
Research Article
Gaussian Perturbation Specular Reflection Learning and
Golden-Sine-Mechanism-Based Elephant Herding
Optimization for Global Optimization Problems

Yuxian Duan ,1,2 Changyun Liu ,1 Song Li ,1 Xiangke Guo ,1 and Chunlin Yang 2,3

1Air and Missile Defense College, Air Force Engineering University, Xi’an 710051, China
2Graduate College, Air Force Engineering University, Xi’an 710051, China
3Air Traffic Control and Navigation College, Air Force Engineering University, Xi’an 710051, China

Correspondence should be addressed to Song Li; songli1126@163.com

Received 31 March 2021; Revised 16 June 2021; Accepted 2 July 2021; Published 12 July 2021

Academic Editor: Radu-Emil Precup

Copyright © 2021 Yuxian Duan et al. +is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Elephant herding optimization (EHO) has received widespread attention due to its few control parameters and simple operation
but still suffers from slow convergence and low solution accuracy. In this paper, an improved algorithm to solve the above
shortcomings, called Gaussian perturbation specular reflection learning and golden-sine-mechanism-based EHO (SRGS-EHO), is
proposed. First, specular reflection learning is introduced into the algorithm to enhance the diversity and ergodicity of the initial
population and improve the convergence speed. Meanwhile, Gaussian perturbation is used to further increase the diversity of the
initial population. Second, the golden sine mechanism is introduced to improve the way of updating the position of the patriarch
in each clan, which can make the best-positioned individual in each generation move toward the global optimum and enhance the
global exploration and local exploitation ability of the algorithm. To evaluate the effectiveness of the proposed algorithm, tests are
performed on 23 benchmark functions. In addition,Wilcoxon rank-sum tests and Friedman tests with 5% are invoked to compare
it with other eight metaheuristic algorithms. In addition, sensitivity analysis to parameters and experiments of the different
modifications are set up. To further validate the effectiveness of the enhanced algorithm, SRGS-EHO is also applied to solve two
classic engineering problems with a constrained search space (pressure-vessel design problem and tension-/compression-string
design problem). +e results show that the algorithm can be applied to solve the problems encountered in real production.

1. Introduction

Many challenging problems in applied mathematics and
practical engineering can be considered as the processes of
optimization [1]. Optimization is the process of selecting or
determining the best results from a set of limited resources
[2]. In general, there exist several explicit decision variables,
objective functions, and constraints in optimization prob-
lems. In the real world, however, optimization problems
vary widely, from single to multiobjective, from continuous
to discrete, and from constrained to unconstrained. Opti-
mization algorithms are used to obtain the values of decision
variables and optimize the objective function under a certain
range of constraints and search domains. If the search
domain is compared to a forest, the optimization algorithm

needs to find the potential area where the prey can be found.
In this way, the optimization problem can be solved easily
rather than laboriously.

Optimization algorithms are divided into two categories,
namely, exact algorithms and heuristic algorithms. Tradi-
tional exact algorithms (e.g., branch-and-bound algorithms
and dynamic programming), although capable of giving
global optima infinite time, must rely on gradient infor-
mation, and the runtime of the algorithm grows propor-
tionally to the number of variables [3]. +erefore, it is
difficult to achieve good results in the face of many types of
nondifferentiable, noncontinuous, and complex high-di-
mensional problems in the real world [4]. As research has
progressed, the emergence of heuristic algorithms (local
search algorithm, tabu search, simulated annealing

Hindawi
Computational Intelligence and Neuroscience
Volume 2021, Article ID 9922192, 25 pages
https://doi.org/10.1155/2021/9922192

mailto:songli1126@163.com
https://orcid.org/0000-0002-4780-217X
https://orcid.org/0000-0002-9872-7982
https://orcid.org/0000-0002-5668-4689
https://orcid.org/0000-0001-6345-0760
https://orcid.org/0000-0002-6548-3416
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9922192

algorithm, etc.) has provided ideas for solving complex
problems. Owing to the introduction of the greedy strategy
and fixed search steps, the number of iterations of the al-
gorithm is reduced [5]. For the NP-hard problem, an ap-
proximate and accurate solution can be given. However, the
drawback is that such algorithms are greedy and often fall
into local optima when solving complex problems, thus
narrowing the scope of its application [6]. +e metaheuristic
algorithm that emerged later is a higher-level heuristic
strategy, with a problem-independent algorithmic frame-
work, and provides a set of guidelines and strategies for
developing heuristic algorithms. In addition, it has fewer
control parameters, greater randomness, more flexibility,
and simplicity, can effectively handle discrete variables, and
is computationally less expensive [7]. Compared with exact
methods and heuristic algorithms, metaheuristic algorithms
are more applicable in solving complex optimization
problems. Due to its unique advantages, metaheuristics of
various versions such as continuous and binary have been
developed to be suitable for solving continuous and discrete
optimization problems. Under this kind of tidal current, in
recent years, metaheuristic algorithms have become more
popular among researchers and are widely used in various
fields.

Metaheuristic algorithms can be broadly classified into
three categories, namely, evolutionary algorithms, physics-
based algorithms, and swarm intelligence algorithms. Evo-
lutionary algorithms were first proposed in the early 1970s
and were mainly generated by simulating the concept of
evolution in nature. Inspired by Darwinian biological evo-
lution, Goldberg and Holland [8] proposed the first evo-
lutionary algorithm, the genetic algorithm (GA), in 1988,
which provides a stochastic and efficient method to perform
a global search among a large number of candidate solutions.
In addition, similar algorithms also include the differential
evolutionary algorithm (DE) [9], biogeography-based al-
gorithm (BBO) [10], and evolution strategy (ES) [11].
Physics-based algorithms are modeled using physical con-
cepts and laws to update the agents in the search space,
mainly including analytical modeling based on the laws of
the universe, physical/chemical rules, scientific phenomena,
and other ways [12]. For example, to overcome the defects
that traditional GA algorithms tend to converge prematurely
and have long running time, Hsiao et al. [13] proposed the
space gravitational algorithm (SGA) based on the inspiration
of Einstein’s theory of relativity and the laws of motion of
asteroids in the universe. +en, Rashedi et al. [14] proposed
the gravitational search algorithm (GSA) by analyzing the
interaction between gravity in the universe, which received
wide attention. It has been slightly modified in the literature
[15] to be adaptable to industrial applications. Inspired by
the idea of GSA, Flores et al. [16] proposed the gravitational
interactions optimization (GIO) algorithm, which mainly
modified the nondecreasing constant, and the global search
capability and local search optimization are stronger than
those of the GSA. In 2019, Faramarzi et al. [17] proposed an
equilibrium optimizer (EO) by simulating the mass balance
model of physics to achieve the final equilibrium state
(optimal result) by continuously updating the search agents.

Also common are multiverse optimization (MVO) [18],
electromagnetic field optimization (EFO) [19], the artificial
electric field algorithm for global optimization (AEFA) [20],
and lightning search algorithm (LSA) [21]. +e swarm in-
telligence algorithms focus on artificially reproducing the
social behavior and thinking concepts of various groups of
organisms within nature so that the intelligence of the
swarm surpasses the sum of individual intelligence. In such
algorithms, multiple search agents perform the search
process together, sharing location information between
them, and using different operators that depend on the
metaphor of each algorithm to shift the search agents to new
locations [22]. On that basis, the probability of finding the
optimal solution can be increased, so that the best solution
can be found with low computational complexity. For ex-
ample, Shi et al. [23, 24] proposed particle swarm optimi-
zation (PSO) based on the behavior of biological groups of
fish, insect swarms, and bird flocks. By simulating the local
interactions between individuals and the environment, a
globally optimal solution can be achieved. Notably, Liu et al.
[25] extended PSO by introducing chaotic sequences. +e
exploration and exploitation capabilities of the algorithm
were effectively balanced by introducing adaptive inertia
weights. A novel algorithm, called the classic self-assembly
algorithm (CSA), was proposed by Zapata et al. [26]. Using
PSO as a navigation mechanism, the search agents were
guided to continuously move toward the constructive re-
gion. Based on the collective foraging behavior of honeybees,
Karaboga [27] proposed artificial bee colony optimization
(ABC) in 2005, which is simple and practical and is now one
of the most cited next-generation heuristics [28]. However,
in the operation of the algorithm, there may be a stagnant
state, which tends to make the population fall into a local
optimum [29]. In addition, to solve the multiobjective
problem under complex nonlinear constraints, Yang and
Deb [30] replicated the reproductive behavior of cuckoo and
proposed cuckoo search (CS). Owing to the introduction of
Levy flights and Levy walks [31], the convergence perfor-
mance of the algorithm is improved by capturing the be-
havior of instantaneously moving group members instead of
the simple isotropic random wandering approach. Com-
pared with algorithms such as PSO, the CS algorithm has
fewer operating parameters, can satisfy the global conver-
gence requirement, and has been widely used [32]. In the
literature [33], a CS variant, called island-based CS with
polynomial mutation (iCSPM), was proposed from the
perspective of improving population diversity. +e strategy
of the island model and Levy flight strategy were introduced
to enhance the search effectiveness of the algorithm. Fur-
thermore, Yang and Gandomi [34] proposed the bat algo-
rithm (BA) for the predatory behavior of bats. It aims to
solve single-objective and multiobjective optimization
problems in continuous domain space by simulating the
echo-location approach. +e slime mould algorithm (SMA)
was proposed by Li et al. [35] in 2020, which was a very
competitive algorithm. Precup et al. [36] provided a more
understandable version of SMA and introduced it for fuzzy
controller tuning, extending the application of SMA.
Moreover, researchers have proposed bacterial foraging

2 Computational Intelligence and Neuroscience

optimization (BFO) (Passino) [37], krill herd (KH) (Gan-
domi and Alavi) [38], the artificial plant optimization al-
gorithm (APO) (Cui and Cai) [39], grey wolf optimizer
(GWO) (Mirjalili et al.) [40], crisscross optimization algo-
rithm (CSO) (Meng et al.) [41], whale optimization algo-
rithm (WOA) (Mirjalili and Lewis) [42], crow search
algorithm (CSA) (Askarzadeh) [43], salp swarm algorithm
(SSA) (Mirjalili et al.) [44], Harris hawks optimization
(HHO) (Heidari et al.) [45], sailfish optimizer (SFO)
(Shadravan et al.) [46], manta ray foraging optimization
algorithm (MRFO) (Zhao et al.) [47], and bald eagle search
(BES) (Alsattar et al.) [48].

In 2016,Wang et al. [49] developed a novel metaheuristic
algorithm named elephant herding optimization (EHO) for
solving global unconstrained optimization problems by
studying the herding behavior of elephants in nature.
According to the living habits of elephants, the activity
trajectory of each baby elephant is influenced by its maternal
lineage. +erefore, in EHO, the clan updating operator is
used to update the distance of individual elephants in each
clan relative to the position of the maternal elephant. Since
in each generation male elephants must move away from the
clan activity, the separating operator is introduced to per-
form the separation operation. It is experimentally dem-
onstrated [50] that, for most benchmark problems, the EHO
algorithm can achieve better results compared to DE, GA,
and BBO algorithms. It has thus aroused plenty of research
interest owing to its fewer control parameters, easy imple-
mentation, and better global optimization capability for
multipeaked problems [51]. Scholars and engineers have
promoted EHO in various areas of practical engineering,
including wireless sensor networks [52], bioinformatics [53],
emotion recognition [54], character recognition [55], and
cybersecurity [56].

From the perspective of EHO, although it is a relatively
effective optimization tool, there are still some shortcom-
ings, such as the lack of mutation mechanisms, slow con-
vergence, and the tendency to fall into local optimality,
which make the algorithm limited in practical applications.
In recent years, researchers have achieved numerous results
to overcome the deficiencies of EHO, and the research can be
divided into three aspects. +e first is to mix EHOwith other
algorithms or strategies to improve the performance of the
algorithm. For example, Javaid et al. [57] combined EHO
with the GA to develop a novel algorithm, GEHO, for smart
grid scheduling, which reduces the maximum cost. Wang
et al. [50] mixed EHO with three different approaches,
namely, cultural-based EHO, alpha-tuning EHO, and biased
initialization EHO. +e three approaches were tested on
benchmark functions from CEC 2016 and carried out on
engineering problems such as gear trains, continuous stir-
red-tank reactors, and three-bar truss design. Chakraborty
et al. [58] proposed the IEHO algorithm, which combines
EHO with opposition-based learning (OBL) and dynamic
Cauchy mutation (DCM) to accelerate the convergence and
improve the performance of EHO. Second, a noise inter-
ference strategy is applied [59]. To increase the population
diversity of the algorithm, noise interference has become a
streamlining technique. Two of the most representative are

the Levy flight (LF) and chaos strategy. Xu et al. [60] pro-
posed a novel algorithm, LFEHO, that combines Levy flight
with the EHO algorithm to overcome the defects of poor
convergence performance and ease of falling into local
optima in the original EHO. Tuba et al. [61] introduced two
different chaotic maps into the original EHO for solving the
unconstrained optimization problem and tested them on the
CEC 2015 benchmark function. +ird, to improve the in-
ternal structure of EHO, this part of the research focused on
proposing adaptive operators and stagnation prevention
mechanisms. Li et al. [62] introduced a global speed strategy
based on EHO to assign travel speed to each elephant and
achieved good results on CEC 2014. Ismaeel et al. [63]
addressed the problem of unreasonable convergence to the
origin in EHO by improving the cladistic update operator
and separation operator, achieving the balance between
exploration and exploitation. Li et al. [64] took an original
approach by extracting the previous state information of the
population to guide the subsequent search process. Six
variants were generated by updating the weights using
random numbers and the fitness of the previous agent. +e
experiment results showed that the quality of the obtained
solutions was higher than that of the original algorithm.

Most of the metaheuristics should be enhanced because
they do not apply to complex problems, such as intricate
scheduling and planning problems, big data analysis,
complicated machine learning structures, and arduous
modeling and classification problems. Scholars such as
Dokeroglu [28] pointed out that a more fruitful research
direction for metaheuristics is to optimize the internal
structure of metaheuristics rather than to propose new al-
gorithms similar to the existing ones. +ese are one of the
motivations why this paper attempts to strengthen a new
metaheuristic algorithm instead of developing a new one.
Moreover, the efficiency of a metaheuristic algorithm de-
pends on the balance between the local exploitation ability
and the global exploration ability during the iterations [65].
In this regard, exploration is to explore new search spaces
that require search agents to be more diverse and traversable
under the operation of operators. Exploitation is charac-
terized by the algorithm’s ability to extract solutions from
explored regions that are more promising in approximating
the global optimal solution. In that stage, search agents
played a role in converging quickly toward the optimal
solution. To promote the performance of the metaheuristic
algorithm, a desirable balance must be struck between these
two conflicting properties.

Like a coin having two sides, there are advantages and
disadvantages in every developed metaheuristic. +at is
exactly why each algorithm cannot be applied to all prob-
lems. According to the no free lunch (NFL) theorem [66], all
algorithms cannot be regarded as a universal optimal op-
timizer type. In other words, the success of an algorithm
does not apply to all optimization problems while solving a
specific set of problems. In addition, the NFL theorem
encourages innovations to improve existing optimization
algorithms to enhance their performance in use. Given the
constant emergence of new optimization problems and the
exponential growth in the size and complexity of real-world

Computational Intelligence and Neuroscience 3

and engineering design problems, the development and
improvement of new optimizers are inevitable. Khanduja
and Bhushan [67] provided evidence in their research that
hybrid metaheuristic algorithms can obtain better solutions
than classical metaheuristic algorithms, which inspired us a
lot. From these perspectives, the study of hybrid meta-
heuristic algorithms has a strong practical significance and
value. +erefore, in this paper, the plan is to mix the EHO
algorithm with other algorithmic mechanisms to exploit the
advantages of each for collaborative search and effectively
improve the optimization performance.

