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a b s t r a c t

This data article introduces a reproducibility dataset with the aim
of allowing the exact replication of all experiments, results and
data tables introduced in our companion paper (Lastra-Díaz et al.,
2019), which introduces the largest experimental survey on
ontology-based semantic similarity methods and Word Embed-
dings (WE) for word similarity reported in the literature. The
implementation of all our experiments, as well as the gathering of
all raw data derived from them, was based on the software
implementation and evaluation of all methods in HESML library
(Lastra-Díaz et al., 2017), and their subsequent recording with
Reprozip (Chirigati et al., 2016). Raw data is made up by a collec-
tion of data files gathering the raw word-similarity values returned
by each method for each word pair evaluated in any benchmark.
Raw data files were processed by running a R-language script with
the aim of computing all evaluation metrics reported in (Lastra-
Díaz et al., 2019), such as Pearson and Spearman correlation, har-
monic score and statistical significance p-values, as well as to
generate automatically all data tables shown in our companion
paper. Our dataset provides all input data files, resources and
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Value of the data
� This data is useful for the research community for certain reasons as follows. First, this data significantly simplifies the

development of large benchmarks on word similarity and relatedness based on ontology-based methods and word
embeddings, as well as the implementation of new methods, by gathering most word similarity and relatedness
benchmarks, as well as most recent and best performing ontology-based semantic similarity measures based onWordNet
and pre-trained word embeddingmodels, together with all complementary software tools (see appendix B [1]) and report
generation script (post-processing R-script) into a same repository [15] and common software platform [13]. Thus, this
data avoids the tedious and sometimes complex task of gathering all these aforementioned experimentation resources, as
well as the integration and set up of multiple independent software libraries and tools, or a software implementation from
scratch of many methods reported in the literature. Second, this data provides for the first time a fully reproducible
experimental survey of ontology-based semantic similarity measures andword embeddings implemented into a common
software platform, which allows an easy replication of all methods, experiments and results on word similarity and
relatedness reported in our companion paper [1]. And third, this data is expected to become into a standard benchmark for
this line of research as well as a development platform for new methods and experiments.

� The research community in the fields of Natural Language processing (NLP), Information Retrieval (IR) and Artificial In-
telligence (AI) can benefit from this data by using it in some research tasks as follows: (1) evaluation of methods for the
estimation of the degree of similarity and relatedness between words; (2) evaluation and development of applications
based on word similarity and relatedness methods; (3) replication of benchmarks on word similarity and relatedness,
such as those introduced in our companion paper [1]; (4) development of new methods for the estimation of word
similarity and relatedness; (5) further data analysis and insights by analyzing the raw similarity and relatedness values
returned by all methods evaluated in our companion paper [1]; and finally, (6) teaching and training on ontology-based
semantic measures and word embeddings.

� This data can be used for further insights and development of experiments by editing and running our main HESML-based
experimentation file (see Table 1) to set up other unexplored word similarity benchmarks and pre-trained word
embedding models, as well other new or existing word similarity methods implemented in HESML software library.

� Another value of this data is that it provides two self-contained and reproducible experiments based on HESML and
Reprozip respectively, which are easily portable and reproducible in any Java-complaint platform, and whose
reproducibility is warranted in the long-term. On one hand, HESML is a self-contained Java software library, and thus it
inherits all portability and reproducibility advantages provided by the Java platform. And on the other hand, our Reprozip-
based reproducible experiment file provides a further reproducibility warranty in the long-term by capturing and
packaging into a same execution unit all experimentation program dependencies, being able to reproduce the packaged
experiments onto any other platform regardless of the hardware and software configuration used in their creation.

� Finally, a further significant value of this data is that it provides for the first time the raw similarity values returned by
most of ontology-based semantic similarity methods and word embedding models proposed during the last 30 years of
research up to now in the evaluation of the largest set of word similarity and relatedness benchmarks reported in the
literature [1]. This data provides at least three new research possibilities to the research community as follows: (1) to
carry-out further data analysis on these methods with the aim of drawing new insights; (2) the exploration of aggregated
methods based on linear or non-linear combinations as preliminary explored in our companion paper [1]; and (3) the
capability of validating other software implementations of the family of methods evaluated herein by comparing the raw
similarity values provided herein with the values returned by the methods being validated or reproduced.
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1. Data

Table 1 details the data files included in the reproducibility dataset [15] for word similarity and
relatedness benchmarks introduced by this article. Likewise, Table 2 details all pre-trained word
embedding models packaged into the “WordEmbeddings.zip” file, whilst Table 3 details all word sim-
ilarity datasets packaged into the “Word_Similarity_Datasets.zip” file.

