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Purpose: Toevaluate the feasibility of automated segmentationof pigmented choroidal
lesions (PCLs) in optical coherence tomography (OCT) data and compare the perfor-
mance of different deep neural networks.

Methods: Swept-source OCT image volumes were annotated pixel-wise for PCLs and
background. Three deep neural network architectures were applied to the data: the
multi-dimensional gated recurrent units (MD-GRU), the V-Net, and the nnU-Net. The
nnU-Net was used to compare the performance of two-dimensional (2D) versus three-
dimensional (3D) predictions.

Results: A total of 121 OCT volumes were analyzed (100 normal and 21 PCLs).
Automated PCL segmentations were successful with all neural networks. The 3D nnU-
Net predictions showed the highest recall with a mean of 0.77 ± 0.22 (MD-GRU, 0.60
± 0.31; V-Net, 0.61 ± 0.25). The 3D nnU-Net predicted PCLs with a Dice coefficient of
0.78± 0.13, outperforming MD-GRU (0.62 ± 0.23) and V-Net (0.59± 0.24). The smallest
distance to themanual annotationwas found using 3D nnU-Net with ameanmaximum
Hausdorffdistanceof 315±172μm (MD-GRU, 1542±1169μm;V-Net, 2408±1060μm).
The 3DnnU-Net showeda superior performance comparedwith stacked 2Dpredictions.

Conclusions: The feasibility of automated deep learning segmentation of PCLs was
demonstrated in OCT data. The neural network architecture had a relevant impact on
PCL predictions.

Translational Relevance: This work serves as proof of concept for segmentations of
choroidal pathologies in volumetric OCT data; improvements are conceivable to meet
clinical demands for the diagnosis, monitoring, and treatment evaluation of PCLs.

Introduction

The development of novel deep learning methods
has shown substantial improvements for many
applications in medical image analysis, such as
the automated segmentation of various lesions on
the pixel level. The aim of image segmentation is
to identify target structures at a pixel level and
separate them from the remaining image. In the
medical field, image segmentation is used for physi-

ological as well as pathological structures such as
tumours.1–3

Optical coherence tomography (OCT) is based on
the reflective pattern of laser beams and allows for
the imaging of ocular structures at the microme-
ter scale.4 OCT has been used increasingly for the
automated segmentation of structures, such as the
ocular compartments, retinal layers, or fluids.5–7 Using
the vast amount of OCT data, deep learning has
facilitated automated segmentation of OCT images
at the pixel level for retinal pathologies such as
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age-relatedmacular degeneration, diabetic retinopathy,
and glaucoma.8–10

In contrast to the very abundant deep learning
literature concerning the retina, there have been few
reports on the choroid.11–14 Pigmented choroidal
lesions (PCLs) are a type of choroidal lesion that
can be benign (such as nevi) or malignant (such
as melanoma).15 They are often found incidentally
during ophthalmic examination and further charac-
terized using ultrasound examination, fluorescein
angiography, or OCT.16,17 OCT is currently not the
main imaging modality to investigate PCLs but can
be used to quantify their volumes. Its micrometer
resolution allows very precise measurements, which
could be helpful for PCL monitoring, especially in
the case of small lesions.16 However, manual annota-
tions for the volumetric quantification of lesions are
time-consuming and their quantification could be facil-
itated by automated segmentation. To the best of our
knowledge, there is no report on the automated
segmentation of PCLs in OCT data. Therefore, this
proof-of-concept study assessed such automated
segmentation using three different deep neural
networks, named multi-dimensional gated recurrent
units (MD-GRU), V-Net, and nnU-Net.18–20

Methods

Data Acquisition

Existing data from a previous study were used
to compare the segmentation of PCLs.21 Thus, the
current study was performed in accordance with the
ethical standards of the Helsinki Declaration and was
approved by the Ethics Committee Nordwest- und
Zentralschweiz, Switzerland (ID: EKNZ UBE-15/89
and EKNZUBE-l5/72). Written informed consent was
obtained from all subjects.