Aiming to effectively achieve the balance between the
exploration and exploitation capabilities, a Gaussian per-
turbation specular reflection learning and golden sine
mechanism-based elephant herding optimization for global
optimization problems, called SRGS-EHO, is proposed in
the present paper, the main contributions of which are
summarized as follows:

(i) First, the poor diversity and traversal of randomly
generated initial populations affect the convergence
performance of an algorithm. In this paper, the
specular reflection learning strategy is used to
generate high-quality initial populations. Moreover,
Gaussian perturbation is added for the mutation to
further enhance the diversity of the initial
population.

(ii) Furthermore, to improve the global optimization
capabilities, the golden sine mechanism is intro-
duced to update the position of the clan leader in the
algorithm to prevent the population from falling
into the local optimum. At the same time, it is made
to move toward the global optimum and obtain a
balance between exploitation and exploration.

(iii) Additionally, to fully verify the effectiveness of
SRGS-EHO, 23 common benchmark functions are
selected as tests; the Wilcoxon rank-sum test and
Friedman test are also invoked. Compared with
eight other recognized metaheuristics, the perfor-
mance of SRGS-EHO in terms of accuracy, con-
vergence, and statistics is completely evaluated. In
addition, sensitivity analysis to parameters and
experiments of the different modifications are
conducted. +e aims are to analyze the impact of
different parameters and modules in the algorithm
on the performance of the algorithm.

(iv) Finally, SRGS-EHO is applied to solve two practical
engineering design problems (the pressure-vessel
design and tension/compression string design
problems), and the results are compared with those
achieved using other algorithms. Experiments are
conducted to test the feasibility and applicability of
the proposed algorithm for solving real-world
problems.

+e rest of this paper is organized as follows: in Section 2,
the principle of EHO is briefly introduced. A detailed in-
troduction to the proposed Gaussian perturbation SRGS-
EHO method is given in Section 3. Experiments conducted

are described in Section 4, which introduces the simulation
experimental procedure and the analysis. In Section 5, the
experiments and analysis of SRGS-EHO for solving practical
engineering problems are represented. Finally, conclusions
and future work are presented in Section 6.

2. Elephant Herding Optimization (EHO)

Elephants are herd-dwelling creatures, usually consisting of
several clans. In each clan, the herd is headed by female
elephants. Male elephants, however, undertake the tasks of
defending the clan and usually operate outside the clan. In
EHO, each clan contains an equal number of agents.
According to the algorithm, the clan leader (patriarch) is
identified as the individual with the best position.
Depending on the relationship with the female elephant clan
leader, the position of other agents is modified by the
updating operator. Meanwhile, in each generation, there are
a fixed number of male elephants set to leave the clan, and
these elephants are modeled by using the separating oper-
ator. In general, the EHO algorithm is divided into the
initialization operation, clan updating operation, and sep-
arating operation.

2.1. Initialization Operation. Assuming that there are N

elephants in the D-dimensional search space, the kth agent in
the population can be represented as Xk � (x1

k, x2
k, . . . , xD

k),
1≤ k≤N. +erefore, the definition of the initialized pop-
ulation is shown in the following equation:

X
m
k (0) � l

m
+ rand∗ u

m
− l

m
(, (1)

where m stands for dimensions, 1≤m≤D, and um and lm are
the upper and lower bounds of the mth dimension. +en, the
initial population can be expressed as
X(0) � X1(0), X2(0), . . . , Xk(0) . Next, the entire initial
population must be divided into the preset clans.

2.2. Clan Updating Operator. At this stage, the position of
each individual elephant will be updated according to its
position relationship with the patriarch, which is shown as
follows:

xnew,ci,j � xci,j + α × xbest,ci − xci,j × r, (2)

where xnew,ci,j indicates the updated position of the agent,
xci,j represents the current location of the agent, and xbest,ci is
the position of the current best agent. +e scale factor
α ∈ [0, 1], r ∈ [0, 1] is a random number. +rough this
operation, the diversity of the population can be enhanced.
When xci,j � xbest,ci, the patriarch of the clan cannot be
updated by equation (2). To avoid this situation, it is changed
to the following equation:

xnew,ci,j � β × xcenter,ci. (3)

+e scale factor β ∈ [0, 1] determines the extent to which
xcenter,ci acts on xnew,ci,j. xcenter,ci is the centre of clan ci, which
is calculated by the positions of all agents. For the position of
the dth dimension, the expression of xcenter,ci can be given as

4 Computational Intelligence and Neuroscience

xcenter,ci,d �
1

nci

×

nci

j�1
xci,j,d. (4)

Among them, d is the dimensionality of the agent, D

represents the total dimensionality, 1≤ d≤D, nci represents
the number of agents in clan ci, and xci,j,d represents the dth
dimension of the jth agent in clan ci.

2.3. SeparatingOperator. In EHO, a certain number of adult
male elephants will leave the clan life. +e separation op-
erator acts on the elephant with the worst fitness in each
clan, which is expressed as follows:

xworst,ci � xmin + xmax − xmin + 1(× rand, (5)

where xmax and xmin are the upper and lower bounds of
agents in the population, respectively, xworst,ci denotes the
worst agent in clan ci, and rand ∈ [0, 1] represents a random
distribution from 0 to 1.

3. Proposed Algorithm

3.1. Motivations. EHO was proposed in 2016 with excellent
global optimization capabilities, fewer control parameters,
and ease of implementation, and its performance was ver-
ified in the original paper. Nevertheless, it can be observed
that the original EHO suffers from the following deficiencies.
First, the initialization of the original algorithm is completed
randomly, whichmakes it difficult to guarantee diversity and
traversal. +erefore, it may make the algorithm unable to
converge to the best solution while increasing the runtime.
Second, in the process of iteration, the position of the pa-
triarch is determined by the total agents in the clan, which
may break the balance between global exploration and local
exploitation. Meanwhile, it is easy to fall into the local
optimum while dealing with complex problems. Once the
population has stalled, the algorithm will converge pre-
maturely. +e clan leader, being the best-positioned agent in
the clan, should have stronger exploration ability. +e above
issues make EHO perform poorly when dealing with more
complex problems.

+e efficiency of metaheuristic algorithms depends
mainly on striking the right balance between the global
exploration and local exploitation phases. Among them,
exploration is the process of exploring new search spaces,
requiring search agents to be more diverse and traversable
under the operation of operators. Exploitation is charac-
terized by the algorithm’s ability to extract solutions from
the explored region that are more promising in approxi-
mating the global optimal solution. +erefore, search agents
are desired to converge quickly toward the optimal solution.
To improve the performance of the metaheuristic algorithm,
a desirable balance must be struck between these two
conflicting properties. If the balance is broken, the algorithm
will suffer from falling into a local optimum while failing to
obtain a globally optimal solution.

To deal with these problems, improvements are made in
two aspects in this paper. First, specular reflection learning is
introduced to update the initialization scheme.

Subsequently, Gaussian perturbation is introduced to fur-
ther enhance the population diversity. Second, the golden
sine mechanism is presented to modify the position of the
patriarch in each generation of the clan, making it converge
to the global optimum continuously, improving the con-
vergence performance by balancing the local exploitation
ability and global exploration ability. With these modifi-
cations, the aim is, on the one hand, to increase the pop-
ulation diversity and promote convergence efficiency and,
on the other hand, to strengthen exploration and exploi-
tation capabilities and establish a balance between the two
phases.

3.2. Gaussian Perturbation-Based Specular Reflection Learn-
ing for Initializing Populations. In metaheuristic algorithms,
the diversity of initial populations can significantly affect the
convergence speed and solution accuracy of intelligent al-
gorithms [68]. However, in EHO, the lack of a priori in-
formation about the search space tends to generate the initial
population using random initialization, which imposes some
limitations on the update strategy of the search agents. +e
reason for this is that, supposing the optimal solution ap-
pears at the opposite position of the randomly generated
individuals, the direction of the population advance will
deviate from the optimal solution. It has been demonstrated
that solutions generated by the specular reflection learning
(SRL) strategy are better than those generated using only
random approaches. +erefore, in this paper, specular re-
flection learning for population initialization is introduced
and Gaussian perturbation is added to compute the opposite
values of the initial population in the search space, and a
mutation operation is performed on the resulting agents.
+en, the opposite individual fitness values are compared
with those of the original individuals to filter out the better
ones for retention.

Opposition-based learning (OBL) [69] is widely used to
improve metaheuristic algorithms due to its excellent per-
formance. In OBL, a candidate solution and its opposite
position are simultaneously examined to speed up the
convergence. +e opposite point x, which is in the range
[lb, ub], is defined as follows:

x � lb + ub − x. (6)

Inspired by the phenomenon of specular reflection,
Zhang [70] proposed specular reflection learning (SRL). In
physics, there is an obvious correspondence between inci-
dent light and reflected light, as shown in Figure 1(a). Based
on this phenomenon, the current solution and the reverse
solution can be modeled in the way shown in Figure 1(b).
Under this circumstance, it can be deduced that there is
some correspondence between a solution and one of its
neighbors of the opposite solution. Supposing both solutions
are examined simultaneously, a better solution can be ob-
tained. It has been demonstrated that the solutions gener-
ated by the SRL strategy are better than OBL [71]. +erefore,
in this paper, specular reflection learning is introduced for
population initialization. Besides, Gaussian perturbation is
added to perform various operations on the generated

Computational Intelligence and Neuroscience 5

agents. According to the results of the fitness values, the
better N individuals are retained to form the initial
population.

Suppose a point X � (a, 0) exists on the horizontal
plane, and the opposite point is X′ � (b, 0),
∀X, X′∈ [Xl, Xu]. When light is incident, the angles of
incidence and reflection are α and β, respectively. O is
the midpoint of [Xl, Xu], O � (x0, 0). According to the
law of reflection, the following correspondence can be
obtained:

α � β⟹ tan(α) �
x0 − a

A0
�

b − x0

B0
� tan(β). (7)

When B0 � μA0, equation (7) can be represented as

b � μ x0 − a(+ x0

� (μ + 1)x0 − μa � (0.5μ + 0.5)∗ Xl + Xu(− μa,
(8)

where μ is the preset scale factor, and when μ takes on a
different value, b is represented as

b �

b1, μ ∈ (0, 1),

2x0 − a, μ � 1,

b2, μ ∈ (1, +∞).

⎧⎪⎪⎨

⎪⎪⎩
(9)

It can be observed that, when μ changes, all values of
[Xl, Xu] can be traversed by b. +erefore, it can be used to
initialize the population and enhance the diversity and
traversal of the initial population.

Let X � (x1, x2, . . . , xn) be a point in n-dimensional
space, where xi ∈ [xmin, xmax], i ∈ 1, 2, . . . , n{ }. According to
the basic specular reflection model, the opposite point in
equation (6) can be defined by its components:

xpi � (0.5μ + 0.5)∗ xmin + xmax(− μxi. (10)

It is worth noting that the scale factor μ in equation (10)
is set to a random number within [0,1] for the convenience
of the operation. After that, xi and

pi
x must bemerged to form

a search agent of size 2N, where the population is xi, xpi .
Next, the fitness of the population must be calculated, and
the N agents with the best fitness value are selected as the
initial population.

SRL can be seen as a special case of opposition-based
learning, in both the current solution and the reverse so-
lution, in order to select a better solution that can provide
more opportunities for discovering the global optimal so-
lution. It is well known that the diversity of populations has a
significant impact on metaheuristic algorithms [72]. +e
reason is that the increase in diversity can make it more
practical for the population to explore a larger search area
and therefore promote a move away from the local opti-
mum. From this perspective, there are two aspects that
constrain the increase of initial population diversity in SRL.
First, the method does not adjust well in small spaces.
Second, the SRL method is relatively fixed. +erefore,
Gaussian perturbation is introduced in the present work to
perform mutation operations after generating the reverse
solution. +e equation is as follows:

xmi � xpi ∗ (1 + k∗ randn(1)), (11)

where pi
x is the current inverse solution, mi

x is the newly
generated inverse solution, k is the weight parameter (set to 1
in this paper), and randn(1) is the matrix that generates a
matrix of 1 × 1 that conforms to a standard Gaussian dis-
tribution withmean 0 and variance 1.+en, the elite solution
is selected as the initialized population in the following way:

xi �
xpi, f xpi <f xmi(,

xmi, else,

⎧⎨

⎩ (12)

where xi denotes the final generated ith initialized agent,
i ∈ [1, N], and the final generated initialized population is
X0 � (x1, x2, . . . , xN).

3.3. Golden SineMechanism. +e golden sine algorithm [73]
is a novel metaheuristic algorithm proposed by Tanyildizi in
2017, the design of which was inspired by the sine function in
mathematics, and its agents search the solution space to
approximate the optimal solution according to the golden
ratio. +e sine curve is defined with a range [− 1, 1], a period
2π, and has a special correspondence with the unit circle,
which is shown in Figure 2. When the value of the inde-
pendent variable x1 of the sine function changes, the cor-
responding dependent variable y1 also changes. In other
words, traversing all the values of the sine function is
equivalent to searching all the points on the unit circle. By
introducing the golden ratio, the search space is continu-
ously reduced and the search is conducted in the region with
more hope of producing the optimal value, so as to improve
the convergence efficiency. +e solution process is shown in
Figure 3.

When the clan update operation is completed, the in-
dividual agent with the best fitness is screened and its po-
sition updated using the golden sine mechanism in the
following equation:

xnew,ci �xnew,ci ∗ sin r1(

− r2 ∗ sin r1(∗ m1 ∗ xbest,ci − m2 ∗xnew,ci

,

(13)

where xbest,ci represents the global best individual, r1 is the
random number between [0, 2π], r2 is the random number
between [0, π], and m1 and m2 are the coefficient factors
obtained by the following equations:

m1 � a∗ (1 − τ) + b∗ τ, (14)

m2 � a∗ τ + b∗ (1 − τ), (15)

where a and b are the initial values of the golden ratio, which
can be adjusted according to the actual problem. τ represents
the golden ratio, τ � (

�
5

√
− 1)/2. Next, the obtained agents

must be compared with the global optimal solution, and the
coefficient factors m1 and m2 must be updated according to
the comparison results.

When f(xnew,ci)<f(xbest,ci), the update method is as
follows:

6 Computational Intelligence and Neuroscience

b � m2, m2 � m1, m1 � a∗ τ + b∗ (1 − τ) (16)

When f(xnew,ci)>f(xbest,ci), the equation is expressed as

a � m1, m1 � m2, m2 � a∗ (1 − τ) + b∗ τ. (17)

Supposing m1 � m2, the method is denoted by

a � rand(0, π),

b � rand(0, − π),

m1 � a∗ τ + b∗ (1 − τ), m2 � a∗ (1 − τ) + b∗ τ.