Table 4 details all raw output data files of our experiments packaged into “raw_-
output_benchmark_all_datasets.zip” file which report the word similarity values obtained in the eval-
uation of all methods in all word similarity datasets. Finally, Table 5 details our processed output data
files packaged into “processed_output_benchmarks.zip” file which contain the evaluation metrics as
reported in data tables shown in our companion paper [1].
2. Experimental design, materials, and methods

Main aim of our aforementioned experiments was to carry-out the largest, unified and reproducible
experimental study onto the state of the art in the families of ontology-based semantic similarity



Table 1
Content of our reproducibility dataset which is publicly available at the UNED Dataverse repository [15].

Data filename Description
appendix-reproducible-experiments.pdf Copy of the appendix B of our companion paper [1] introducing a detailed

protocol to use this dataset.
benchmark_survey.exp HESML reproducible experiment file which allows to reproduce all our

experiments and results by running HESMLclient.
embeddings_vs_ontomeasures_final_tables.R A post-processing R script file which processes all raw similarity files and

generates a collection of Comma Separated (CSV) files containing all data
tables in our main companion paper [1].

processed_output_benchmarks.zip This ZIP file contains all processed CSV files generated by our post-
processing R script.

raw_output_benchmark_all_datasets.zip This ZIP file contains all raw output similarity files produced by running
HESMLclient program with our ‘benchmark_survey.exp’ reproducible
experiment file as input. Thus, it contains all our raw experimental data.

WN_ontology_measures_vs_embeddings.rpz Reprozip file to reproduce all our experiments in the long-term on any
Reprozip compliant platform regardless the availability of the original
platform used in our experiments.

WordEmbeddings.zip This ZIP file contains all pre-trained word embedding models evaluated in
our experiments.

Word_Similarity_Datasets.zip This ZIP file contains all word similarity datasets (benchmarks) evaluated in
our experiments.

Table 2
Pre-trained word embedding models packaged into the WordEmbeddings.zip file [15].

Filename WE model Primary source

attract-reppel.emb Attract-repel [20] https://github.com/nmrksic/attract-repel
fastext.emb FastText [3] https://github.com/facebookresearch/fastText/blob/

master/pretrained-vectors.md
glove.emb GloVe [22] https://nlp.stanford.edu/projects/glove/
cbow.emb CBOW [17] https://code.google.com/archive/p/word2vec/
sp.500d.emb SymPatterns (SP-500d) [26] https://homes.cs.washington.edu/~roysch/papers/sp_

embeddings/sp_embeddings.html
paragram-ws.emb Paragram-ws [28] https://www.cs.cmu.edu/~jwieting/
paragram-sl.emb Paragram-sl [28] https://www.cs.cmu.edu/~jwieting/
cf.emb Counter-fitting [21] https://github.com/nmrksic/counter-fitting
wordnet-randomwalks.emb WN-RandomWalks [9] http://ixa2.si.ehu.es/ukb/
wordnet-ukb.ppv WN-UKB [2] http://ixa2.si.ehu.es/ukb/
nasari/en_wordsenses_BN.txt
nasari/nasari-unified

Nasari [5] http://lcl.uniroma1.it/nasari/
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measures and Word Embedding (WE) models reported in the literature, together with a detailed and
reproducible statistical significance analysis of the results. For this reason, we designed an experi-
mental setup based on the software implementation of all methods evaluated in our experiments into a
common software library called HESML [14]. HESML is a scalable and efficient self-contained Java
software library of semantic measures based on WordNet whose latest version, called HESML V1R4
[13], also supports the evaluation of pre-trained word embedding files. HESML sets a self-contained
experimentation platform on word similarity which is especially well suited to run large experi-
mental surveys by supporting the running of automatic reproducible experiment files based on a XML-
based file format, such as the ‘benchmark_survey.exp’ file detailed in Table 1.