All subjects were examined via slit-lamp examina-
tion and a clinical fundus inspection beforeOCT acqui-
sition. Refractive tests without axial length measure-
ments were performed. In the absence of patholog-
ical retinal changes, the subject was included in the
normal group. The normal eyes were included as a
negative control group for the training and testing
of the deep learning neural networks. The inclu-
sion criterion for the PCL group was clinical visibil-
ity of a melanocytic and relatively well-demarcated
lesion that could be recorded entirely with the OCT
imaging protocol. There was no exclusion based on
the thickness, location, or reflectivity of the PCLs.
Exclusion criteria were the absence or inability to
consent, presence of trauma, ocular inflammation,

poor visibility of the fundus, retinal pathologies such as
retinal detachment or subretinal fluid, marked gliosis,
presence of a macular hole, vascular occlusion, and
inability to steadily fixate.

The data for this study were acquired with a
standard swept-source OCT device without dilated
pupils (Triton DRI SS-OCT, Topcon, Tokyo, Japan)
and comprised optical volumes, each measuring 6 mm
× 6 mm × 2.6 mm (256 B-scans, 512 × 992 pixels).

Manual Annotation of PCLs

Two independent human graders were responsi-
ble for the manual annotations. PM is a trained
ophthalmologist with 25 years of clinical experience
and 20 years of experience with OCT systems; PV
is a medical student with 2 years of work experience
with OCT data. To generate the labels for supervised
learning, the OCT volumes were manually annotated
with the open source FIJI imaging software v2.1.22
The graders visually identified the borders of each
PCL using consequential OCT B-scans. The anterior
border was delineated at the Bruch’s membrane, and
the lateral borders were identified in the change of
texture between the choroidal tissue and the more
homogeneous and hyperreflective PCLs. The poste-
rior border was generated via an interpolation between
the choroidal–scleral borders of the adjacent healthy
tissue in case the posterior border was not visual-
izable through the shadow behind the PCL. Finally,
each outlined lesion was filled and highlighted with
maximum intensity, and the rest of the image was set
as a dark background. The manual annotation process
is presented in Figure 1.

To test the reproducibility of the method, a test
volume consisting of 30 B-scans containing a PCL
was annotated three times by each grader; then, the
obtained volumes were compared for repeatability
using theDice coefficient. For intragrader reproducibil-
ity, the Dice coefficient was calculated between each of
the annotations of a single grader (three comparisons
per grader); for intergrader reproducibility, the Dice
coefficient was calculated between all volumes of differ-
ent graders (nine comparisons in total).

After stacking the generated annotations, the PCL
label was smoothed with 3D Slicer v4.11 (The Slicer
Community, Boston, MA, USA), preserving the same
dimensions as the original volume.23 Hence, for each
voxel in the original volume, the corresponding gener-
ated label stack indicated the location of the PCL.
To optimize the data for neural network training, the
volumes were down-sampled to one-half the size in
each dimension (128 × 256 × 496 pixels).
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Figure 1. Manual annotation process for PCL segmentation in volumetric OCT data. (a) Outline of the PCL in a single B-scan. (b) Filling of
the outline to generate a highlighted PCL. (c) Binary label creation through clearing of the background. (d) Assemblage of the binary labels
for each B-scan in the volume produced a 3D label of the PCL.