(18)

+e strategy of determining the clan leader’s position by
the average position is replaced by a renewed position
update strategy, which, in turn, performs exploration with a
strong directionality. As a result, the agents with the best

fitness value can be made to continuously approach the
optimal solution, obtaining a better solution in each itera-
tion and reaching a balance between global exploration and
local exploitation.

3.4.:eWorkflow of SRGS-EHO. +e pseudocode of SRGS-
EHO is given in Algorithm 1. +e algorithm starts from
initialization based on SRL and further enhances the di-
versity of the population through Gaussian perturbation.
Next, the golden sine mechanism is introduced to optimize
the position of the patriarch in each clan. +e position of
agents is evaluated by comparing fitness, and then contin-
uous iteration ensues until the maximum number of iter-
ations is reached. +e flowchart of SRGS-EHO is shown in
Figure 4.

1 6–1–2–4–6 x0

1

–1

y

–2

2

y = sin(x)

2 4π–π

Figure 3: Schematic of solution of golden sine mechanism.

O Mirror surface

Incident light Reflected light

A B

α β

(a)

Mirror surface

Incident light Reflected light

OX

Xu

B0A0

X′

Xl

A B

α β

(b)

Figure 1: Diagram of specular reflection learning. (a) Specular reflection phenomenon. (b) Specular reflection model.

x

y

0

y1

x1 2π 3π 4π

y1 = sin(x1)

θ
π

Figure 2: Correspondence between sine function and unit circle.

Computational Intelligence and Neuroscience 7

4. Experimental Results and Discussion

To verify the effectiveness of SRGS-EHO for solving global
optimization problems, experiments are conducted on 23
benchmark functions. Simultaneously, eight other different
metaheuristic algorithms are selected for comparison, namely,
the aforementioned EHO [49],WOA [42], EO [17], HHO [45],
CSO [41], GWO [40], SFO [46], and IEHO [58]. To make the
experiment fair, each algorithm is run 30 times independently
on the benchmark function to ensure its stability. To better
reflect the differences in performance between algorithms, the
nonparametric Friedman test [74] andWilcoxon rank-sum test
[75] are invoked for statistical testing. Furthermore, different
combinations of parameters and modifications are set up to
analyze the impact of each parameter and module in SRGS-
EHO on the performance of the algorithm. +e experimental
environment is an Intel® Co®TM) i5-9300HCPU@2.40GHz,
with 16GB RAM running the Windows 10 operating system
and the MATLAB R2019b simulation experiment platform
(MathWorks, USA). Specific details about the experiments are
discussed in the following sections.

4.1. Benchmark Functions. Twenty-three commonly used
benchmark functions are selected for testing, and their basic
information is shown in Table 1. Among them, F1–F7 are

single-peaked functions, which have only one global optimal
solution in the defined upper and lower bounds and are
usually used to detect the convergence rate and exploitation
capability of the algorithm. F8–F23 are multipeaked func-
tions, among which F8–F13 are high-dimensional multi-
peaked functions and F14–F23 are fixed-dimensional
multipeaked functions, which have multiple local extrema in
the defined domain of each self-function and can detect the
ability of global exploration and avoid premature conver-
gence of the algorithm.

4.2. Experimental Parameter Settings. To make the experi-
ments more credible, the values reported in the original
papers or widely used in different studies are selected as
parameters for the respective algorithms, which are shown in
Table 2.+e parameter settings are kept consistent except for
those listed in the table.

4.3. Scalability Analysis. Since dimensionality is also a sig-
nificant factor affecting the accuracy of optimization,
F1–F13 are extended from 30 to 100 dimensions to verify the
solving ability of the algorithms in different dimensions.
When completed, the results of each algorithm must be
evaluated. To make the experiments more convincing, the

Input: initialize the maximum number of iterations tmax, the initial values of the golden ratio a and b, and the size of population N.
Begin
Initialize population xi and xpi by equations (10) to (11)
Calculate the fitness of every initialized agent and select the N optimal solution based on equation (12)
Divide the initial population into nc clans
Repeat
While t< tmax do

For ci � 1: N do
For j � 1: nj do

Generate xnew,ci,j and update xci,j based on equation (2)
If xci,j � xbest,ci then
Generate xnew,ci,j and update xci,j based on equation (13)

End if
End for

End for
If f(xnew,ci)<f(xbest,ci) then
Update m1 and m2 based on equation (16)

Else
Update m1 and m2 based on equation (17)

End if
If m1 � m2 then
Update m1 and m2 based on equation (18)

End if
For ci � 1: N do
Replace the individual with the worst fitness xworst,ci by equation (5)

End for
Calculate and update the fitness according to each position.

t � t + 1
End while

End
Output: "e best solution xbest.

ALGORITHM 1: SRGS-EHO.

8 Computational Intelligence and Neuroscience

evaluation indexes are chosen as the mean (Ave) and
standard deviation (Std). Among them, the mean value can
reflect the solution accuracy and quality of the algorithm,
and Std reflects the stability of the algorithm. When solving
the minimization problem, the smaller the mean value, the
better the algorithm performance. Similarly, the smaller the
standard deviation, the more stable the algorithm per-
formance. In addition, the maximum number of iterations
tmax for all algorithms is set to 500 and the overall size N is
set to 30.

Table 3 shows the experimental results when d � 30. As
can be seen from the data, SRGS-EHO obtains the best
solution on five of the seven single-peak functions (F1–F7).
It is noteworthy that SRGS-EHO achieves a more significant
advantage over the other algorithms on F1–F4.+is is due to
the introduction of the golden sine mechanism, which in-
creases the local search ability of the algorithm, thus en-
hancing the exploitation ability as a result. In the
performance of the multipeak functions (F8–F23), SRGS-
EHO achieves the best results on F8–F11, F17, and F21–F23
and the best mean value on F14. All of the results obtained by
SRGS-EHO are better than those obtained by the original
EHO.+is indicates that the algorithm has boosted its global
capability compared to the original EHO after introducing
SRL and updating the clan updating operator. In addition,
the performance of multimodal functions with fixed di-
mensions shows that the algorithm strongly achieves a
balance between exploitation and exploration.

Tables 4 and 5 show the results when the dimension was
increased to 50 and 100, respectively. +e data in the tables
indicate that the difficulty in gaining optimal solutions is
lifted as the size of the problem increases. It can be seen from
Table 4 that SRGS-EHO achieves the optimal solutions in
F1–F4 and F7–F11. When d � 100, SRGS-EHO still achieves
the best results in nine of the 13 benchmark functions.
Combining the results from the two tables, it can be noted
that the performance of SRGS-EHO does not degrade,
proving that SRGS-EHO has good adaptability for handling
high-dimensional problems. +is indicates that the intro-
duced Gaussian perturbation-based SRL can effectively
enhance the population diversity. Moreover, the clan po-
sitions are updated by the golden sine mechanism to con-
tinuously approach the global optimum, which effectively
balances early exploration and later exploitation.

4.4. Analysis of Convergence Curves. To further compare the
convergence performance of various algorithms in solving
optimization problems, the convergence curves of nine al-
gorithms are plotted and shown in Figure 5. Among them,
the dimensions of F1–F13 functions are set to 30. It is
observed that the convergence accuracy of SRGS-EHO is
more prominent on single-peaked functions (F1–F7), which
is a great improvement compared with other algorithms. In
the performance of multipeaked functions (F8–F23), SRGS-
EHO converges to the global optimum on F8–F11, F14, F17,

Initialize the population based on
eqs. (9) to (11)

Calculate and sort all agents
according to their fitness

Start

Divide the population into certain
clans

Y N

Y N

N

Y

N

Y

N

N

Calculate and sort the population
according to fitness

N

Output the best solution

End

YN

t = t + 1

Y

Initialize N, tmax, D, a, b

Save the first m elephants

m1 = m2xci,j = xbest,ci

Update m1 and m2
based on eq. (15)

Update m1 and m2
based on eq. (16)

xworst,ci > xmax

xworst,ci < xmin

Generate xnew,ci,j
based on eq. (12)

Generate xnew,ci,j and
update xci,jbased on eq. (2)

Replace the worst agent xworst,ci
based on eq. (5)

Update m1 and m2
based on eq. (17)

t < tmax

Calculate the fitness of xnew,ci,j

f (xnew,ci) < f (xbest,ci)

Figure 4: Flowchart of SRGS-EHO.

Computational Intelligence and Neuroscience 9

Ta
bl

e
1:

D
et
ai
ls
of

23
be
nc
hm

ar
k
fu
nc
tio

ns
.

N
o.

Fu
nc
tio

n
D
im

en
sio

n
Ra

ng
e

f
m
in

F1
f
1(

x
)

�

n i�
1

x
2 i
f
2(

x
)

�

n i�
1

|x
i|

+

n i�
1

|x
i|

30
[−
10
0,
10
0]

0
F2

f
2(

x
)

�

n f
m
in

|x
i|

+

n i�
1

|x
i|

30
[−
10
,1
0]

0
F3

f
3(

x
)

�

n i�
1

(

i j−
1

x
j
)2

30
[−
10
0,
10
0]

0
F4

f
4(

x
)

�
m
in i

|x
i|

,1
≤

i≤
n

30
[−
10
0,
10
0]

0
F5

f
5(

x
)

�

n
−
1

i�
1
10
0(

x
i+
1

−
x
2 i
)2

+
(

x
i
−
1)

2
30

[−
30
,3
0]

0
F6

f
6(

x
)

�

n i�
1

(
[x

i
+
0.
5]

)2
30

[−
10
0,
10
0]

0
F7

f
7(

x
)

�

n i�
1

ix
4 i

+
ra
nd

om
[0

,1
)

30
[−
1.
28
,1
.2
8]

0
F8

f
8(

x
)

�

n i�
1

−
x

i
sin

(
�

��
|x

i|

)
30

[−
50
0,
50
0]

−
41
8.
98
29

×
di
m

F9
f
9(

x
)

�

n i�
1[

x
2 i

−
10

co
s(
2π

x
i)

+
10

]
30

[−
5.
12
,5
.1
2]

0
F1

0
f
10

(
x

)
�

−
20

ex
p(

−
0.
2

�
�

�
�

�
�

��
1 n

n i�
1

x
2 i

)

−
ex
p(

(
1/

n
)

n i�
1
co
s(
2π

x
i)

)
+
20

+
e

30
[−
32
,3
2]

0

F1
1

f
11

(
x

)
�
1/
40
00

n i�
1

x
2 i

−

n i�
1
co
s(

x
i/

� i
√

)
+
1

30
[−
60
0,
60
0]

0

F1
2

f
12

(
x

)
�
π/

n

n
−
1

i�
1

(
y

i
−
1)

2 [1
+
10

sin
2 (
πy

i+
1)

]
+

(
y

n
−
1)

2

+

n i�
1u

(
x

i,
10

,1
00

,4
)

+
π/

n
10

sin
(
πy

1)

y
i

�
1

+
x

i
+

(
1/
4)

u
(

x
i,

a
,k

,m
)

�

k
(

x
i
−

a
)m

x
i
>

a

0
−

a
<

x
i
<

a

k
(

−
x

i
−

a
)m

x
i
<

−
a

⎧⎪ ⎨ ⎪ ⎩

30
[−
50
,5
0]

0

F1
3

f
13

(
x

)
�
0.
1

n i�
1(

x
i
−
1)

2 [1
+

sin
2 (
3π

x
i
+
1)

]
+

(
x

n
−
1)

2 [1
+

sin
2 (
2π

x
n
)]

+
0.
1s
in

2 (
3π

x
1)

+

n i�
1u

(
x

i,
5,
10
0,
4)

30
[−
50
,5
0]

0

F1
4

f
14

(
x

)
�

((
1/
50
0)

+

25 j�
11
/j

+

2 i�
1

(
x

i
−

a
ij

)6
)−

1
2

[−
65
,6
5]

1
F1

5
f
15

(
x

)
�

11 i�
1[

a
i
−

x
1(

b
2 i

+
b

ix
2)
/b

2 i
+

b
ix

3
+

x
4]

2
4

[−
5,
5]

0.
00
03
0

F1
6

f
16

(
x

)
�
4x

2 1
−
2.
1x

4 1
+
1/
3x

6 1
+

x
1x

2
−
4x

2 2
+
4x

4 2
2

[−
5,
5]

−
1.
03
16

F1
7

f
17

(
x

)
�

(
x
2

−
5.
1/
4π

2 x
2 1

+
5/
πx

1
−
6)

2
+
10

(
1

−
(
1/
8π

))
co
s

x
1

+
10

2
[−
5,
5]

0.
39
8

F1
8

f
18

(
x

)
�

[1
+

(
x
1

+
x
2

+
1)

2 (
19

−
14

x
1

+
3x

2 1
−
14

x
2

+
6x

1x
2

+
3x

2 2)
]×

[3
0

+
(
2x

1
−
3x

2)
2

×
(
18

−
32

x
1

+
12

x
2 1

+
48

x
2

−
36

x
1x

2
+
27

x
2 2)

]
2

[−
2,
2]

3

F1
9

f
19

(
x

)
�

−

4 i�
1

c i
ex
p[

−

3 j�
1

a
ij

(
x

j
−

p
ij

)2
]

3
[1
,3

]
−
3.
86

F2
0

f
20

(
x

)
�

−

4 i�
1

c i
ex
p[

−

6 j�
1

a
ij

(
x

j
−

p
ij

)2
]

6
[0
,1
]

−
3.
32

F2
1

f
21

(
x

)
�

−

5 i�
1

[(
X

−
a

i)
(

X
−

a
i)

T
+

c i
]−

1
4

[0
,1
0]

−
10
.1
53
2

F2
2

f
22

(
x

)
�

−

7 i�
1

[(
X

−
a

i)
(

X
−

a
i)

T
+

c i
]−

1
4

[0
,1
0]

−
10
.4
02
8

F2
3

f
23

(
x

)
�

−

10 i�
1[

(
X

−
a

i)
(

X
−

a
i)

T
+

c i
]−

1
4

[0
,1
0]

−
10
.5
36
3

10 Computational Intelligence and Neuroscience

and F21–F23 and can maintain a better convergence rate.
Compared with the original EHO, the convergence per-
formance of SRGS-EHO has been significantly improved.
+e modifications for the initialized population and the
strategy of introducing the golden sine mechanism are
proved to be effective. +e experimental results indicate that
the optimization ability and convergence performance of
SRGS-EHO are enhanced.

4.5. Statistical Tests. Garcia et al. [76] pointed out that,
when evaluating the performance of metaheuristic algo-
rithms, comparisons only based on mean and standard
deviation are not sufficient. Moreover, there exist inevi-
table chance factors that affect the experimental results
during the process of iteration [77]. +erefore, statistical
tests are necessary to reflect the superiority of the pro-
posed algorithm and the variability of other algorithms
[78]. In this paper, the Wilcoxon rank-sum test and
Friedman test are chosen to compare the performance
between algorithms. Besides, the maximum number of
iterations tmax of all algorithms is set to 500 and the overall
size of the population Nis set to 30. Other parameters are
set as in Section 4.2. As usual, f1(x) to f13(x) are ex-
tended from 30 to 100 dimensions.

In the Wilcoxon rank-sum test, the significance level p

is set to 0.05. When p< 0.05, the algorithm is proved to be
statistically superior. +e results of the experiments are
shown in Tables 6 and 7. +e notation “+/− / � ” indicates
that the proposed methods are superior to, equal to, or
worse than the current method, respectively. Since the
best algorithm on a benchmark function cannot be

compared with itself, the best algorithm on each bench-
mark function is marked as NaN, which means “not
applicable.”