All our experiments and raw output datawere generated by running the HESMLclient programwith
the ‘benchmark_reproducible.exp’ file (see Table 1) as shown in Fig. 1. Likewise, the running of
HESMLclient program was recorded with the Reprozip program [6] with the aim of generating the
‘WN_ontology_measures_vs_embeddings.rpz’ file detailed in Table 1. ReproZip is a virtualization tool
whose aim is towarrant the exact replication of experimental results in the long-term by capturing and
packaging into a same execution unit all experimentation program dependencies, being able to

https://github.com/nmrksic/attract-repel
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/word2vec/
https://homes.cs.washington.edu/%7Eroysch/papers/sp_embeddings/sp_embeddings.html
https://homes.cs.washington.edu/%7Eroysch/papers/sp_embeddings/sp_embeddings.html
https://www.cs.cmu.edu/%7Ejwieting/
https://www.cs.cmu.edu/%7Ejwieting/
https://github.com/nmrksic/counter-fitting
http://ixa2.si.ehu.es/ukb/
http://ixa2.si.ehu.es/ukb/
http://lcl.uniroma1.it/nasari/


Table 3
Detail of the main features of all word similarity and relatedness datasets evaluated in our companion paper [1] and packaged
into the Word_Similarity_Datasets.zip file. We use the following abbreviations and acronyms in table above: WordNet (WN),
Similarity (Sim), Relatedness (Rel), Nouns (N), Verbs (V) and Adjectives (A).

Dataset Content Type #word pairs Filename (*.csv)

MC28 [19] Nouns Similarity 28 Miller_Charles_28_dataset
RG65 [25] Nouns Similarity 65 Rubenstein_Goodenough_dataset
PSfull [23] Nouns Similarity 65 PirroSeco_full_dataset
Agirre201 [1] Nouns Similarity 201 Agirre201_lowercase_dataset
SimLex665 [11] Nouns Similarity 665 SimLex665_dataset
MTurk771 [10] Nouns Relatedness 771 Halawi_MTURK771_dataset
MTurk287/235 [24] Nouns Relatedness 235 Radinsky_MTurk287_filtered235_dataset
WS353Rel [7] Nouns Relatedness 245 WordSim353Rel_dataset
Rel122 [27] Nouns Relatedness 122 Rel122_dataset
SCWS [12] Nouns Relatedness 1994 SCWS1994_dataset
SimLex222 [11] Verbs Similarity 222 SimLex222_verbs_dataset
SimVerb3500 [8] Verbs Similarity 3500 Gerz_SimVerb3500_dataset
YP130 [29] Verbs Relatedness 130 Yang_YP130_dataset
WS353Full [7] N, V, A Relatedness 353 WordSim353Full_dataset
SimLex999 [11] N,V,A Similarity 999 SimLex999_dataset
MEN [4] N,V,A Relatedness 3000 MEN_dataset
RW2034 [16] N,V,A Relatedness 2034 RareWords2034_dataset
RW1401 [16] N,V,A Relatedness 2034 RareWords1401_dataset
SimLex111 [11] Adjectives Similarity 111 SimLex111_adjectives_dataset
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reproduce the packaged experiments onto any other platform regardless of the hardware and software
configuration used in their creation. Thus, our aforementioned Reprozip file allows to reproduce our
experiments in any platform supported by Reprounzip, which includes most Linux-based and
Windows-based systems, regardless the software and hardware setup used in our experiments.

Fig. 1 shows a concept map detailing our experimental setup to run automatically all experiments
and results reported in our companion paper [1]. Appendix B of our companion paper introduces a very
detailed reproducibility protocol which explains how to use our reproducibility dataset [15] to
reproduce all our experiments, as well as how to reproduce all output raw and processed data files
detailed in Tables 4 and 5 from scratch. A copy of this later appendix is included in ‘appendix-repro-
ducible-experiments.pdf’ file detailed in Table 1.
3. Generation of our raw and processed data

Main raw output data provided by our dataset is a collection of files packaged into ‘raw_-
output_benchmark_all_datasets.zip‘ file which contain the raw similarity values obtained by the
evaluation of all word similarity methods (see Tables 1 and 2 [1]) in all word similarity and relatedness
benchmarks packaged into ‘Word_Similarity_Dataset.zip’ detailed in Table 3. Fig. 1 shows a concept map
which allows to understand the experimental setup used to run our experiments and to generate all
raw output similarity files as detailed in Table 4.

