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Background: Artificial intelligence-based disease prediction models have a greater

potential to screen COVID-19 patients than conventional methods. However, their

application has been restricted because of their underlying black-box nature.

Objective: To addressed this issue, an explainable artificial intelligence (XAI) approach

was developed to screen patients for COVID-19.

Methods: A retrospective study consisting of 1,737 participants (759 COVID-19 patients

and 978 controls) admitted to San Raphael Hospital (OSR) from February to May 2020

was used to construct a diagnosis model. Finally, 32 key blood test indices from 1,374

participants were used for screening patients for COVID-19. Four ensemble learning

algorithms were used: random forest (RF), adaptive boosting (AdaBoost), gradient

boosting decision tree (GBDT), and extreme gradient boosting (XGBoost). Feature

importance from the perspective of the clinical domain and visualized interpretations were

illustrated by using local interpretable model-agnostic explanations (LIME) plots.

Results: The GBDT model [area under the curve (AUC): 86.4%; 95% confidence

interval (CI) 0.821–0.907] outperformed the RF model (AUC: 85.7%; 95% CI 0.813–

0.902), AdaBoost model (AUC: 85.4%; 95% CI 0.810–0.899), and XGBoost model

(AUC: 84.9%; 95% CI 0.803–0.894) in distinguishing patients with COVID-19 from those

without. The cumulative feature importance of lactate dehydrogenase, white blood cells,

and eosinophil counts was 0.145, 0.130, and 0.128, respectively.

Conclusions: Ensemble machining learning (ML) approaches, mainly GBDT and LIME

plots, are efficient for screening patients with COVID-19 and might serve as a potential

tool in the auxiliary diagnosis of COVID-19. Patients with higher WBC count, higher LDH

level, or higher EOT count, were more likely to have COVID-19.

Keywords: artificial intelligence, ensemble learning, explainable, disease prediction, COVID-19

INTRODUCTION

Coronavirus disease 2019 (COVID-19, also called novel coronavirus pneumonia) is characterized
by fever, cough, and shortness of breath. COVID-19 spreads rapidly due to its highly infectious
nature, and caused huge manpower and material resources losses (1, 2). Early detection, diagnosis,
isolation, and treatment are keys to improving the cure and survival rates of COVID-19 patients.
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To respond to this unprecedented pandemic emergency, early
identification of infected patients is very important. Infection
with severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), the virus that causes COVID-19 is typically identified
with molecular detection using reverse transcriptase PCR (RT–
PCR) as the gold standard (3). However, the test process is time-
consuming (no<4 h under ideal conditions) and requires the use
of special equipment and reagents and specialized and trained
personnel for sample collection. Furthermore, the high cost and
slow processing speed of RT-PCRmake it less feasible for massive
population screening in remote areas or backward countries (4).
The development of artificial intelligence (AI) technology has
made the mining of medical information and the development
of disease prediction models for assisting doctors in disease
prediction or diagnosis a popular research subject.

To improve the ability to diagnose COVID-19 and curb
the spread of the pandemic, the data science community has
proposed several machine learning (ML) models, most of which
are based on computed tomography (CT) scans or chest X-
rays (5–9). Although promising results have been reported, some
concerns have been raised about these efforts, especially the
chest X-ray-based solutions, regarding the high incidence of
false negative results (10). Additionally, while the CT imaging
method is accurate, it is costly and time-consuming and requires
specialized equipment. As a result, methods based on this
imaging technology are inappropriate for screening. Although
various clinical studies (11–15) have emphasized the usefulness
of blood test-based diagnoses in providing an effective and low-
cost alternative for the early detection of COVID-19, relatively
few ML models are based on hematological parameters.

The primary goal of medicine in the 21st century has switched
from disease prevention and treatment to health maintenance,
and the medical mode has changed from a simple disease
treatment mode to the so-called “4P” medical mode: prevention,
prediction, personalization, and participation (16). To address
issues regarding medical complexity, the methodological system
of clinical research is also constantly improving. A disease
prediction model is a statistical evaluation method based on
disease risk factors that divides scores according to the degree of
influence of the underlying factor and calculates the probability
of a certain event in the future by a mathematical formula
(17). These disease prediction models can enable medical staff
to implement targeted intervention measures for patients with
different risk probabilities and improve patient care. Due to the
powerful ability to mine information and explore the hidden
links behind the data, machine learning algorithms have been
used in many studies and a wide variety of fields to develop
predictive models of disease risk.

Abbreviations: AdaBoost, adaptive boosting; AUC, area under the curve;

BP, backpropagation; CBC, complete blood count; CI, confidence interval;

GBDT, gradient boosting decision tree; GGT, gamma-glutamyl transferases;

HCT, hematocrit; HGB, hemoglobin; JMIR, Journal of Medical Internet

Research; LDH, lactate dehydrogenase; LIME, local interpretable model-agnostic

explanations; ML, machining learning; OSR, San Raphael Hospital; PAC, probably

approximately correct; RF, random forest; RCT, randomized controlled trial; XAI,

explainable artificial intelligence; XGBoost, extreme gradient boosting.