Training of the Neural Networks

Three different neural networks were trained with
the data: MD-GRU, V-Net, and nnU-Net. The code
for each neural network is publicly available on
GitHub.24–26 The MD-GRU was developed at the
Department of Biomedical Engineering at the Univer-
sity of Basel.27,28 It was developed specifically for
volumetric image segmentation and initially evaluated
on tumors as well, namely, for magnetic resonance
imaging (MRI)-derived brain data. The V-Net was
developed at the Technical University of Munich,
also specifically for the purpose of volumetric image
segmentation.19 The hyperparameters of the MD-

GRU and V-Net models were determined empirically
on a segmentation dataset containing brain tumours.2
The nnU-Net was developed at the German Cancer
Research Center to deal with the vast differences
found in medical datasets. It provides a U-Net–based
neural network that self-configures according to the
data it is presented with based on several heuris-
tics, such as the image size, the dataset size, and
the available GPU.20 nnU-Net was used to compare
the performance of two-dimensional (2D) versus
three-dimensional (3D) predictions. A summary of
the specific neural network configurations is shown
in Table 1. Training and testing of the neural networks
were performed on an NVIDIA Tesla V100 DGXS

Table 1. Neural Network Configuration Parameters for the 2D and 3D Neural Networks

Neural Network nnU-Net2D MD-GRU V-Net nnU-Net

Dimensionality 2D 3D 3D 3D
Iterations 250’000 50’000 30’000 250’000
K-folds 5 10 10 5
Batch size 50 1 5 2
Window size 512 × 128 40 × 100 × 50 128 × 128 × 128 64 × 288 × 128
Foreground oversampling (%) 33 50 50 33
Rotation X X X
Mirroring X X X X
Rescale X X X
Elastic deformation X X X
Gaussian noise X X X
Gaussian blur X X
Gamma correction X X
Low contrast simulation X X
Optimizer SGD with Nesterov Adadelta Adam SGD with Nesterov
Initial learning rate 0.01 1 0.001 0.01
Descent parameters Momentum 0.99 Rho 0.9 β1 0.9, β2 0.99 Momentum 0.99

MD-GRU, multi-dimensional gated recurrent units; V-Net, volumetric net; nnU-Net, no-new-net; SGD, stochastic gradient
descent.
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Figure 2. Image processing pipeline for PCL segmentation. (a) OCT data with their corresponding labels were loaded into different deep
neural networks (MD-GRU, V-Net, and nnU-Net). (b) Training and testing of the neural networkswere performed using k-fold cross-validation
with training from scratch for each fold. (c) The resulting lesion predictions are displayed in blue, red, green, and yellow according to each
neural network.

16 GB or a NVIDIA Titan RTX 24 GB (Nvidia, Santa
Clara, US).

The dataset was split into myopic (spherical equiv-
alent <−1.0 diopter [D]), emmetropic (≥−1.0 D and
≤+1.0 D), hyperopic (>+1.0 D), and PCL-containing
OCT stacks. These data were then randomly assigned
to 10 different equally sized folds. This was done to
guarantee that the single folds contained a balanced
amount of data from each group, and, in particular,
a similar amount of PCL data. Neural networks were
then trained and tested with k-fold cross-validation on
all folds. For each fold, k–1 subsets of the data were
used for training, and one was used for testing. The
training for each fold was restarted from scratch. The
results of all the test subsets were then evaluated as
shown in Figure 2b. This practice ensured that none
of the training data were used to evaluate the neural
network models.

Data Analyses

The evaluation of the predicted labels was
conducted with statistical, similarity, and distance
measures using common metrics.29 The statistical

methods analyzed the parameters according to the
confusion matrix between the prediction and the
manual annotations. An overview of the formulas
used for the evaluation can be found in Supplementary
Material 1.

Accuracy was assessed for each neural network.
Accuracy is usually a well-established parameter for
deep learning; however, in the current study, there
was a major class imbalance between the PCL and
background voxels. In the present study, a total of
1,966,604,288 matched voxels were present, of which
1,599,136 voxels represented manually annotated
PCLs. Hence, if a neural network had predicted all
the voxels as background, the accuracy would still
have been more than 0.999. This is due to the class
imbalance between PCLs and the background data.

