period [7]. Likewise, our
study results confirm that infants with XXY who received testosterone had a more robust

Figure 3. Differences in %FM at 5 mo of age between typical girls and boys from the Healthy
Start Study and infants with XXY, both untreated (white) and testosterone-treated (checkered).
Bars and error bars represent means and SDs, respectively. T, testosterone treatment.

2282 | Journal of the Endocrine Society | doi: 10.1210/js.2019-00274

http://dx.doi.org/10.1210/js.2019-00274


growth velocity (17.5 cm/y) than infants who did not. Although growth velocity is not
typically a targeted outcome in XXY, it is an important surrogate of the anabolic effects of
testosterone and suggests the dosage of testosterone used in this study was effective. An
increase in stretched penile length of ;1 cm also supports the efficacy of the testosterone
dosage. Importantly, consistent with previous reports in this population, penile lengths were
below themean for age at baseline, and treatment helped to normalize this outcome, whereas
testicular volumes remained unchanged [3, 34]. Although changes in hormone concentrations
were not assessed as part of this study because of the ethical and logistical challenges of serial
blood draws in infants, there were no serious adverse events attributed to testosterone
treatment, and side effects wereminor and self-limited. Taken together, these results suggest
that this dosing regimen was both effective and safe in this population. Although this study is
too small and short-term to conclude that this dosing of testosterone should be used in clinical
care, these results do provide the basis for a larger and longer confirmatory study of tes-
tosterone supplementation during mini-puberty for boys with XXY and other causes of
neonatal and infantile hypogonadism.

Strengths of this study include the randomized, prospective design and rigorous as-
sessment of body composition in infants. The sample size of this initial study is small, and
therefore we could not adjust for factors known to contribute to differences in adiposity in
infants, such as maternal weight gain, gestational age, and breastfeeding status; however,
the randomized groups were well matched for these factors at baseline. We also were not
powered to adjust for multiple comparisons in our analyses, and our findings should be
considered exploratory. We have incorporated the results and experience of this study to
develop a larger, more definitive randomized placebo-controlled trial of testosterone for
infants with XXY (NCT03325647) that will allow confirmation of these findings in a larger
sample size, assess additional outcomes including neurodevelopment, and determine
whether immediate benefits to body composition are sustained beyond the initial
treatment period.

In conclusion, a short course of testosterone treatment, 25 mg every 4 weeks for 3 doses,
resulted in lower FM, higher FFM, greater growth velocity and penile length, and minimal
side effects in infants with XXY. Testosterone treatment in infancy holds promise for boys
with XXY and other forms of neonatal hypogonadism, and further investigation is needed to
confirm these findings and assess additional clinically meaningful outcomes over time.
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