As the main caregivers for patients, nurses play a key role in
patient condition observation and disease prediction. Compared
with traditional risk prediction models or scores, machine
learning models are more precise, sensitive, and generalizable,
capable of analyzing the deep-seated interaction of multiple
factors among data (18) and explore more complex linear or
nonlinear correlations. In diverse clinical situations, the capacity
to forecast disease risk using the ML technique is greater, which
is vital for encouraging medical professionals to intervene early
to enhance patient care.

The core of machine learning is the algorithm, which has three
main learning patterns: (1) supervised learning, which adjusts the
prediction algorithm based on the previous examples to make the
prediction results match as close as possible to the output values
of the examples when reinput; (2) unsupervised learning, which
does not output a value; instead, the training system models the
underlying structure of the data; and (3) reinforcement learning,
which uses reward/punishment sequences to form strategies for
action in a specific problem space through trial and error (19).
Machine learning adopts supervised learning algorithms such as
support vector machine (SVM), Bayesian learning, decision tree,
and regression, and unsupervised learning algorithms such as K-
means clustering and association rule learning. Reinforcement
learning algorithms (20), such as Q-learning (21) and SARSA,
as well as neural networks and other special algorithms, are also
implemented in machine learning. At present, the main idea of
the quantitative identification technology of disease prediction
is to transform the problem of disease risk into a classification
problem and then use the corresponding model to perform the
classification. According to the literature, the most commonly
used and best performing algorithms for disease prediction (22)
include SVM, backpropagation (BP) neural network, random
forest, and naive Bayes.

However, only single prediction models are implemented
in these studies, and the accuracy and stability need to be
improved. Ensemble learning is based on the idea of learning
from the strengths of others. Constructing and combining
multiple machine learning devices to complete the learning task
can effectively prevent overfitting and underfitting problems and
thus improve the prediction performance (23). In the disease
prediction task, there are some problems, such as high feature
dimension, multicollinearity between features, and highly noisy
physical examination data, that can produce unideal stability in
singlemodels. To overcome the above problems and obtain better
stability, this paper proposes an ensemble learning method to
integrate multiple models to predict disease risk. Bagging and
boosting strategies are adopted to evaluate disease prediction
based on the ensemble idea.

Prediction models can be coarsely divided into “black-box”
and “white-box” models. Most existing prediction models in
the medical and health fields are “white-box” models due to
the high demands for comprehensibility, interpretability, and
transparency. These “white-box” models, which include linear
regression and decision tree, have a strong visualization ability
but relatively poor prediction precision (24). If the prediction
problem is difficult and requires high precision, neural networks,
random forests, and other “black-box” models must be used (25).
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In recent years, explainable machine learning has become
a popular topic in different research fields (26). Explainable
machine learning focuses on improving the transparency and
credibility of black-box model decision-making. There are two
methods for bestowing explicability to a predictive model.
First, intrinsically interpretable machine learning methods, such
as logistic regression, can be used as the predictive model.
Second, postinterpretation methods, such as local interpretable
model-agnostic explanations (LIME) (27) and SHapely Additive
exPlanations (SHAP) (28), explain complex models through
postassisted attribute analysis. This paper improves upon LIME
and uses an explainable additive model proposed in recent
years to approximate the complex model further to improve the
interpretability of the ensemble learning model.

This work aims to overcome the limitations described
above by building a COVID-19 diagnostic model based on
hematological parameters to provide a new method to screen
COVID-19. Different classification models have been developed
by applying AI technology to blood test results that can be
obtained in a short amount of time (<10min even in an
emergency) and at only a small percentage of the cost of RT–
PCR and CT. Our approach can be used to screen COVID-
19 patients using regular blood tests in resource-constrained
situations, especially during the peak of an outbreak, when RT–
PCR reagent shortages become a severe issue. The developed
method can also be used as a supplement to RT–PCR tests to
increase their sensitivity.

METHODS

Data Sources
COVID-19 spread rapidly throughoutmany countries worldwide
(29, 30). Early identification of COVID-19 patients and SARS-
CoV-2-infected persons is very important and can play a key
role in epidemic prevention and control. Therefore, the routine
blood test data of patients with COVID-19 was used in this
study (31). The data were extracted from a database including the
hematochemical values from 1,737 patients (47.00% COVID-19
positive) admitted to San Raphael Hospital (OSR) from February
to May 2020. Patient age and sex, the presence of COVID-19-
related symptoms at admission (dyspnea, pneumonia, pyrexia,
sore throat, influenza, cough, pharyngitis, bronchitis, generalized
illness), and a set of hematochemical values from laboratory
tests (complete blood count and coagulation, biochemical, blood
gas analysis and CO-oximetry values) were considered covariate
features. The goal of this study is to classify patients as positive or
negative for COVID-19.