+e results show that when d � 30, the proposed SRGS-
EHO outperforms EHO, WOA, EO, HHO, CSO, GWO,
SFO, and IEHO on 9, 11, 10, 8, 13, 10, and 11 problems out
of 13 benchmark functions, while it underperforms them on
4, 2, 2, 2, 0, 0, 3, and 2 problems. When the dimensionality is
expanded to 50 dimensions, the proposed SRGS-EHO
performs better on 8, 11, 10, 7, 13, 9, and 10 problems and
underperforms on 5, 2, 2, 3, 0, 0, 4, and 3 problems in
comparison with the other 8 algorithms. When the di-
mensionality is further expanded to 100 dimensions, SRGS-
EHO continues to perform more superior. It outperforms
EHO, WOA, EO, HHO, CSO, GWO, SFO, and IEHO on 10,
11, 11, 9, 13, 9, and 10 benchmark functions, respectively.
+e performance on 3, 0, 1, 1, 0, 0, 4, and 3 problems is
inferior. For the performance of the 10 fixed-dimensional
benchmark functions F14–F23, SRGS-EHO performs better
on 6, 10, 9, 9, 9, 7, 10, and 6 problems, respectively, while
inferior to other algorithms on 4, 0, 1, 1, 1, 1, 0, 0, and 4
problems. +e results show that the proposed SRGS-EHO is
superior in terms of solution accuracy. Undoubtedly, the
results are statistically significant.

To make the experiment more convincing, the Friedman
test is performed to screen the difference between the
proposed SRGS-EHO and other algorithms. As one of
the most well-known and widely used statistical tests, the
Friedman test is used to detect significant differences be-
tween the results of two or more algorithms on consecutive
data [79]. Specifically, it can be used for multiple compar-
isons between different algorithms by calculating the

Table 2: Parameter settings of different algorithms.

Algorithm Parameter Range

Elephant herding optimization (EHO)

α 0.5
β 0.1
N 5
nj 7

Whale optimization algorithm (WOA)
a Decreased from 2 to 0
a2 Decreased from 2 to 1
b 1

Equilibrium optimizer (EO)
a1 2
a2 1
GP 0.5

Harris hawk optimization (HHO) β 1.5
E0 [− 1,1]

Crisscross optimization algorithm (CSO) c1 [− 1,1]
c2 [− 1,1]

Grey wolf optimizer (GWO) a Decreased from 2 to 0
A 4

Sailed fish optimizer (SFO)
e 0.001

Initial population for the sailfish 9
Initial population for the sardine 21

Improved elephant herding optimization (IEHO)

α 0.5
β 0.1
N 5
nj 7

Computational Intelligence and Neuroscience 11

ranking Fc of the experimental results. +e equation is
represented as

Fc �
12N

k(k + 1)

j

R
2
j −

k(k + 1)
2

4
⎡⎢⎢⎣ ⎤⎥⎥⎦, (19)

where k is the number of algorithms involved in the com-
parison, j is the correlation coefficient,N is the number of test
cases or runs, and Rj is the average ranking of each algorithm.

+e experimental results of Friedman tests are shown in
Table 8. According to the results of the Friedman test, the
algorithm with the lowest ranking is considered to be
the most efficient algorithm. From the results in the table,
the proposed SRGS-EHO is always ranked first in different
cases (d � 30, 50, 100). Compared with other meta-
heuristics, the SRGS-EHO has a greater competitive
advantage.

Table 3: Comparison results of 23 benchmark functions (d � 30).

Function SRGS-EHO EHO WOA EO HHO CSO GWO SFO IEHO

F1 Mean 1.73E − 268 6.63E − 05 8.47E − 75 2.17E − 41 2.32E − 94 1.98E − 09 2.11E − 27 8.36E − 11 1.06E − 04
Std 0.00E+ 00 1.46E − 04 3.49E − 74 4.68E − 41 1.25E − 93 4.41E − 09 3.23E − 27 1.78E − 10 2.55E − 04

F2 Mean 4.88E − 134 4.04E − 03 1.55E − 50 6.19E − 24 1.33E − 50 3.02E − 07 8.75E − 17 4.18E − 05 3.70E − 03
Std 2.67E − 133 5.13E − 03 6.56E − 50 5.96E − 24 5.77E − 50 2.42E − 07 5.79E − 17 3.61E − 05 3.22E − 03

F3 Mean 4.05E − 257 3.98E − 02 4.83E+ 04 7.30E − 09 9.22E − 69 1.43E+ 03 9.27E − 05 1.61E − 08 1.97E − 02
Std 0.00E+ 00 8.32E − 02 1.56E+ 04 2.53E − 08 5.05E − 68 7.91E+ 02 4.40E − 04 1.90E − 08 4.29E − 02

F4 Mean 7.42E − 125 1.08E − 03 4.45E+ 01 1.42E − 10 9.72E − 50 9.79E − 01 5.29E − 07 1.44E − 06 1.18E − 03
Std 4.06E − 124 1.18E − 03 2.64E+ 01 1.59E − 10 3.20E − 49 5.03E − 01 4.31E − 07 1.73E − 06 1.28E − 03

F5 Mean 1.27E+ 00 2.77E − 01 2.81E+ 01 2.53E+ 01 9.95E − 03 8.97E+ 01 2.70E+ 01 2.85E − 02 1.15E − 01
Std 3.22E+ 00 8.89E − 01 4.71E − 01 1.91E − 01 1.11E − 02 1.93E+ 02 8.48E − 01 3.03E − 02 1.61E − 01

F6 Mean 6.99E − 01 1.65E − 03 4.74E − 01 8.90E − 06 7.80E − 05 9.47E − 10 7.20E − 01 3.38E − 02 2.20E − 03
Std 1.83E+ 00 3.61E − 03 2.43E − 01 5.38E − 06 1.27E − 04 2.26E − 09 3.31E − 01 1.26E − 01 3.68E − 03

F7 Mean 7.40E − 05 1.39E − 03 3.39E − 03 9.70E − 04 1.27E − 04 3.21E − 03 1.98E − 03 3.87E − 04 1.69E − 03
Std 8.74E − 05 1.45E − 03 4.00E − 03 4.55E − 04 1.23E − 04 2.76E − 03 9.00E − 04 3.08E − 04 2.16E − 03

F8 Mean − 1.26E+ 04 − 1.26E+ 04 − 1.05E+ 04 − 8.94E+ 03 − 1.25E+ 04 − 1.17E+ 04 − 6.40E+ 03 − 3.83E+ 03 − 1.26E+ 04
Std 2.05E − 01 9.84E+ 00 1.78E+ 03 6.59E+ 02 3.76E+ 02 4.83E+ 02 1.01E+ 03 4.04E+ 02 1.85E+ 01

F9 Mean 0.00E+ 00 6.72E − 05 3.79E� 15 0.00E+ 00 0.00E+ 00 3.40E − 03 3.85E+ 00 7.31E − 07 5.11E − 05
Std 0.00E+ 00 9.93E − 05 2.08E − 14 0.00E+ 00 0.00E+ 00 1.53E − 02 5.16E+ 00 1.94E − 06 1.22E − 04

F10 Mean 8.88E − 16 2.16E − 03 3.73E − 15 8.47E − 15 8.88E − 16 7.19E − 06 1.03E − 13 4.23E − 06 1.95E − 03
Std 0.00E+ 00 2.61E − 03 2.70E − 15 1.80E − 15 0.00E+ 00 8.89E − 06 2.05E − 14 4.04E − 06 2.64E − 03

F11 Mean 0.00E+ 00 1.37E − 04 1.17E − 02 9.02E − 04 0.00E+ 00 1.94E − 01 7.24E − 03 3.38E − 12 1.64E − 04
Std 0.00E+ 00 2.39E − 04 4.45E − 02 4.94E − 03 0.00E+ 00 2.72E − 01 1.28E − 02 4.87E − 12 4.51E − 04

F12 Mean 8.29E − 09 2.77E − 05 5.69E − 02 5.74E − 07 5.27E − 06 6.43E − 11 4.60E − 02 8.74E − 03 3.97E − 05
Std 2.24E − 08 4.04E − 05 1.09E − 01 4.49E − 07 5.65E − 06 2.46E − 10 2.00E − 02 2.22E − 02 7.42E − 05

F13 Mean 6.81E − 07 3.66E − 04 5.08E − 01 2.94E − 02 1.42E − 04 1.23E − 10 6.25E − 01 7.19E − 05 6.70E − 04
Std 2.22E − 06 4.42E − 04 2.16E − 01 5.94E − 02 1.63E − 04 1.68E − 10 2.59E − 01 5.05E − 05 1.10E − 03

F14 Mean 9.98E − 01 9.98E − 01 3.84E+ 00 9.98E − 01 1.39E+ 00 2.23E+ 00 4.49E+ 00 7.76E+ 00 9.98E − 01
Std 1.02E − 03 2.08E − 04 4.03E+ 00 1.75E − 16 9.56E − 01 2.79E+ 00 4.08E+ 00 3.48E+ 00 7.26E − 05

F15 Mean 1.64E − 04 1.58E − 03 1.22E − 03 1.08E − 03 3.96E − 04 1.55E − 03 3.09E − 03 3.55E − 04 1.66E − 03
Std 1.28E − 04 2.75E − 04 3.33E − 03 3.65E − 03 2.48E − 04 3.28E − 03 6.90E − 03 3.66E − 05 3.44E − 04

F16 Mean − 7.47E − 01 − 7.33E − 01 − 1.03E+ 00 − 1.03E+ 00 − 1.03E+ 00 − 1.03E+ 00 − 1.03E+ 00 − 1.03E+ 00 − 6.73E − 01
Std 4.27E − 01 3.70E − 01 2.86E − 09 6.45E − 16 3.10E − 09 1.12E − 02 2.40E − 08 3.80E − 03 4.28E − 01

F17 Mean 3.98E − 01 5.27E − 01 3.98E − 01 3.98E − 01 3.98E − 01 4.26E − 01 3.98E − 01 3.99E − 01 5.37E − 01
Std 6.54E − 06 2.00E − 01 7.71E − 06 4.83E − 05 4.04E − 05 8.96E − 02 6.39E − 04 1.03E − 03 1.78E − 01

F18 Mean 1.60E+ 01 2.65E+ 01 3.00E+ 00 3.00E+ 00 3.00E+ 00 4.73E+ 00 3.00E+ 00 7.73E+ 00 1.83E+ 01
Std 1.00E+ 01 8.84E+ 00 2.52E − 04 1.55E − 15 4.59E − 07 6.38E+ 00 3.65E − 05 7.82E+ 00 1.03E+ 01

F19 Mean − 3.85E+ 00 − 3.47E+ 00 − 3.86E+ 00 − 3.86E+ 00 − 3.86E+ 00 − 3.85E+ 00 − 3.86E+ 00 − 3.84E+ 00 − 3.49E+ 00
Std 2.16E − 06 2.44E − 01 6.43E − 03 2.45E − 15 3.15E − 03 2.49E − 02 1.34E − 03 2.28E − 02 2.94E − 01

F20 Mean − 2.24E+ 00 − 1.89E+ 00 − 3.24E+ 00 − 3.26E+ 00 − 3.10E+ 00 − 3.26E+ 00 − 3.25E+ 00 − 2.92E+ 00 − 2.24E+ 00
Std 4.57E − 01 5.59E − 01 1.19E − 01 6.70E − 02 1.19E − 01 5.63E − 02 8.02E − 02 2.12E − 01 3.75E − 01

F21 Mean − 1.01E+ 01 − 1.01E+ 01 − 8.43E+ 00 − 8.97E+ 00 − 5.21E+ 00 − 8.98E+ 00 − 9.31E+ 00 − 1.01E+ 01 − 1.01E+ 01
Std 1.65E − 02 2.76E − 02 2.43E+ 00 2.46E+ 00 8.81E − 01 2.44E+ 00 1.92E+ 00 8.99E − 02 2.71E − 02

F22 Mean − 1.04E+ 01 − 1.04E+ 01 − 7.64E+ 00 − 9.79E+ 00 − 5.43E+ 00 − 9.32E+ 00 − 1.02E+ 01 − 1.02E+ 01 − 1.04E+ 01
Std 1.11E − 02 2.21E − 02 2.92E+ 00 1.89E+ 00 1.32E+ 00 2.50E+ 00 9.70E − 01 2.49E − 01 1.40E − 02

F23 Mean − 1.05E+ 01 − 1.05E+ 01 − 6.57E+ 00 − 9.45E+ 00 − 5.13E+ 00 − 9.05E+ 00 − 1.05E+ 01 − 1.04E+ 01 − 1.05E+ 01
Std 6.54E − 06 2.67E − 02 3.39E+ 00 2.52E+ 00 1.20E+ 00 3.03E+ 00 8.85E − 04 1.62E − 01 3.24E − 02

12 Computational Intelligence and Neuroscience

Table 4: Comparison results of 13 benchmark functions (d � 50).

Function SRGS-EHO EHO WOA EO HHO CSO GWO SFO IEHO

F1 Mean 9.11E − 258 2.48E − 04 1.95E − 69 1.33E − 34 1.42E − 95 5.96E − 04 9.71E − 20 1.43E − 10 2.37E − 04
Std 0.00E+ 00 4.10E − 04 1.06E − 68 1.93E − 34 5.49E − 95 1.54E − 03 1.21E − 19 2.38E − 10 4.45E − 04

F2 Mean 1.15E − 124 4.05E − 03 7.59E − 50 1.54E − 20 1.50E − 50 1.47E − 03 2.67E − 12 6.00E − 05 1.13E − 02
Std 6.32E − 124 3.93E − 03 3.10E − 49 1.57E − 20 6.49E − 50 3.73E − 04 1.43E − 12 5.78E − 05 1.29E − 02

F3 Mean 3.91E − 261 6.72E − 02 1.98E+ 05 4.90E − 04 9.04E − 72 6.75E+ 03 1.93E − 01 7.41E − 08 1.58E − 01
Std 0.00E+ 00 1.15E − 01 5.13E+ 04 9.56E − 04 4.58E − 71 2.98E+ 03 3.53E − 01 1.04E − 07 2.37E − 01

F4 Mean 7.85E − 134 1.10E − 03 6.84E+ 01 3.79E − 07 3.44E − 47 5.92E+ 00 5.16E − 04 1.26E − 06 1.64E − 03
Std 3.72E − 133 1.14E − 03 2.61E+ 01 5.97E − 07 1.73E − 46 1.65E+ 00 4.48E − 04 1.04E − 06 2.42E − 03

F5 Mean 2.79E+ 00 2.89E − 01 4.83E+ 01 4.60E+ 01 3.18E − 02 1.30E+ 02 4.75E+ 01 5.54E − 02 1.91E − 01
Std 6.98E+ 00 6.62E − 01 3.70E − 01 8.85E − 01 5.28E − 02 6.72E+ 01 8.83E − 01 8.38E − 02 4.35E − 01

F6 Mean 6.42E − 01 2.63E − 03 1.26E+ 00 3.89E − 02 2.66E − 04 2.58E − 04 2.80E+ 00 2.43E − 02 1.46E − 03
Std 2.35E+ 00 7.36E − 03 5.01E − 01 8.59E − 02 4.51E − 04 1.81E − 04 7.33E − 01 7.15E − 02 1.97E − 03