Main steps in the running of our experiments and generation of our raw output data are as follows:

(1) Experiments are generated by running the following HESMLclient.jar program with the
‘benchmark_survey.exp’ file as main input parameter, such as detailed in Appendix B.4.1 of our
companion paper [1].

(2) HESMLclient program loads the benchmark_reproducible.exp experiment file to create an
instance of aWordNet-based experiment object implemented byHESML library. Main input data
to run any single experiment is shown in green in Fig. 1, and it is made up by the following
information and input files:

a. Filename of the WordNet [18] noun database used for the experiments. HESML library is

distributed with three full versions of WordNet, versions 2.1, 3.0 and 3.1. Thus, any user could



Table 4
Collection of raw output files generated by our reproducible experiment which are packaged into
raw_output_benchmark_all_datasets.zip file as shown in Table 1. Each raw output file contains the raw
similarity or relatedness values returned for each word pair in a specific word similarity or relatedness
dataset (benchmark) by each semantic measure evaluated in our companion paper [1].

Dataset Raw output filename (*.csv)

MC28 [19] raw_similarity_values_MC28_dataset
RG65 [25] raw_similarity_values_RG65_dataset
PSfull [23] raw_similarity_values_PSfull_dataset
Agirre201 [1] raw_similarity_values_Agirre201_lowercase_dataset
SimLex665 [11] raw_similarity_values_SimLex665_dataset
MTurk771 [10] raw_similarity_values_MTurk771_dataset
MTurk287/235 [24] raw_similarity_values_MTurk287-235_dataset
WS353Rel [7] raw_similarity_values_WS353Rel_dataset
Rel122 [27] raw_similarity_values_Rel122_dataset
SCWS [12] raw_similarity_values_WS353Full_dataset
SimLex222 [11] raw_similarity_values_SimLex111_dataset
SimVerb3500 [8] raw_similarity_values_SimLex222_dataset
YP130 [29] raw_similarity_values_SimLex999_dataset
WS353Full [7] raw_similarity_values_SimVerb3500_dataset
SimLex999 [11] raw_similarity_values_MEN_dataset
MEN [4] raw_similarity_values_YP130_dataset
RW2034 [16] raw_similarity_values_RareWords2034_dataset
RW1401 [16] raw_similarity_values_RareWords1401_dataset
SimLex111 [11] raw_similarity_values_SCWS1994_dataset

Table 5
Collection of processed output files packaged into “processed_output_benchmarks.zip” file which are generated by running the
'embeddings_vs_ontomeasures_final_tables.R' script file onto the output directory containing all raw data files shown in Table 4,
together with their corresponding tables in our companion paper [1].

# Post-processing output In companion paper [1]

1 table_Pearson_SimDatasets.csv Table 4 (full precision)
2 table_Pearson_SimDatasets_rounded.csv Table 4
3 table_Spearman_SimDatasets.csv Table 5 (full precision)
4 table_Spearman_SimDatasets_rounded.csv Table 5
5 table_Pearson_RelDatasets.csv table 6 (full precision)
6 table_Pearson_RelDatasets_rounded.csv table 6
7 table_Spearman_RelDatasets.csv table 7 (full precision)
8 table_Spearman_RelDatasets_rounded.csv table 7
9 table_joined_allEmbeddings_similarity.csv table 8 (full precision)
10 table_joined_allEmbeddings_similarity_rounded.csv table 8
11 table_joined_allEmbeddings_relatedness.csv table 9 (full precision)
12 table_joined_allEmbeddings_relatedness_rounded.csv table 9
13 table_pvalues_AttractReppel_allembeddings_similarity.csv table A.1 (appendix A)
14 table_pvalues_Paragramws_allembeddings_relatedness.csv table A.2 (appendix A)
15 table_AvgMeasures_Pearson_SimDatasets.csv table A.3 (full precision)
16 table_AvgMeasures_Pearson_SimDatasets_rouned.csv table A.3 (appendix A)
17 table_AvgMeasures_Spearman_SimDatasets.csv table A.4 (full precision)
18 table_AvgMeasures_Spearman_SimDatasets_rounded.csv table A.4 (appendix A)
19 table_AvgMeasures_Pearson_RelDatasets.csv table A.5 (full precision)
20 table_AvgMeasures_Pearson_RelDatasets_rounded.csv table A.5 (appendix A)
21 table_AvgMeasures_Spearman_RelDatasets.csv table A.6 (full precision)
22 table_AvgMeasures_Spearman_RelDatasets_rounded.csv table A.6 (appendix A)
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use any of them for his experiments; however, our experiments and datawere generatedwith
WordNet 3.0.