A more appropriate evaluation of the neural
networks was achieved with the statistical measures
recall and precision. Recall is an indicator of the
ratio of the relevant data points predicted compared
with the total amount in the manual annotation, and
precision indicates the ratio of predicted data points
that are relevant.30 The similarity between the manual
annotation and the prediction was assessed with the
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Dice coefficient. The Hausdorff distance was used to
calculate the distance between the two sets, where the
maximum and the 95th percentile of the Hausdorff
distance are presented. The summarized data are
presented as mean± standard deviation over the cross-
validation samples. The programming, configuration
of the neural networks, and evaluations were done with
Unix shell scripts and Python v.3.6 (Python Software
Foundation, Wilmington, DE, USA). The data were
visualized with Python v.3.6 and 3DSlicer v4.11.31

Results

In total, 121 labelled OCT volumes from 71 subjects
were included in the study. Twenty-one eyes from 21
subjects contributed a PCL, of which 7 were located
within the macula. Fifty eyes contributed 100 normal
volume OCTs. The normal group consisted of 34
emmetropic eyes, 32 myopic eyes, and 34 hyperopic
eyes. The annotations on the test volume showed good
reproducibility of the method with a mean intragrader
Dice coefficient of 0.92 ± 0.02 and a mean intergrader
Dice coefficient of 0.88 ± 0.02.

Quantitative Analysis

All neural networks generated automated PCL
segmentation. The 3D nnU-Net generated the best

predictions regarding the mentioned evaluation crite-
ria. The recall of the 3D nnU-Net was 0.77 ± 0.22,
and the precision was 0.59 ± 0.38. Regarding the
precision, the nnU-Net2D trained on only 2D scans
generated the best results at 0.69 ± 0.32. The mean
Dice coefficient for the predictions of the 3D nnU-
Net was 0.78 ± 0.13, outperforming MD-GRU (0.62
± 0.23) and V-Net (0.59 ± 0.24). This Dice coeffi-
cient indicates that there is a major overlap between the
predicted andmanually annotated PCLs. Furthermore,
the predicted PCLs were of similar size compared with
the manual annotations. The 3D version of the nnU-
Net performed best in terms of distance metrics, with
a maximal Hausdorff distance of 315 ± 172 μm (MD-
GRU, 1542 ± 1169 μm; V-Net, 2408 ± 1060 μm). In a
comparison of models trained on 2D and 3D, the 3D
version of the nnU-Net was superior to the 2D version
regarding nearly every metric. A detailed summary of
the evaluation parameters for 2D and 3D is presented
in Table 2.

Qualitative Analysis

This superior performance of the volumetric neural
networks is visualized intuitively in Figure 3a and 3b.
The 3D PCL predictions were more coherent than the
split predictions for the 2D nnU-Net. On single B-
scans, the predictions for all the neural networks were