F7 Mean 6.27E − 05 1.69E − 03 3.77E − 03 1.78E − 03 1.50E − 04 1.13E − 02 3.65E − 03 6.09E − 04 2.06E − 03
Std 5.79E − 05 2.34E − 03 3.79E − 03 6.59E − 04 1.57E − 04 5.78E − 03 1.55E − 03 5.35E − 04 2.41E − 03

F8 Mean − 2.09E+ 04 − 2.09E+ 04 − 1.69E+ 04 − 1.44E+ 04 − 2.09E+ 04 − 1.88E+ 04 − 9.13E+ 03 − 4.94E+ 03 − 2.09E+ 04
Std 2.76E+ 00 8.46E+ 00 3.35E+ 03 9.97E+ 02 1.90E+ 00 7.31E+ 02 8.56E+ 02 4.60E+ 02 4.33E+ 00

F9 Mean 0.00E+ 00 1.14E − 04 1.89E − 15 0.00E+ 00 0.00E+ 00 4.46E+ 00 4.15E+ 00 5.36E − 07 1.37E − 04
Std 0.00E+ 00 2.00E − 04 1.04E − 14 0.00E+ 00 0.00E+ 00 2.95E+ 00 5.93E+ 00 1.21E − 06 2.18E − 04

F10 Mean 8.88E − 16 1.95E − 03 3.97E − 15 1.57E − 14 8.88E − 16 2.86E − 03 4.10E − 11 5.68E − 06 2.97E − 03
Std 0.00E+ 00 3.84E − 03 2.76E − 15 2.96E − 15 0.00E+ 00 1.55E − 03 2.45E − 11 7.25E − 06 3.62E − 03

F11 Mean 0.00E+ 00 1.17E − 04 7.33E − 03 0.00E+ 00 0.00E+ 00 2.12E − 01 4.31E − 03 3.78E − 12 3.07E − 04
Std 0.00E+ 00 3.43E − 04 4.02E − 02 0.00E+ 00 0.00E+ 00 3.10E − 01 8.60E − 03 7.52E − 12 7.04E − 04

F12 Mean 8.94E − 06 3.25E − 05 2.65E − 02 2.83E − 03 8.85E − 06 1.12E − 06 1.07E − 01 1.71E − 02 2.53E − 05
Std 1.86E − 05 6.24E − 05 1.50E − 02 1.14E − 02 1.42E − 05 1.10E − 06 4.05E − 02 5.35E − 02 5.19E − 05

F13 Mean 7.92E − 03 2.95E − 04 1.12E+ 00 4.83E − 01 7.44E − 05 7.80E − 05 2.10E+ 00 7.03E − 05 1.75E − 03
Std 2.53E − 02 3.92E − 04 4.66E − 01 2.40E − 01 1.00E − 04 1.59E − 04 2.87E − 01 6.56E − 05 3.36E − 03

Table 5: Comparison results of 13 benchmark functions (d � 100).

Function SRGS-EHO EHO WOA EO HHO CSO GWO SFO IEHO

F1 Mean 8.01E − 272 3.23E − 04 3.22E − 74 3.51E − 29 6.15E − 94 3.98E+ 00 1.73E − 12 3.34E − 10 3.29E − 04
Std 0.00E+ 00 4.55E − 04 1.11E − 73 4.42E − 29 2.89E − 93 1.60E+ 00 1.25E − 12 5.44E − 10 8.21E − 04

F2 Mean 1.02E − 134 1.26E − 02 1.23E − 49 2.21E − 17 1.31E − 48 6.58E − 01 4.34E − 08 1.18E − 04 1.58E − 02
Std 4.58E − 134 1.98E − 02 5.65E − 49 3.19E − 17 5.55E − 48 1.07E − 01 1.65E − 08 1.33E − 04 1.16E − 02

F3 Mean 3.34E − 250 1.37E+ 00 1.09E+ 06 6.74E+ 00 3.73E − 58 3.21E+ 04 5.53E+ 02 2.48E − 06 1.16E+ 00
Std 0.00E+ 00 2.47E+ 00 3.08E+ 05 1.53E+ 01 1.90E − 57 9.70E+ 03 4.84E+ 02 6.36E − 06 1.65E+ 00

F4 Mean 8.88E − 133 1.70E − 03 7.37E+ 01 3.88E − 03 3.06E − 48 1.77E+ 01 6.85E − 01 1.58E − 06 1.37E − 03
Std 4.85E − 132 5.40E − 03 2.54E+ 01 9.63E − 03 1.57E − 47 2.71E+ 00 7.43E − 01 1.44E − 06 1.67E − 03

F5 Mean 3.69E+ 00 9.01E − 01 9.82E+ 01 9.67E+ 01 3.40E − 02 8.12E+ 02 9.80E+ 01 5.79E − 02 3.51E − 01
Std 1.78E − 01 1.56E+ 00 1.70E − 01 1.05E+ 00 4.68E − 02 2.60E+ 02 5.16E − 01 5.90E − 02 1.05E+ 00

F6 Mean 3.08E+ 00 3.80E − 03 4.25E+ 00 3.75E+ 00 3.06E − 04 3.50E+ 00 9.89E+ 00 1.61E − 01 4.90E − 03
Std 6.64E+ 00 6.58E − 03 1.49E+ 00 6.54E − 01 5.20E − 04 1.43E+ 00 9.98E − 01 4.87E − 01 9.87E − 03

F7 Mean 8.80E − 05 1.78E − 03 5.33E − 03 2.61E − 03 1.16E − 04 1.06E − 01 5.88E − 03 5.07E − 04 1.98E − 03
Std 1.06E − 04 2.97E − 03 6.58E − 03 8.76E − 04 1.18E − 04 2.88E − 02 2.19E − 03 3.89E − 04 2.85E − 03

F8 Mean − 4.19E+ 04 − 4.19E+ 04 − 3.52E+ 04 − 2.55E+ 04 − 4.17E+ 04 − 3.39E+ 04 − 1.63E+ 04 − 6.85E+ 03 − 4.19E+ 04
Std 5.21E+ 00 2.16E+ 01 5.73E+ 03 1.99E+ 03 1.14E+ 03 1.92E+ 03 1.19E+ 03 6.50E+ 02 2.60E+ 01

F9 Mean 0.00E+ 00 2.73E − 03 0.00E+ 00 0.00E+ 00 0.00E+ 00 4.44E+ 01 9.52E+ 00 3.59E − 07 8.80E − 04
Std 0.00E+ 00 1.34E − 02 0.00E+ 00 0.00E+ 00 0.00E+ 00 9.23E+ 00 6.45E+ 00 5.06E − 07 2.41E − 03

F10 Mean 8.88E − 16 1.70E − 03 4.20E − 15 3.57E − 14 8.88E − 16 7.01E − 01 1.31E − 07 4.56E − 06 2.13E − 03
Std 0.00E+ 00 2.24E − 03 2.79E − 15 5.31E − 15 0.00E+ 00 3.61E − 01 4.74E − 08 5.54E − 06 2.19E − 03

F11 Mean 0.00E+ 00 2.45E − 04 8.45E − 03 5.77E − 04 0.00E+ 00 9.21E − 01 4.21E − 03 1.12E − 11 1.02E − 03
Std 0.00E+ 00 2.96E − 04 4.63E − 02 3.16E − 03 0.00E+ 00 1.21E − 01 9.79E − 03 1.63E − 11 2.45E − 03

F12 Mean 2.21E − 05 1.47E − 04 4.67E − 02 4.15E − 02 3.48E − 06 4.38E − 02 3.17E − 01 1.44E − 03 4.44E − 05
Std 7.09E − 05 2.38E − 04 2.68E − 02 1.47E − 02 5.45E − 06 6.79E − 02 7.60E − 02 5.30E − 03 1.13E − 04

F13 Mean 5.59E − 02 7.47E − 04 2.76E+ 00 5.80E+ 00 1.61E − 04 6.80E − 01 6.80E+ 00 1.15E − 04 1.71E − 03
Std 2.09E − 01 1.16E − 03 1.01E+ 00 8.37E − 01 2.33E − 04 2.45E − 01 4.67E − 01 1.18E − 04 3.99E − 03

Computational Intelligence and Neuroscience 13

10–50

10–100

10–150

10–200

10–250

Fi
tn

es
s

100

50 100 150 200 250 300 350 400 450 500
Iteration

GWO

SFO

IEHO

EHO

WOA

SRGS-EHO EO

HHO

CSO

F1

(a)

10–50

10–100

Fi
tn

es
s

100

50 100 150 200 250 300 350 400 450 500
Iteration

GWO

SFO

IEHO

EHO

WOA

SRGS-EHO EO

HHO

CSO

F2

(b)

F3

10–100

10–200

10–300

Fi
tn

es
s

100

50 100 150 200 250 300 350 400 450 500
Iteration

GWO

SFO

IEHO

EHO

WOA

SRGS-EHO EO

HHO

CSO

(c)

Fi
tn

es
s

10–50

10–100

100

50 100 150 200 250 300 350 400 450 500
Iteration

GWO

SFO

IEHO

EHO

WOA

SRGS-EHO EO

HHO

CSO

F4

(d)

Fi
tn

es
s

100

10–5

105

50 100 150 200 250 300 350 400 450 500
Iteration

GWO

SFO

IEHO

EHO

WOA

SRGS-EHO EO

HHO

CSO

F5

(e)

Fi
tn

es
s

100

10–5

50 100 150 200 250 300 350 400 450 500
Iteration

GWO

SFO

IEHO

EHO

WOA

SRGS-EHO EO

HHO

CSO

F6

(f)

101

100

10–1

10–2

10–3

Fi
tn

es
s

102

50 100 150 200 250 300 350 400 450 500
Iteration

GWO

SFO

IEHO

EHO

WOA

SRGS-EHO EO

HHO

CSO

F7

(g)

F8

–12000

–10000
–9000

–11000

Fi
tn

es
s

–8000
–7000
–6000
–5000

–3000

–4000

–2000

50 100 150 200 250 300 350 400 450 500
Iteration

GWO

SFO

IEHO

EHO

WOA

SRGS-EHO EO

HHO

CSO

0 50 100

–1.2

–1.1

–1

×10
4

(h)

F9

Fi
tn

es
s

10–5

10–10

100

50 100 150 200 250 300 350 400 450 500
Iteration

GWO

SFO

IEHO

EHO

WOA

SRGS-EHO EO

HHO

CSO

(i)

Figure 5: Continued.

14 Computational Intelligence and Neuroscience

Fi
tn

es
s

100

10–5

10–10

10–15

50 100 150 200 250 300 350 400 450 500
Iteration

GWO

SFO

IEHO

EHO

WOA

SRGS-EHO EO

HHO

CSO

F10

(j)

Fi
tn

es
s 10–5

10–10

10–15

100

50 100 150 200 250 300 350 400 450 500
Iteration

GWO

SFO

IEHO

EHO

WOA

SRGS-EHO EO

HHO

CSO

F11

(k)

Fi
tn

es
s

105

10–5

10–10

100

50 100 150 200 250 300 350 400 450 500
Iteration

GWO

SFO

IEHO

EHO

WOA

SRGS-EHO EO

HHO

CSO

F12

(l)

Fi
tn

es
s

50 100 150 200 250 300 350 400 450 500
Iteration

GWO

SFO

IEHO

EHO

WOA

SRGS-EHO EO

HHO

CSO

105

10–5

10–10

100

F13

(m)

50 100 150 200 250 300 350 400 450 500
Iteration

GWO

SFO

IEHO

EHO

WOA

SRGS-EHO EO

HHO

CSO

Fi
tn

es
s

102

101

100

F14

(n)

50 100 150 200 250 300 350 400 450 500
Iteration

GWO

SFO

IEHO

EHO

WOA

SRGS-EHO EO

HHO

CSO
Fi

tn
es

s

10–1

10–2

10–3

F15

(o)

Fi
tn

es
s

50 100 150 200 250 300 350 400 450 500
Iteration

GWO

SFO

IEHO

EHO

WOA

SRGS-EHO EO

HHO

CSO

4

3

2

1

0

–1

–0.6

–0.8

–1

0 10 20 30 40 50

F16

(p)

200 250 300 350 400 450
Iteration

GWO

SFO

IEHO

EHO

WOA

SRGS-EHO EO

HHO

CSO

500

Fi
tn

es
s

50 100 150
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.46

0.44

0.42

0.4

5 10 15 2520

F17

(q)

Fi
tn

es
s

50 100 150 200 250 300 350 400 450
Iteration

GWO

SFO

IEHO

EHO

WOA

SRGS-EHO EO

HHO

CSO

500

140

120

100

80

60

40

20

6

8

12

10

4

10 30200

F18

(r)

Figure 5: Continued.

Computational Intelligence and Neuroscience 15

Fi
tn

es
s

50 100 150 200 250 300 350 400 450 500
Iteration

GWO

SFO

IEHO

EHO

WOA

SRGS-EHO EO

HHO

CSO

–2.8

–3

–3.2

–3.4

–3.6

–3.8

F19

(s)

50 100 150 200 250 300 350 400 450 500
Iteration

GWO

SFO

IEHO

EHO

WOA

SRGS-EHO EO

HHO

CSO

–1

–1.5

–2

–2.5

–3

Fi
tn

es
s

F20

(t)

50 100 150 200 250 300 350 400 450 500
Iteration

GWO

SFO

IEHO

EHO

WOA

SRGS-EHO EO

HHO

CSO

–2

–3

–4

–5

–6

–7

–8

–9

–10

–1

Fi
tn

es
s

0 50 100 150

–10

–9

–8

F21

(u)
F22

50 100 150 200 250 300 350 400 450 500
Iteration

GWO

SFO

IEHO

EHO

WOA

SRGS-EHO EO

HHO

CSO

–2

–3

–4

–5

–6

–7

–8

–9

–10

–1

Fi
tn

es
s

0 50 100
–10.5

–10

–9.5

–9

–8.5

(v)

F23

50 100 150 200 250 300 350 400 450 500
Iteration

GWO

SFO

IEHO

EHO

WOA

SRGS-EHO EO

HHO

CSO

–2

–3

–4

–5

–6

–7

–8

–9

–10

–1

–9.6
–9.8
–10

–10.2
–10.4
–10.6

0 20 40

Fi
tn

es
s

(w)

Figure 5: Convergence curves of different algorithms on 23 benchmark functions.

Table 6: +e statistical results of Wilcoxon’s rank-sum test (F1–F13).