b. Filename of the word similarity or relatedness dataset (benchmark) to be evaluated. These
word similarity/relatedness benchmark are distributed with HESML, but they have been also



Fig. 1. Concept map detailing our experimental setup to run automatically all experiments reported in our companion paper [14]
and generate raw and processed data introduced herein. Input data files are shown in green, whilst output raw and processed
data files are shown in yellow and software components are shown in blue. All reproducible experiments are specified into a single
experiment file called ‘benchmark_survey.exp’ which is executed by HESMLclient program as detailed in section Appendix B.4.1. of
‘appendix-reproducible-experiments.pdf’ file. Both aforementioned files are detailed in Table 1.

1 nht
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gathered into the ‘Word_Similarity_Datasets.zip’ file, as detailed in Table 1, with the aim of
simplifying their access to the research community by avoiding the download and installation
of HESML library if it would not be needed.

c. List of ontology-based semantic similarity measures based on WordNet.
d. List of pre-trained word embedding models (files) to be evaluated. Because the large size of

these later files, they are not distributed with HESML, neither in GitHub1 nor Mendeley re-
pository [13]. Thus, we gathered all pre-trained models used in our experiments into the
‘WordEmbeddings.zip’ file (see Table 1) with the aim of warranting the permanent access to
them, as well as the reproducibility of our data and experiments in the long term.
(3) WordNet-based HESML experiment object loads a WordNet database instance in memory and
runs every single experiment by carrying-out the following tasks:

a. To load in memory the word similarity dataset file containing the collection of word pairs

whose semantic similarity or relatedness will be evaluated in the same experiment.
b. To instance an object implementing every semantic measure specified for the single

experiment.
c. To evaluate and record the semantic similarity returned by each semantic measure for each

word pair in the previously loaded word-similarity dataset.
d. To build an in-memory matrix containing the word similarity returned by each semantic

measure for each word pair.
e. To write a raw output data file which contains the word similarity values for all word pairs

included by each word similarity dataset as that shown in yellow in Fig. 1. Every single
WordNet-based HESML experiment writes a single raw output similarity file in comma-
separated (*.csv) file format for each word similarity dataset (benchmark) as detailed in
Table 4.
tps://github.com/jjlastra/HESML.git.

https://github.com/jjlastra/HESML.git
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(4) All raw data similarity files are loaded and processed by running the complementary R-script
post-processing file (see Table 1) with the aim of computing all metrics reported in all data tables
of our companion paper [1]. The running of our aforementioned R-script file into R or RStudio
statistical packages generates all output processed files detailed in Table 5.

For amore detailed information on the use of our dataset and the replication of our experiments, we
refer any reader to the appendix B of our companion paper [1].

4. Extending or modifying our experiments

Every word similarity or relatedness experiment specified in HESML platform is coded into a XML-
based file, such as the ‘benchmark_survey.exp’ file detailed in previous section, and it is based on the
definition of the collection of input parameters detailed in step 2 above. Thus, any user of our dataset
could use it as a template to carry-out new experiments by editing this later experimentation file and
selecting other ontology-based semantic measures currently implemented in HESML, as well as other
word similarity datasets by providing new benchmarks in the same text-based CSV file format, or other
unexplored pre-trained word embedding models by providing their vector files. For more detailed
information, we refer the reader to the release notes of HESML V1R4 [13] and the original paper
introducing HESML library [14]. Likewise, we invite any reader to subscribe to the HESML community
forum for questions by sending an email to the hesmlþsubscribe@googlegroups.com address.
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