Table 2. Evaluation Parameters for the 2D and 3D Neural Networks

nnU-Net2D MD-GRU V-Net nnU-Net

Neural Network Mean ± SD Vol Mean ± SD Vol Mean ± SD Vol Mean ± SD Vol

TP 5749 ± 18427 121 7873 ± 23550 121 7217 ± 20327 121 9087 ± 24846 121
TN 16238846 ± 47561 121 16232177 ± 56644 121 16230628 ± 61766 121 16236763 ± 50671 121
FP 866 ± 2541 121 7535 ± 25007 121 9084 ± 34105 121 2949 ± 11083 121
FN 7467 ± 31243 121 5343 ± 26746 121 5999 ± 30822 121 4129 ± 25702 121
Tot pos label 13216 ± 46305 121 13216 ± 46305 121 13216 ± 46305 121 13216 ± 46305 121
Tot pos prediction 6615 ± 20217 121 15408 ± 38250 121 16301 ± 44519 121 12036 ± 31158 121
Accuracy 0.999 ± 0.002 121 0.999 ± 0.002 121 0.999 ± 0.003 121 >0.999 ± 0.002 121
Recall 0.438 ± 0.276 21 0.599 ± 0.305 21 0.611 ± 0.252 21 0.773 ± 0.222 21
Specificity >0.999 ± 0.000 121 >0.999 ± 0.002 121 0.999 ± 0.002 121 >0.999 ± 0.001 121
Precision 0.687 ± 0.319 23 0.318 ± 0.385 41 0.134 ± 0.298 102 0.588 ± 0.383 27
NPV >0.999 ± 0.002 121 >0.999 ± 0.002 121 >0.999 ± 0.002 121 >0.999 ± 0.002 121
FP rate 0 ± 0.000 121 0 ± 0.002 121 0.001 ± 0.002 121 0 ± 0.001 121
FN rate 0.562 ± 0.276 21 0.401 ± 0.305 21 0.389 ± 0.252 21 0.227 ± 0.222 21
False discovery rate 0.313 ± 0.319 23 0.682 ± 0.385 41 0.866 ± 0.298 102 0.412 ± 0.383 27
False omission rate 0 ± 0.002 121 0 ± 0.002 121 0 ± 0.002 121 0 ± 0.002 121
Dice 0.547 ± 0.253 20 0.622 ± 0.230 19 0.593 ± 0.238 20 0.779 ± 0.129 20
HDmax [μm] 1011 ± 892 20 1542 ± 1169 19 2408 ± 1060 21 315 ± 172 20
HD95 [μm] 593 ± 702 20 953 ± 1083 19 1176 ± 1147 21 153 ± 95 20

FN, false negative; FP, false positive; HDmax, maximal Hausdorff distance; HD95, 95th percentile of the Hausdorff distance;
NPV, negative predictive value; SD, standard deviation; Tot pos, total number of positives; TP, true positive; TN, true negative;
Vol, number of volumes (=eyes).

Values of >0.999 indicate that the rounding with precision of three digits would be 1.
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Figure 3. Visualisations of the neural network predictions with overlays on the OCT images and the manual annotations. (a) Volume-
rendered retinal and choroidal compartments. (b) Three-dimensional manual annotations andmodel predictions. (c) Two-dimensional OCT
images and predictions as overlays. (d) Enlarged 2Dmanual annotations and predictions as overlays.

often very similar (Figure 3c). Yet when analyzing the
entire C-Scan, nnU-Net2D missed PCLs in single B-
scans, even though the lesion was identified in adjacent
B-scans. An example of missed lesions in B-scans by
the 2D neural network in the PCL core is illustrated
in Figure 3d. These missing predictions are due to the
input into the neural network where the spatial volume
context is lost when only training with isolated 2D
images.

The visualizations provide further insight into the
segmentation performance of the evaluated neural
networks. Overall, the 3D nnU-Net provided the most

condensed segmentations of PCLs (Figure 3). Three
additional examples are included in Figure 4, where the
generated predictions are presented with the individual
Dice coefficient and the maximumHausdorff distance.
As can be seen, the predicted shapes are centrally
located in the manual annotation; the borders corre-
spond with the manual annotation, slightly surpass-
ing or missing the border. The data show that different
shapes and locations of PCLs can be predicted, be it a
peripheral longitudinal PCL (Fig. 4a), a tortuous PCL
on the posterior pole (Fig. 4b), or a small PCL between
the optic nerve head and the macula (Fig. 4c).
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Figure 4. Example automated PCL segmentations generated using 3D nnU-Net. PCL predictions are shown as a green overlay, andmanual
annotations in are shown in white. (a, d, g) Volume rendered retinal and choroidal compartments. Predicted PCL with corresponding Dice
coefficient and maximum Hausdorff distance. (b, e, h) 3D predictions overlaid over the manual annotations. (c, f, i) Enlarged 2D manual
annotations with overlaid predictions. Axial stretching was performed for a better visualization according to isometric pixels.