Function Dimension EHO WOA EO HHO CSO GWO SFO IEHO

F1
30 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11
50 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11
100 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11

F2
30 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11
50 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11
100 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11

F3
30 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11
50 3.01E − 11 3.01E − 11 3.01E − 11 3.01E − 11 3.01E − 11 3.01E − 11 3.01E − 11 3.01E − 11
100 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11

F4
30 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11
50 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11
100 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11 3.02E − 11

F5
30 9.63E − 02 3.02E − 11 3.02E − 11 8.15E − 05 6.07E − 11 3.02E − 11 1.00E − 03 2.15E − 02
50 9.00E − 01 3.02E − 11 3.02E − 11 1.78E − 04 3.34E − 11 3.02E − 11 5.94E − 02 5.89E − 01
100 4.83E − 01 3.02E − 11 3.02E − 11 1.03E − 02 3.02E − 11 3.02E − 11 2.23E − 01 8.65E − 01

F6
30 2.89E − 03 5.61E − 05 5.96E − 09 6.35E − 05 3.02E − 11 1.63E − 05 8.14E − 05 5.32E − 03
50 9.79E − 05 1.61E − 06 5.69E − 01 3.96E − 08 1.16E − 07 1.11E − 06 1.86E − 03 1.68E − 03
100 6.28E − 06 2.77E − 05 4.94E − 05 1.43E − 08 7.20E − 05 9.51E − 06 1.61E − 06 9.79E − 05

F7
30 9.59E − 01 1.41E − 04 1.75E − 05 1.17E − 05 2.83E − 08 3.08E − 08 3.18E − 01 1.09E − 01
50 1.05E − 01 6.36E − 05 7.20E − 05 3.32E − 06 4.98E − 11 2.83E − 08 4.55E − 01 1.68E − 03
100 1.70E − 02 1.25E − 04 2.20E − 07 6.05E − 07 3.02E − 11 3.69E − 11 4.73E − 01 4.04E − 01

16 Computational Intelligence and Neuroscience

4.6. Sensitivity Analysis to Parameters. To examine the effect
of different parameters in SRGS-EHO on the performance of
the algorithm, sensitivity analysis to parameters is also per-
formed in this section. +e initial values of the golden ratio a

and b in equations (14) and (15), the maximum number of
iterations tmax, and the size of populationN are set to different
values to verify. In this experiment, N is set to 5, 20, and 50,
tmax is marked as 100 and 500, and a and b are set to two
different sets of values [− π, π] and [0, 1]. Twelve variants of
SRGS-EHO are created, each representing a combination of
different parameters, as shown in Table 9. It should be noted
that these parameters can be adapted to the actual problem.

When each seed algorithm is performed 30 times, the
results of the Friedman test reported are shown in Table 10.
+e analysis of the data in the table yields that the quality of
the obtained solutions varies if the set parameters are
changed. By comparison, the subalgorithm SRGS-EHO6
with N � 50, tmax � 500, a � − π, and b � π outperforms the
other variants and achieves the highest ranking.

4.7. Analysis of the Modifications. In order to analyze the
impact of the newly tuned modules on the algorithm per-
formance, comparison experiments are conducted in this
section. In SRGS-EHO, the initialized populations are first
generated by specular reflection learning based on Gaussian
variational perturbations (SR-GM). Secondly, the golden
sine operator (GSO) is introduced to optimize the positions
of the patriarch. For a simple analysis, four algorithms, EHO,
SR-GM+EHO, GSO+EHO, and SRGS-EHO, are consid-
ered to compare behaviors for solving different problems.
+e different strategies are combined in the way shown in
Table 11. Six representative benchmark functions are se-
lected, including F1, F5, F10, F14, F15, and F17. +e size of
the population N is set to 30 and the maximum number of
iterations tmax is 500.

Figure 6 shows the convergence curves of the four al-
gorithms. It can be seen that the convergence rate of SR-GM
is generally higher than that of EHO due to the optimized
initialization method using Gaussian perturbation-based

Table 6: Continued.

Function Dimension EHO WOA EO HHO CSO GWO SFO IEHO

F8
30 3.56E − 04 4.98E − 11 3.02E − 11 1.68E − 04 1.09E − 10 3.02E − 11 3.02E − 11 2.60E − 05
50 3.71E − 01 2.87E − 10 3.02E − 11 6.20E − 01 3.02E − 11 3.02E − 11 3.02E − 11 2.64E − 01
100 3.56E − 04 1.21E − 10 3.02E − 11 9.00E − 01 3.02E − 11 3.02E − 11 3.02E − 11 3.67E − 03

F9
30 1.21E − 12 8.15E − 02 3.34E − 01 NaN 1.21E − 12 1.20E − 12 1.21E − 12 1.21E − 12
50 1.21E − 12 3.34E − 01 3.34E − 01 NaN 1.21E − 12 1.21E − 12 1.21E − 12 1.21E − 12
100 1.21E − 12 NaN NaN NaN 1.21E − 12 1.21E − 12 1.21E − 12 1.21E − 12

F10
30 1.21E − 12 8.07E − 08 6.12E − 14 NaN 1.21E − 12 1.16E − 12 1.21E − 12 1.21E − 12
50 1.21E − 12 2.74E − 09 2.59E − 13 NaN 1.21E − 12 1.21E − 12 1.21E − 12 1.21E − 12
100 1.21E − 12 7.78E − 10 7.78E − 13 NaN 1.21E − 12 1.21E − 12 1.21E − 12 1.21E − 12

F11
30 1.21E − 12 3.34E − 01 NaN NaN 1.21E − 12 5.58E − 03 4.57E − 12 1.21E − 12
50 1.21E − 12 3.34E − 01 NaN NaN 1.21E − 12 3.13E − 04 1.21E − 12 1.21E − 12
100 1.21E − 12 NaN 3.34E − 01 NaN 1.21E − 12 1.21E − 12 1.21E − 12 1.21E − 12

F12
30 9.82E − 01 4.50E − 11 6.77E − 05 2.71E − 01 3.02E − 11 3.02E − 11 8.77E − 01 8.07E − 04
50 3.55E − 01 3.02E − 11 6.74E − 06 1.37E − 01 4.64E − 03 3.02E − 11 1.49E − 01 9.12E − 03
100 1.09E − 01 3.02E − 11 3.02E − 11 1.52E − 03 6.70E − 11 3.02E − 11 2.12E − 01 1.81E − 04

F13
30 3.87E − 01 3.02E − 11 2.28E − 01 1.67E − 01 3.02E − 11 3.02E − 11 8.42E − 01 5.11E − 01
50 9.00E − 01 3.02E − 11 4.50E − 11 2.12E − 01 7.29E − 03 3.02E − 11 3.33E − 01 1.02E − 01
100 6.41E − 01 3.02E − 11 3.02E − 11 2.42E − 02 3.02E − 11 3.02E − 11 9.05E − 02 8.42E − 01

+/� /−
30 9/0/4 11/0/2 10/1/2 8/3/2 13/0/0 13/0/0 10/0/3 11/0/2
50 8/0/5 11/0/2/ 10/1/2 7/3/3 13/0/0 13/0/0 9/0/4 10/0/3
100 10/0/3 11/2/0 11/1/1 9/3/1 13/0/0 13/0/0 9/0/4 10/0/3

Table 7: +e statistical results of Wilcoxon’s rank-sum test (F14–F23).

Function EHO WOA EO HHO CSO GWO SFO IEHO
F14 5.57E − 03 3.67E − 03 1.01E − 11 8.77E − 01 1.61E − 01 5.19E − 07 3.02E − 11 4.68E − 02
F15 6.36E − 05 4.62E − 10 1.07E − 07 3.02E − 11 7.74E − 06 1.11E − 06 3.02E − 11 5.01E − 02
F16 2.97E − 01 3.02E − 11 1.14E − 11 3.02E − 11 1.69E − 09 3.02E − 11 1.73E − 07 6.63E − 01
F17 2.07E − 02 3.02E − 11 1.21E − 12 3.68E − 11 1.01E − 08 3.69E − 11 1.31E − 08 2.05E − 03
F18 1.86E − 03 3.02E − 11 2.29E − 11 3.02E − 11 4.20E − 10 5.57E − 10 7.66E − 05 3.18E − 04
F19 1.08E − 02 7.39E − 11 6.32E − 12 3.34E − 11 1.17E − 09 3.02E − 11 1.86E − 09 7.73E − 02
F20 3.87E − 01 3.02E − 11 1.82E − 11 3.34E − 11 3.02E − 11 3.02E − 11 3.20E − 09 9.82E − 05
F21 2.81E − 02 1.03E − 06 2.45E − 01 3.02E − 11 7.66E − 03 5.79E − 01 4.62E − 10 1.02E − 05
F22 4.12E − 01 3.09E − 06 5.75E − 05 3.02E − 11 7.96E − 03 6.31E − 01 6.01E − 08 3.18E − 01
F23 1.71E − 01 2.19E − 08 2.83E − 10 3.02E − 11 6.77E − 05 4.12E − 01 1.70E − 08 1.08E − 02
+/� /− 6/0/4 10/0/0 9/0/1 9/0/1 9/0/1 7/0/0 10/0/0 6/0/4

Computational Intelligence and Neuroscience 17

Table 8: Results of Friedman test on 23 benchmark functions.

Function Dimension SRGS-EHO EHO WOA EO HHO CSO GWO SFO IEHO

F1–F13

30 Friedman value 2.462 4.682 5.218 4.231 5.769 6.769 5.615 5.231 5.077
Friedman rank 1 3 5 2 8 9 7 6 4

50 Friedman value 2.615 4.846 5.308 4.692 5.385 5.462 6.154 4.154 6.385
Friedman rank 1 4 5 3 6 7 8 2 9

100 Friedman value 2.279 4.154 6.538 5.149 4.615 6.154 4.308 5.846 5.923
Friedman rank 1 2 9 5 4 8 3 6 7

F14–F23 Fixed Friedman value 1.925 3.731 5.975 6.626 5.737 6.442 3.858 5.622 5.404
Friedman rank 1 2 7 9 6 8 3 5 4

Table 9: Combination of different parameters in SRGS-EHO.

Parameters SRGS-
EHO1

SRGS-
EHO2

SRGS-
EHO3

SRGS-
EHO4

SRGS-
EHO5

SRGS-
EHO6

SRGS-
EHO7

SRGS-
EHO8

SRGS-
EHO9

SRGS-
EHO10

SRGS-
EHO11

SRGS-
EHO12

tmax
100 √ √ √ √ √ √
500 √ √ √ √ √ √

N

5 √ √ √ √
20 √ √ √ √
50 √ √ √ √

a, b

a� − π
b� π √ √ √ √ √ √
a� 0
b� 1 √ √ √ √ √ √

Table 10: Comparison results by Friedman test for different versions of SRGS-EHO on 23 benchmark functions.

Functions SRGS-
EHO1

SRGS-
EHO2

SRGS-
EHO3

SRGS-
EHO4

SRGS-
EHO5

SRGS-
EHO6

SRGS-
EHO7

SRGS-
EHO8

SRGS-
EHO9

SRGS-
EHO10

SRGS-
EHO11

SRGS-
EHO12

F1 9.6000 3.2667 9.0667 3.5333 9.1333 3.4000 9.6333 3.4000 9.8000 3.8667 9.7667 3.5333
F2 9.2000 3.5667 9.3333 3.3333 9.6667 2.7667 9.6000 3.6333 9.4000 3.8667 9.8000 3.8333
F3 9.9667 3.2667 9.8000 3.5000 9.4000 3.7333 9.1000 3.4000 9.0333 3.4000 9.7000 3.7000
F4 9.4000 3.2000 9.7000 3.3333 9.6000 3.6667 9.0333 3.5333 9.2333 3.3667 10.0333 3.9000
F5 8.3333 6.3333 7.9667 4.7333 8.8000 3.4667 9.2667 5.1667 7.1333 5.2000 7.9667 3.6333
F6 7.5000 5.9000 8.5000 3.9333 7.6000 4.0333 8.2667 4.8667 8.5000 4.8000 9.1667 4.9333
F7 9.5333 5.8000 8.0000 4.3000 7.5000 3.5667 9.2000 5.7667 8.8000 4.1333 8.2333 3.1667
F8 8.8000 4.6333 7.3667 4.8000 8.9000 4.6667 8.2667 4.9000 8.7333 4.0667 8.9000 3.9667
F9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
F12 9.4000 4.9333 7.9667 3.7333 8.3000 3.6000 9.1667 5.2000 8.6000 4.8000 8.8333 3.4667
F13 8.6000 5.5667 8.7667 4.4000 7.5667 3.0667 8.5333 5.6000 9.4333 4.4000 8.3333 3.7333
F14 4.7333 6.8333 5.4333 7.2333 6.5333 7.5000 5.6000 6.0000 7.7333 7.0333 6.5333 6.8333
F15 8.6667 5.4333 8.5333 4.2667 8.4000 4.2333 7.5667 5.0667 8.9000 4.4000 7.7333 4.8000
F16 8.2000 8.8667 6.6333 4.4000 5.4000 4.5000 9.0667 8.9000 8.0667 4.8333 5.1333 4.0000
F17 8.8000 5.9667 9.4000 5.1667 6.3000 4.3667 8.6333 5.7667 7.2000 4.6667 7.4667 4.2667
F18 9.2000 8.2000 6.2333 5.5667 4.2667 4.5333 9.6667 8.3667 6.8333 6.5000 4.0667 4.5667
F19 10.4333 8.8667 6.0333 5.4000 4.3667 3.7333 8.6000 9.5333 6.1000 6.4667 3.7667 4.7000
F20 9.4667 8.6667 7.5000 6.0000 3.6000 4.7333 9.2000 8.6333 6.0667 6.4333 3.3667 4.3333
F21 8.2000 4.6000 7.8333 4.5333 8.5333 4.7333 9.4667 5.4000 7.2333 4.7000 8.9000 3.8667
F22 8.0333 5.4000 8.1667 4.9000 7.2333 4.3000 9.4000 5.3667 8.2667 4.4667 8.7000 3.7667
F23 8.7667 4.9000 8.2000 4.7667 9.1333 3.7667 8.4000 4.6000 7.7333 4.3667 8.9667 4.4000
Average
rank 7.7319 5.0957 7.1058 4.1232 6.6623 3.7116 7.7681 5.0478 7.2087 4.2942 6.8855 3.7565

Overall
rank 11 6 9 3 7 1 12 5 10 4 8 2

18 Computational Intelligence and Neuroscience

Table 11: Combination of different parameters in SRGS-EHO.

SR-GM GSO
EHO 0 0
SR-GM+EHO 1 0
GSO+EHO 0 1
SRGS-EHO 1 1

EHO
SR-GM

GSO
SRGS-EHO

50 100 150 200 250 300 350 400 450 500
Iteration

10–300

10–200

10–100

100

Fi
tn

es
s

F1

(a)

EHO
SR-GM

GSO
SRGS-EHO

50 100 150 200 250 300 350 400 450 500
Iteration

10–2

100

102

106

108

104

Fi
tn

es
s

F5

(b)

EHO
SR-GM

GSO
SRGS-EHO

50 100 150 200 250 300 350 400 450 500
Iteration

10–15

10–10

10–5

100

Fi
tn

es
s

F10

(c)

EHO
SR-GM

GSO
SRGS-EHO

50 100 150 200 250 300 350 400 450 500
Iteration

100

101

Fi
tn

es
s

F14

(d)

Figure 6: Continued.

Computational Intelligence and Neuroscience 19

specular reflection learning. +e introduction of the golden
sine operator makes GSO a very significant improvement in
search accuracy and breadth. By combining the two strat-
egies, the convergence rate and the search accuracy of SRGS-
EHO are simultaneously promoted.

+e mean value and Friedman ranking results obtained
by different combinations of strategies are shown in Ta-
ble 12, where the bold values indicate the best solutions
obtained on the current benchmark functions. According to
these results, all three enhanced versions outperform the
original algorithm. Both SR-GM+EHO and GSO+EHO
outperform EHO on five functions. On the one hand, SR-
GM+EHO and GSO+EHO achieve different improve-
ments in terms of the accuracy and breadth of the search
compared to EHO. On the other hand, the performance of
SRGS-EHO is enhanced comprehensively by the effective
combination of SR-GM and GSO. By verification, it is shown
that the modifications for EHO are effective. Meanwhile,
SRGS-EHO is determined to be the final optimized version.