Discussion

A PCL is common and typically identified as
a brownish, darkly pigmented lesion in the course
of a routine clinical investigation of the fundus.32,33
Although the majority of PCLs are benign choroidal
nevi, malignant transformation is still possible and is
highly difficult to detect at an early stage, because
tissue sampling for diagnosis is not possible without
damaging healthy tissue.34,35 In this context, OCT
may represent a possible imaging tool to enable early
PCL diagnosis at a micrometer level. It could be
used to guide the quantitative monitoring of PCLs
and support treatment decisions, particularly if it is
enhanced with deep learning tumor segmentation.36

This study presents the first successful automated
segmentation of PCLs in OCT data. In addition,
it compares the segmentation performance of three
different deep learning architectures, MD-GRU, V-
Net, and nnU-Net. Overall, the nnU-Net trained on 3D
data showed the best performance, outperforming the
other models on the key metrics of recall, Dice coeffi-
cient, and maximum Hausdorff distance.

Recall, also known as sensitivity, punishes large
numbers of false negatives in the prediction. Recall was
chosen as the key statistical metric, because it is crucial

not to miss anomalous findings. If the analyzed PCL
in future evaluations was malignant, it would be even
more important not to miss parts of the PCL. The
best-achieved recall score of 0.77 ± 0.22 was achieved
with the 3D nnU-Net, which means that the algorithm
detected around three-quarters of all lesion voxels.

Further, the shape and position of the predicted
PCL should correspond with the actual underlying
tumor. For the similarity evaluation, the Dice coeffi-
cient was used, which is a commonly used key metric
in image segmentation.20 The resulting values of the
3D nnU-Net model with a mean Dice coefficient 0.78
could be used as an orientation when comparing
future PCL segmentations. Although the Dice coeffi-
cients for different tasks are difficult to compare, the
presented model generated predictions in the same
similarity range as neural networks in the RETOUCH
challenge. This challenge investigated the segmentation
of different fluids in retinal OCT images where the best-
performing team achieved a mean Dice coefficient of
0.77, and the average of the participating teams was
0.68.7,37 It is also notable that PCL segmentation is
thought to be a harder task than retinal fluid segmen-
tation, because the borders are more diffuse for PCLs
than retinal fluids in OCT images.

The deviation between the manual annotation
and the prediction can be visualized and qualitatively
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evaluated in 3D as shown in Figure 4. The mismatch
can best be quantified with the Hausdorff distance.
The Hausdorff distance is a good measure for trans-
lating the pixel domain into real-world measures. For
example, with the relatively large voxel sizes in clinical
MRI, a single-pixel deviationmeans that a deviation of
more than 1mm would be induced. A small distance
between predictions and real localization is partic-
ularly important for the radiotherapy guidance of
malignant melanoma.38 With regard to the OCT pixel
domain, a deviation of a single pixel corresponds only
to a deviation in the micrometer range. The proposed
3D nnU-Net prediction had an average maximum
Hausdorff distance of 315 ± 172 μm.

The Dice coefficient as a sole criterion can be
misleading in ocular lesions. As shown in Figure
4, PCLs 4a and 4c had an almost identical Dice
coefficient, but the segmentation quality could be
further discriminated by the Hausdorff distance in μm.
Conversion from pixel distance to micrometers was
performed by readjusting to the original voxel sizes.
This measure was relevant, as it is possible that the
predicted segmentation was correct for a large part
of the lesion and had a good score on similarity but
omitted a section of the PCL (such as a spur).

The implemented neural network configuration was
important; major deviations between the different
neural network architectures were found. Although
MD-GRU and V-Net were trained with parameters
that worked well for segmentation tasks, the self-
configuring nnU-Net framework performed best. The
nnU-Net is based on a heuristic approach, which deter-
mines the neural network configuration based on the
input data characteristics and the available hardware.20
Because the settings from the heuristic approach might
be further optimizable, this shows that using state-of-
the-art neural network architectures is relevant for the
tasks. Further, in this study, the 3D model outper-
formed the 2D model, which produced some nonphys-
iological predictions with gaps on single B-scans. As
all corporal structures are volumetric, 3D segmentation
models should be selected when feasible.