5. Applications of SRGS-EHO for Solving
Engineering Problems

+e applicability of SRGS-EHO is further tested in solving
engineering design problems and the results are described
here. In this paper, two restricted practical engineering test
problems, namely, the pressure-vessel design and tension/
compression string design problems, are selected, and the
results obtained by SRGS-EHO are compared with other
algorithms to highlight superiority.

It is noteworthy that these two cases include some
inequality constraints. Consequently, constraint handling
methods should be used in SRGS-EHO and other com-
pared methods. Constraint handling methods are divided
into five categories, namely, penalty function methods,

hybrid methods, separation of objective function and
constraints, repair algorithms, and special operators [80].
In terms of penalty functions, there exist different types,
including static, annealing, adaptive, coevolutionary, and
death penalty. Among these, the death penalty is a popular
and simplest constraint processing method. In this ap-
proach, search agents that violate any level of constraints
impose the same penalty, i.e., being assigned a poorer
fitness value. +is approach does not require any modifi-
cation of the original algorithm. Constraints are added to
the fitness function and are efficiently handled by most
optimization algorithms. +erefore, in this study, SRGS-
EHO is merged with the death penalty approach for solving
constrained engineering problems. It is worth noting that
the objective of solving real engineering problems is to
provide the global optimal solution at the lowest possible
cost. Based on this consideration, in this section, each
compared algorithm is performed 10 times and the best
combination and the maximum fitness value obtained are
selected as the final comparison results.

EHO
SR-GM

GSO
SRGS-EHO

50 100 150 200 250 300 350 400 450 500
Iteration

0 50 100 150

10–2

10–2

10–1
Fi

tn
es

s

F15

(e)

EHO
SR-GM

GSO
SRGS-EHO

50 100 150 200 250 300 350 400 450 500
Iteration

100

Fi
tn

es
s

F17

(f)

Figure 6: Convergence curves of different strategy combinations on 6 benchmark functions. (a) F1, (b) F5, (c) F10, (d) F14, (e) F15, and
(f) F17.

Table 12: Comparison results for different combinations on 6
benchmark functions.

Functions EHO SR-
GM+EHO GSO+EHO SRGS-

EHO
F1 3.54E − 05 4.99E − 07 4.73E − 277 3.60E − 313
F5 1.03E − 01 1.99E − 02 2.71E − 02 3.32E − 03
F10 7.08E − 04 1.22E − 03 8.88E − 16 8.88E − 16
F14 9.98E − 01 9.98E − 01 9.98E − 01 9.99E − 01
F15 1.67E − 03 1.67E − 03 1.68E − 03 1.67E − 03
F17 4.18E − 01 3.99E − 01 3.99E − 01 3.98E − 01
Average
rank 2.8536 2.8 2.1444 1.7852

Overall
rank 4 3 2 1

20 Computational Intelligence and Neuroscience

5.1. Pressure-Vessel Design Problem. +e pressure-vessel
design problem [81] is a common engineering design
problem first proposed by Kannan and Kramer in 1994,
which is shown in Figure 7. +e objective of this optimi-
zation problem is to minimize the manufacturing cost of the
pressure vessel. Four variables are involved: the thickness of

the shell Ts, that of the head Th, and the inner radius R and
length L of the cylinder. Among them, the first two variables
are discrete. In addition, the problem contains four con-
straints. Of these, three constraints are linear and one
constraint is nonlinear. +e mathematical form of the
problem is expressed as follows:

minF4(x) � 0.6224x1x3x4 + 1.7781x2x
2
3 + 19.84x

2
1x3 + 3.1661x

2
1x4

wherex � x1, x2, x3, x4 � Ts, Th, R, L

s.t. g1(x) � − x1 + 0.0193x3 ≤ 0g2(x) � − x2 + 0.00954x3 ≤ 0

g3(x) � −
4
3
πx

3
3 − πx

2
3x4 + 1296000≤ 0

g4(x) � x4 − 240≤ 0

1 × 0.0625≤ x1, x2 ≤ 99 × 0.0625

10≤x3, x4 ≤ 200.

(20)

SRGS-EHO is applied to optimize the problem and
compared with eight other algorithms separately, with some
as listed earlier, i.e., EO [17], WOA [42], HHO [45], DE [9],
evolution strategies (ESs) [82], PSO [23], the opposition-
based sine cosine algorithm (OBSCA) [83], improved sine
cosine algorithm (ISCA) [22], and enhanced whale opti-
mization algorithm (EWOA) [84]. +e obtained results are
shown in Table 13. According to the results, SRGS-EHO
obtained the best solution among the nine algorithms. +e
four variables are optimized to 0.850468, 0.420387,
44.065679, and 153.694517, and the optimum cost obtained
is 6020.753071.

5.2. Tension/Compression String Design Problem. +is
problemwas described by Arora [85] and Belegundu [86] for
the purpose of minimizing the weight of a tension/com-
pression spring. +ree variables are included in Figure 8,
namely, diameter (d), mean coil diameter (D), and number
of active coils (P). SRGS-EHO is applied to solve the
problem and compared with eight other algorithms, namely,
the slap swarm algorithm (SSA) [44], WOA [42], PSO [23],
GA [87], moth-flame optimization (MFO) [88], GWO [40],
the enhanced WOA (EWOA) [84], IEHO [89], and the
reinforced variant of WOA (RDWOA) [90]. +e results are

presented in Table 10.+emathematical form of the tension/
compression string design problem is expressed as follows:

minF4(x) � x3 + 2(x2x
2
1

wherex � x1, x2, x3 � [d, D, P]

s.t. g1(x) � 1 −
x
3
2x3

71785x
4
1
≤ 0

g2(x) �
4x

2
2 − x1x2

12566 x2x
3
1 − x

4
1

+
1

5108x
2
1

− 1≤ 0

g3(x) � 1 −
140.45x1

x
2
2x3
≤ 0

g4(x) �
x1 + x2

1.5
− 1≤ 0

0.05≤x1 ≤ 2.00

0.25≤x2 ≤ 1.30

2.00≤x3 ≤ 15.0.

(21)

R

L

R

TsTh

Figure 7: Pressure-vessel design.

Computational Intelligence and Neuroscience 21

As can be observed from Table 14, the optimum weight
obtained by SRGS-EHO is 0.012044 when d, D, and N are
optimized to 0.061414, 0.638027, and 3.004913, respectively.
+is indicates that SRGS-EHO has a superior global opti-
mization capability compared to other algorithms.

6. Conclusions and Future Work

In this paper, the Gaussian perturbation-based specular re-
flection learning and golden sine mechanism are introduced
for dealing with the defective problem of the original EHO.
According to the method proposed in this paper, the pop-
ulation initialization method and the clan leader position
update strategy are optimized, which makes exploration and
exploitation more efficient and leads to the enhancement of
the algorithm performance. Experiments on 23 benchmark
functions show that the proposed SRGS-EHOhas an excellent
performance in terms of optimization accuracy and stability
compared with other metaheuristic algorithms, while the
convergence rate is also promoted. In addition, SRGS-EHO is

applied to solve real-world engineering design problems, such
as pressure-vessel design and tension/compression string
design problems. Compared with other algorithms, this in-
dicates that SRGS-EHO has superiority and applicability. At
the same time, the algorithm has great potential for dealing
with different complex problems.

In the future, SRGS-EHO can be further developed and
refined based on practical problems. In addition, it can be
introduced to solve discrete and multiobjective optimization
problems, and more encouraging results can potentially be
achieved.

Data Availability

+e data used to support the findings of this study are
available from https://github.com/dyxdddddd/SRGS-EHO.

Conflicts of Interest

+e authors declare that there are no conflicts of interest
regarding the publication of this study.

Table 13: Comparison results of pressure-vessel design problem.

Algorithm
Optimal values for variables

Optimum cost
Ts Th R L

SRGS-EHO 0.850468 0.420387 44.065679 153.694517 6020.753071
EO 0.898401 0.444080 46.549292 128.317630 6124.239342
WOA 1.040632 0.511766 50.905188 91.322007 6775.807533
HHO 1.079160 0.543392 55.469516 60.115203 6715.912450
DE 0.812500 0.437500 42.098353 176.637751 6059.725800
ES 0.812500 0.437500 42.098087 176.640518 6059.745600
PSO 0.812500 0.437500 42.091266 176.746500 6061.077700
OBSCA 3.000000 0.875000 66.148100 159.303600 6958.988200
ISCA 0.8125 0.4375 42.09842 176.6382 6059.745738
EWOA 10.0625 0.50 58.17399 44.38294 6177.754912

DP

P

d

Figure 8: Tension/compression spring design problem.

Table 14: Comparison results of the problem of tension/compression spring design.

Algorithms
Optimal values for variables

Optimum weight
d D N

SRGS-EHO 0.061414 0.638027 3.004913 0.012044
SSA 0.051207 0.345215 12.004032 0.012676
WOA 0.053234 0.395036 9.351476 0.012708
PSO 0.015728 0.357644 11.244543 0.012675
GA 0.051480 0.351661 11.632201 0.012705
MFO 0.051994 0.364109 10.868422 0.012667
GWO 0.051690 0.356760 11.288110 0.012662
EWOA 0.051961 0.363306 10.91296 0.012667
EHOI 0.051594 0.354438 11.423880 0.012665
RDWOA 0.0517112 0.35725 11.257788 0.012665

22 Computational Intelligence and Neuroscience

https://github.com/dyxdddddd/SRGS-EHO

Acknowledgments

+is study was supported by the National Natural Science
Foundation of China (no. 61703426).

References

[1] Z. M. Li, Y. Q. Zhou, S. Zhang, and J. M. Song, “Lévy-flight
moth-flame algorithm for function optimization and engi-
neering design problems,” Mathematical Problems in Engi-
neering, vol. 2016, Article ID 1423930, 22 pages, 2016.

[2] K. Hussain, M. N. Mohd Salleh, S. Cheng, and Y. Shi,
“Metaheuristic research: a comprehensive survey,” Artificial
Intelligence Review, vol. 52, no. 4, pp. 2191–2233, 2019.

[3] K. Sörensen, “Metaheuristics-the metaphor exposed,” Inter-
national Transactions in Operational Research, vol. 22, no. 1,
pp. 3–18, 2015.

[4] V. K. Kamboj, A. Nandi, A. Bhadoria, and S. Sehgal, “An
intensify Harris hawks optimizer for numerical and engi-
neering optimization problems,” Applied Soft Computing,
vol. 89, Article ID 106018, 2020.

[5] Y. Huang, X.-N. Shen, and X. You, “A discrete shuffled frog-
leaping algorithm based on heuristic information for traveling
salesman problem,” Applied Soft Computing, vol. 102, Article
ID 107085, 2021.

[6] Y. Saji and M. Barkatou, “A discrete bat algorithm based on
Lévy flights for Euclidean traveling salesman problem,” Expert
Systems with Applications, vol. 172, Article ID 114639, 2021.

[7] Q. Jin, Z. Xu, and W. Cai, “An improved whale optimization
algorithm with random evolution and special reinforcement
dual-operation strategy collaboration,” Symmetry, vol. 13,
no. 2, p. 238, 2021.

[8] D. E. Goldberg and J. H. Holland, “Genetic algorithms and
machine learning,” Machine Learning, vol. 3, no. 2-3,
pp. 95–99, 1988.

[9] R. Storn and K. Price, “Differential evolution–a simple and
efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4,
pp. 341–359, 1997.

[10] D. Simon, “Biogeography-based optimization,” IEEE Trans-
actions on Evolutionary Computation, vol. 12, no. 6,
pp. 702–713, 2008.

[11] I. Rechenberg, Evolution Strategy: Optimization of Technical
Systems by Means of Bio-Logical Evolution, pp. 15-16,
Fromman-Holzboog, Stuttgart, Germany, 1973.

[12] T. Alexandros and D. Georgios, “Nature inspired optimiza-
tion algorithms related to physical phenomena and laws of
science: a survey,” International Journal on Artificial Intelli-
gence Tools, vol. 26, no. 6, Article ID 1750022, 2017.

[13] Y. T. Hsiao, C. L. Chuang, J. A. Jiang, and C. C. Chien, “A
novel optimization algorithm: space gravitational optimiza-
tion,” in Proceedings of the 2005 IEEE International Confer-
ence on Systems, Man and Cybernetics, pp. 2323–2328, IEEE,
Waikoloa, HI, USA, 2005.

[14] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, “GSA: a
gravitational search algorithm,” Information Sciences, vol. 179,
no. 13, pp. 2232–2248, 2009.

[15] R.-E. Precup, R.-C. David, E. M. Petriu, S. Preitl, and
A. S. Paul, “Gravitational search algorithm-based tuning of
fuzzy control systems with a reduced parametric sensitivity,”
Soft Computing in Industrial Applications, vol. 96, pp. 141–150,
2011.

[16] J. J. Flores, R. López, and J. Barrera, “Gravitational interac-
tions optimization,” in Lecture Notes in Computer Science,
pp. 226–237, Springer, Berlin, Germany, 2011.

[17] A. Faramarzi, M. Heidarinejad, B. Stephens, and
S. Mirjalili, “Equilibrium optimizer: a novel optimization
algorithm,” Knowledge-Based Systems, vol. 191, Article ID
105190, 2020.

[18] S. Mirjalili, S. M. Mirjalili, and A. Hatamlou, “Multi-verse
optimizer: a nature-inspired algorithm for global optimiza-
tion,” Neural Computing and Applications, vol. 27, no. 2,
pp. 495–513, 2016.

[19] H. Abedinpourshotorban, S. Mariyam Shamsuddin,
Z. Beheshti, and D. N. A. Jawawi, “Electromagnetic field
optimization: a physics-inspired metaheuristic optimization
algorithm,” Swarm and Evolutionary Computation, vol. 26,
pp. 8–22, 2016.

[20] Anita and A. Yadav, “AEFA: artificial electric field algorithm
for global optimization,” Swarm and Evolutionary Compu-
tation, vol. 48, pp. 93–108, 2019.

[21] H. Shareef, A. A. Ibrahim, and A. H. Mutlag, “Lightning
search algorithm,” Applied Soft Computing, vol. 36, pp. 315–
333, 2015.

[22] S. Gupta and K. Deep, “Improved sine cosine algorithm with
crossover scheme for global optimization,” Knowledge-Based
Systems, vol. 165, pp. 374–406, 2019.

[23] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm
optimization,” in Proceedings of the 1999 Congress on Evo-
lutionary Computation-CEC99, pp. 1945–1950, IEEE, Wash-
ington, DC, USA, July 1999.

[24] W.-C. Hong, “Chaotic particle swarm optimization algorithm
in a support vector regression electric load forecasting
model,” Energy Conversion and Management, vol. 50, no. 1,
pp. 105–117, 2009.

[25] B. Liu, L. Wang, Y.-H. Jin, F. Tang, and D.-X. Huang, “Im-
proved particle swarm optimization combined with chaos,”
Chaos, Solitons & Fractals, vol. 25, no. 5, pp. 1261–1271, 2005.