This work could have translational relevance for
patients with PCL because the obtained segmentations
allow for a novel kind of quantification of the PCL
volume and surface area. Clinically, it is not always
evident if such a lesion has a risk of malignant trans-
formation.15 Using OCT-derived volume analysis, the
evolution of potentially malignant lesions could be
followed up quantitatively, and the automated segmen-
tation of PCLs could support clinical decisions. The
risk for metastasis could be monitored at a micrometer
scale, compared with conventional ocular ultrasound
imaging that can only characterize lesions at a millime-

ter scale at a high enough accuracy.39–42 Therefore,
automated segmentation of these small lesions with
OCT could potentially enhance follow-up for patients
and support an earlier diagnosis of malignant PCL
transformation.

Automated segmentation could facilitate the radio-
therapy of malignant lesions; for this, the correct
demarcation of the target tissue is essential. The image
modalities used in a common proton beam radiother-
apy planning include fundus photographs, ultrasound
examination, orthogonal radiographs, and MRI.43–45
In the future, the researchers assume that OCT imaging
could be integrated in adjunction to other modali-
ties into such therapy planning pipelines, because it
provides volumetric information and a much higher
resolution than other imaging modalities currently
in use. Automatically segmented lesions could be
highlighted and controlled by a clinician, which could
ease or even eradicate the time-consuming process
of manual annotations. By integrating automated
deep learning segmentation into the data visualization
pipeline, the structural understanding of a PCL could
be facilitated for both clinicians and patients.

In terms of limitations, the current work has a
relatively low number of PCL cases that were not part
of a screening population. The control group consisted
of healthy participants without PCL masquerades.
However, the main goal of this study was to inves-
tigate feasibility and compare different deep learn-
ing algorithms, which was successful. The obtained
data were derived only from one OCT device without
enhanced-depth imaging. However, the used swept-
sourceOCT technology allowed the visualization of the
choroid and ensured data homogeneity for this initial
proof-of-concept study. To investigate the generaliz-
ability of automated PCL segmentation, future studies
should test for domain adaptation with different acqui-
sition protocols, diverse study populations and differ-
ent OCT scanners.

The intrasubject evolution of PCLs was not
assessed and has yet to be tested to check for the feasi-
bility of a quantitative long-term follow-up study. The
quantitative monitoring of the lesions could compare
automated segmentation against manual annotations,
because, to our knowledge, the volumetric monitor-
ing of PCLs with OCT has not yet been presented.
Another limitation was that a histological examina-
tion of the PCLs was not possible without harming
healthy tissue. Thus, the nature of the lesion could
not be determined, and it remained unknown whether
the lesions were choroidal nevi or if they were malig-
nant tumors. However, because only relatively small,
well-delineated PCLs were included, it can be assumed
that the majority were choroidal nevi. Furthermore,
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human annotation of PCLs may show deviations;
future manually annotated data from different graders
should be included in studies going beyond the present
proof-of-concept study.

Improving the automated segmentation could be
achieved by modifying the neural networks. The three
different neural networks used here were trained
with the best-performing hyperparameters, but they
were not further optimized for this task. In further
optimized configurations, the class imbalance of the
PCLpixel and the background pixel could be taken into
account during training for further improvements.46
As the self-configuring nnU-Net performed the best,
optimization for other network architectures seems
feasible. Such improvements and further validation are
needed to meet clinical demands for the diagnosis,
monitoring, and treatment evaluation of PCLs.

Conclusions

This proof-of-concept study showed that automated
segmentation of PCLs in OCT data with deep learn-
ing is feasible. The neural network architecture had
a relevant impact on PCL predictions. Overall, the
3D nnU-Net showed the best performance among the
evaluated models. Automated deep learning segmen-
tation could be integrated into a volumetric visualiza-
tion pipeline and facilitate structural understanding for
both clinicians and patients.
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