[26] H. Zapata, N. Perozo, W. Angulo, and J. Contreras, “A hybrid
swarm algorithm for collective construction of 3D structures,”
International Journal of Artificial Intelligence, vol. 18, no. 1,
pp. 1–18, 2020.

[27] D. Karaboga, “An idea based on honey bee swarm for nu-
merical optimization,” Technical Report-tr06, Erciyes Uni-
versity, Engineering Faculty, Computer Engineering
Department, Kayseri, Turkey, 2005.

[28] T. Dokeroglu, E. Sevinc, T. Kucukyilmaz, and A. Cosar, “A
survey on new generation metaheuristic algorithms,” Com-
puters & Industrial Engineering, vol. 137, Article ID 106040,
2019.

[29] Y. Xue, J. Jiang, B. Zhao, and T. Ma, “A self-adaptive artificial
bee colony algorithm based on global best for global opti-
mization,” Soft Computing, vol. 22, no. 9, pp. 2935–2952, 2018.

[30] X.-S. Yang and S. Deb, “Cuckoo search via levy flights,” in
Proceedings of the 2009 World Congress on Nature & Bio-
logically inspired Computing (NaBIC), pp. 210–214, IEEE,
Coimbatore, India, December 2009.

[31] A. K. Kar, “Bio inspired computing–a review of algorithms
and scope of applications,” Expert Systems with Applications,
vol. 59, pp. 20–32, 2016.

[32] X.-S. Yang and S. Deb, “Cuckoo search: recent advances and
applications,” Neural Computing and Applications, vol. 24,
no. 1, pp. 169–174, 2014.

[33] Abed-alguni and H. Bilal, “Island-based cuckoo search with
highly disruptive polynomial mutation,” International Journal
of Artificial Intelligence, vol. 17, no. 1, pp. 57–82, 2019.

Computational Intelligence and Neuroscience 23

[34] X. S. Yang and A. H. Gandomi, “Bat algorithm: a novel
approach for global engineering optimization,” Engineering
Computations, vol. 29, no. 5, 2012.

[35] S. Li, H. Chen, M.Wang, A. A. Heidari, and S. Mirjalili, “Slime
mould algorithm: a new method for stochastic optimization,”
Future Generation Computer Systems, vol. 111, pp. 300–323,
2020.

[36] R.-E. Precup, R.-C. David, R.-C. Roman, E. M. Petriu, and
A.-I. Szedlak-Stinean, “Slime mould algorithm-based tuning
of cost-effective fuzzy controllers for servo systems,” Inter-
national Journal of Computational Intelligence Systems,
vol. 14, no. 1, pp. 1042–1052, 2021.

[37] K. M. Passino, “Bacterial foraging optimization,” Interna-
tional Journal of Swarm Intelligence Research, vol. 1, no. 1,
pp. 1–16, 2010.

[38] A. H. Gandomi and A. H. Alavi, “Krill herd: a new bio-in-
spired optimization algorithm,” Communications in Nonlin-
ear Science and Numerical Simulation, vol. 17, no. 12,
pp. 4831–4845, 2012.

[39] Z. Cui and X. Cai, “Artificial plant optimization algorithm,” in
Swarm Intelligence and Bio-Inspired Computation, pp. 351–
365, Elsevier, Amsterdam, Netherlands, 2013.

[40] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,”
Advances in Engineering Software, vol. 69, pp. 46–61, 2014.

[41] A.-b. Meng, Y.-c. Chen, H. Yin, and S.-z. Chen, “Crisscross
optimization algorithm and its application,” Knowledge-Based
Systems, vol. 67, pp. 218–229, 2014.

[42] S. Mirjalili and A. Lewis, “+e whale optimization algorithm,”
Advances in Engineering Software, vol. 95, pp. 51–67, 2016.

[43] A. Askarzadeh, “A novel metaheuristic method for solving
constrained engineering optimization problems: crow search
algorithm,” Computers & Structures, vol. 169, pp. 1–12, 2016.

[44] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris,
and S. M. Mirjalili, “Salp swarm algorithm: a bio-inspired
optimizer for engineering design problems,” Advances in
Engineering Software, vol. 114, pp. 163–191, 2017.

[45] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and
H. Chen, “Harris hawks optimization: algorithm and appli-
cations,” Future Generation Computer Systems, vol. 97,
pp. 849–872, 2019.

[46] S. Shadravan, H. R. Naji, and V. K. Bardsiri, “+e sailfish
optimizer: a novel nature-inspired metaheuristic algorithm
for solving constrained engineering optimization problems,”
Engineering Applications of Artificial Intelligence, vol. 80,
pp. 20–34, 2019.

[47] W. Zhao, Z. Zhang, and L. Wang, “Manta ray foraging op-
timization: An effective bio-inspired optimizer for engi-
neering applications,” Engineering Applications of Artificial
Intelligence, vol. 87, Article ID 103300, 2020.

[48] H. A. Alsattar, A. A. Zaidan, and B. B. Zaidan, “Novel meta-
heuristic bald eagle search optimisation algorithm,” Artificial
Intelligence Review, vol. 53, no. 3, pp. 2237–2264, 2020.

[49] G. G. Wang, S. Deb, X. Z. Gao, and L. D. S. Coelho, “A new
metaheuristic optimisation algorithm motivated by elephant
herding behaviour,” International Journal of Bio-Inspired
Computation, vol. 8, no. 6, pp. 394–409, 2016.

[50] G. G. Wang, S. Deb, and L. S. Coelho, “Elephant herding
optimization,”, pp. 1–5, in Proceedings of the 2015 3rd In-
ternational Symposium on Computational and Business In-
telligence (ISCBI), IEEE, Bali, Indonesia, December 2015.

[51] M. A. Elhosseini, R. A. El Sehiemy, Y. I. Rashwan, and
X. Z. Gao, “On the performance improvement of elephant
herding optimization algorithm,” Knowledge-Based Systems,
vol. 166, pp. 58–70, 2019.

[52] I. Strumberger, M. Minovic, M. Tuba, and N. Bacanin,
“Performance of elephant herding optimization and tree
growth algorithm adapted for node localization in wireless
sensor networks,” Sensors, vol. 19, no. 11, p. 2515, 2019.

[53] R. R. Rani, D. Ramyachitra, and A. Brindhadevi, “Detection of
dynamic protein complexes through markov clustering based
on elephant herd optimization approach,” Scientific Reports,
vol. 9, no. 1, pp. 1–18, 2019.

[54] A. E. Hassanien, M. Kilany, E. H. Houssein, and H. AlQaheri,
“Intelligent human emotion recognition based on elephant
herding optimization tuned support vector regression,” Bio-
medical Signal Processing and Control, vol. 45, pp. 182–191, 2018.

[55] S. Kowsalya and P. S. Periasamy, “Recognition of Tamil
handwritten character using modified neural network with
aid of elephant herding optimization,” Multimedia Tools and
Applications, vol. 78, no. 17, pp. 25043–25061, 2019.

[56] S. Velliangiri and H. M. Pandey, “Fuzzy-Taylor-elephant herd
optimization inspired Deep Belief Network for DDoS attack
detection and comparison with state-of-the-arts algorithms,”
Future Generation Computer Systems, vol. 110, pp. 80–90,
2020.

[57] N. Javaid and R. Bukhsh, “Appliances scheduling using hybrid
scheme of genetic algorithm and elephant herd optimization
for residential demand response,” in Proceedings of the 2018
32nd International Conference on Advanced Information
Networking and Applications Work-Shops (WAINA),
pp. 210–217, IEEE, Krakow, Poland, May 2018.

[58] F. Chakraborty, P. K. Roy, and D. Nandi, “Oppositional el-
ephant herding optimization with dynamic cauchy mutation
for multilevel image thresholding,” Evolutionary Intelligence,
vol. 12, no. 3, pp. 445–467, 2019.

[59] P. Sun, H. Liu, Y. Zhang, L. Tu, and Q. Meng, “An intensify
atom search optimization for engineering design problems,”
Applied Mathematical Modelling, vol. 89, pp. 837–859, 2021.

[60] H. Xu, Q. Cao, C. Fang et al., “Application of elephant herd
optimization algorithm based on levy flight strategy in in-
trusion detection,” in Proceedings of the 2018 IEEE 4th In-
ternational Symposium on Wireless Systems within the
International Conferences on Intelligent Data Acquisition and
Advanced Computing Systems (IDAACS-SWS), pp. 16–20,
IEEE, Lviv, Ukraine, September 2018.

[61] E. Tuba, R. Capor-Hrosik, A. Alihodzic, R. Jovanovic, and
M. Tuba, “Chaotic elephant herding optimization algorithm,”
in 2018 IEEE 16th World Symposium On Applied Machine
Intelligence and Informatics (SAMI), pp. 213–216, IEEE,
Kosice and Herlany, Slovakia, February 2018.

[62] W. Li, G.-G.Wang, and A. H. Alavi, “Learning-based elephant
herding optimization algorithm for solving numerical opti-
mization problems,” Knowledge-Based Systems, vol. 195,
Article ID 105675, 2020.

[63] A. A. Ismaeel, I. A. Elshaarawy, E. H. Houssein, F. H. Ismail,
and A. E. Hassanien, “Enhanced elephant herding optimi-
zation for global optimization,” IEEE Access, vol. 7, pp. 34
738–34 752, 2019.

[64] J. Li, L. Guo, Y. Li, and C. Liu, “Enhancing elephant herding
optimization with novel individual updating strategies for
large-scale optimization problems,”Mathematics, vol. 7, no. 5,
p. 395, 2019.

[65] A. Soares, R. Râbelo, and A. Delbem, “Optimization based on
phylogram analysis,” Expert Systems with Applications,
vol. 78, pp. 32–50, 2017.

[66] D. H. Wolpert and W. G. Macready, “No free lunch theorems
for optimization,” IEEE Transactions on Evolutionary Com-
putation, vol. 1, no. 1, pp. 67–82, 1997.

24 Computational Intelligence and Neuroscience

[67] N. Khanduja and B. Bhushan, “Recent advances and appli-
cation of metaheuristic algorithms: a survey (2014-2020),”
Metaheuristic and Evolutionary Computation: Algorithms and
Applications, vol. 916, pp. 207–228, 2021.

[68] W. Yang, K. Xia, T. Li, M. Xie, and Y. Zhao, “An improved
transient search optimization with neighborhood dimen-
sional learning for global optimization problems,” Symmetry,
vol. 13, no. 2, p. 244, 2021.

[69] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama,
“Opposition-based differential evolution,” IEEE Transactions
on Evolutionary Computation, vol. 12, no. 1, pp. 64–79, 2008.

[70] Y. Zhang, “Backtracking search algorithm with specular re-
flection learning for global optimization,” Knowledge-Based
Systems, vol. 212, Article ID 106546, 2021.

[71] S. Nama, A. K. Saha, and S. Sharma, “Performance up-gradation
of symbiotic organisms search by backtracking search algo-
rithm,” Journal of Ambient Intelligence and Humanized Com-
puting, pp. 1–42, 2021.

[72] C. Yu, Z. Cai, X. Ye et al., “Quantum-like mutation-induced
dragonfly-inspired optimization approach,”Mathematics and
Computers in Simulation, vol. 178, pp. 259–289, 2020.

[73] E. Tanyildizi and G. Demir, “Golden sine algorithm: a novel
math-inspired algorithm,” Advances in Electrical and Com-
puter Engineering, vol. 17, no. 2, pp. 71–78, 2017.

[74] R. Meddis, “Unified analysis of variance by ranks,” British
Journal of Mathematical and Statistical Psychology, vol. 33,
no. 1, pp. 84–98, 1980.

[75] F. Wilcoxon, “Individual comparisons by ranking methods,”
in Springer Series in Statistics, Breakthroughs in Statistics,
pp. 196–202, Springer, Berlin, Germany, 1992.

[76] S. Garćıa, D. Molina, M. Lozano, and F. Herrera, “A study on
the use of non-parametric tests for analyzing the evolutionary
algorithms’ behaviour: a case study on the CEC’2005 special
session on real parameter optimization,” Journal of Heuristics,
vol. 15, no. 6, pp. 617–644, 2009.

[77] Q. Fan, H. Huang, Y. Li, Z. Han, Y. Hu, and D. Huang, “Beetle
antenna strategy based grey wolf optimization,” Expert Sys-
tems with Applications, vol. 165, Article ID 113882, 2021.

[78] J. Derrac, S. Garćıa, D. Molina, and F. Herrera, “A practical
tutorial on the use of nonparametric statistical tests as a
methodology for comparing evolutionary and swarm intel-
ligence algorithms,” Swarm and Evolutionary Computation,
vol. 1, no. 1, pp. 3–18, 2011.

[79] H. Zamani, M. H. Nadimi-Shahraki, and A. H. Gandomi,
“CCSA: conscious neighborhood-based crow search algo-
rithm for solving global optimization problems,” Applied Soft
Computing, vol. 85, Article ID 105583, 2019.

[80] C. A. C. Coello, “+eoretical and numerical constraint-
handling techniques used with evolutionary algorithms: a
survey of the state of the art,” Computer Methods in Applied
Mechanics and Engineering, vol. 191, no. 11-12, pp. 1245–1287,
2002.

[81] B. K. Kannan and S. N. Kramer, “An augmented Lagrange
multiplier based method for mixed integer discrete contin-
uous optimization and its applications to mechanical design,”
Journal of Mechanical Design, vol. 116, no. 2, pp. 405–411,
1994.

[82] E. Mezura-Montes and C. A. C. Coello, “An empirical study
about the usefulness of evolution strategies to solve con-
strained optimization problems,” International Journal of
General Systems, vol. 37, no. 4, pp. 443–473, 2008.

[83] M. Abd Elaziz, D. Oliva, and S. Xiong, “An improved op-
position-based sine cosine algorithm for global optimization,”
Expert Systems with Applications, vol. 90, pp. 484–500, 2017.

[84] J. Tu, H. Chen, J. Liu et al., “Evolutionary biogeography-based
whale optimization methods with communication structure:
towards measuring the balance,” Knowledge-Based Systems,
vol. 212, Article ID 106642, 2021.

[85] J. S. Arora, “Optimum design problem formulation,” in In-
troduction to Optimum Design, pp. 15–54, Elsevier, Amster-
dam, Netherlands, 2004.

[86] A. D. Belegundu and J. S. Arora, “A study of mathematical
programmingmethods for structural optimization. Part II:
numerical results,” International Journal for Numerical
Methods in Engineering, vol. 21, no. 9, pp. 1601–1623, 1985.

[87] C. A. Coello Coello, “Use of a self-adaptive penalty approach
for engineering optimization problems,” Computers in In-
dustry, vol. 41, no. 2, pp. 113–127, 2000.

[88] S. Mirjalili, “Moth-flame optimization algorithm: a novel
nature-inspired heuristic paradigm,” Knowledge-based Sys-
tems, vol. 89, pp. 228–249, 2015.

[89] H. Muthusamy, S. Ravindran, S. Yaacob, and K. Polat, “An
improved elephant herding optimization using sine-cosine
mechanism and opposition based learning for global opti-
mization problems,” Expert Systems with Applications,
vol. 172, Article ID 114607, 2021.

[90] H. Chen, C. Yang, A. A. Heidari, and X. Zhao, “An efficient
double adaptive random spare reinforced whale optimization
algorithm,” Expert Systems with Applications, vol. 154, Article
ID 113018, 2020.

Computational Intelligence and Neuroscience 25