Feature Selection
First, features with no significant differences between the positive
and negative COVID-19 groups were eliminated. Student’s t-
test or the Kruskal–Wallis test were used to compare continuous
variables, which are presented as the mean± standard deviation.
The chi-square test was used to compare categorical variables,
which are presented as frequencies and percentages. A two-
tailed p value of <0.05 was considered statistically significant.
Then, feature correlation analysis was performed according to the

Pearson correlation coefficient matrix. Highly correlated features
were eliminated to avoid issues related to multicollinearity.

Machine Learning Algorithms
Four ensemble learning algorithms, including random forest
(RF), adaptive boosting (AdaBoost), gradient boosting decision
tree (GBDT) and eXtreme gradient boosting (XGBoost), are
used as representative boosting algorithms to determine the
best performing model. The most optimal variables were further
validated using the GBDT method.

Compared with single learning models, the advantage of
an ensemble learning model is that it can combine multiple
single learning models to obtain more accurate, stable, and
robust results (32). The principle of ensemble learning came
from the probably approximately correct (PAC) learning model
(33). Kearns and Valiant first explored the equivalence of weak
and strong learning algorithms (34). Bagging and boosting
strategies both combine existing classification algorithms or
regression algorithms to form a more powerful predictor. In
this paper, RF was used as the representative bagging algorithm.
AdaBoost, GBDT, and XGBoost are used as representative
boosting algorithms.

Bagging
Bagging, also known as bootstrap aggregation, refers to the use
of bootstrapping to extract training samples under the same base
classifier to train multiple base classifiers and finally obtain the
results through a voting method. This approach can help reduce
errors caused by random fluctuations in the training data (35).
The steps of the bagging process are as follows. The training
sets are extracted from the original sample set. In each round,
n training samples are extracted from the original sample set by
bootstrapping, and a total of k rounds of extraction are performed
to obtain k training sets. One training set is used to obtain a
model, and so k training sets obtain a total of k models. [The
model can be determined according to the specific situation;
it can be a decision tree, K-nearest neighbor (KNN), etc.] The
classification results are produced by voting.

Boosting
Boosting transforms weak learners into strong learners through
iteration. By increasing the number of iterations, a strong learner
with high performance is generated (36); this is considered
one of the best performing approaches in machine learning.
Boosting increases the weights of samples that were incorrectly
classified by the weaker classifier in the previous round and
decreases the weights of samples that were correctly classified
in the previous round so that the classifier has a better effect
on the misclassified data. The final boosting model is obtained
according to this rule. The main idea is to combine multiple
weak classifiers into one strong classifier. Under the PAC
learning framework, the weak classifier must be assembled into
a strong classifier.

Model Validation
All patients were randomly divided into training and testing
sets at a ratio of 8:2. To minimize the randomness effect
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of the training result, 10-fold cross-validation was also
adopted. First, the training sets are divided into 10-fold,
then the model is trained with nine-fold and verified
with the remaining fold. The training is repeated for 10
times, with each a different fold for verification, and the
average value of the performance is represented as the
generalization performance. Once the models were derived,
the performances of the different models were further validated
using the receiver operating characteristic (ROC) curve as the
evaluation metric. The accuracy, precision, recall, sensitivity,
F1 score, youden’s index and area under the curve (AUC)
were calculated to evaluate the performance of the ML
algorithm on testing sets. Finally, the optimal ML algorithm
was selected.

Model Interpretation
The local interpretable model-agnostic explanation (LIME) was
used to explain the predictions. The rationale by which a model
predicts a single sample using a local linear approximation of the
model behavior can be better trusted.

LIME, proposed by (27), is a tool that helps explain how
a complex black-box model makes decisions. A new dataset is
generated by randomly perturbing the samples in LIME. The
new dataset is then used to train a linear model, which locally
approximates the black-box model. Then, the local decision
behavior of the black-box model is obtained according to the
interpretable model.

Note that x∈Rd are the samples that need to be interpreted.
First, the more important d

′

dimensional features are selected,
and x becomes x

′

∈Rd
′

after removing the less important features.

A new sample z
′

is generated by perturbing x
′

, and the all-new

samples constitute a new dataset Z
′

. After adding the removed

features to the samples, z
′

is restored to Z ∈ Rd. πx(z) is defined
as the similarity of samples before and after modification and can
be calculated as follows:

πx(z) = exp(−
D(x, z)2

σ 2
), (1)

whereD(x,z) is the distance formula, whose definition varies with
the sample type. When the sample is an image, for example,
D(x,z) is usually the L2 norm distance, and when it is text, D(x,z)
is usually the cosine similarity function.

If f is the complex model to be explained and g is a simple
model, the objective function to measure the difference between
the two models is as follows:

ξ(x) =
∑

z,z′

πx(z)f(f(z)− g(z′)
2
+�(g), (2)

where �(g) is the complexity of model g. When g is a linear
regression model, the number of nonzero weight coefficients
determines the model’s complexity. The flow of the LIME
algorithm is shown in Table 1.

Statistical Analyses
Categorical variables were described as number (%) and
compared by Chi-square or Fisher’s exact test where appropriate.

TABLE 1 | Algorithm: LIME.

Algorithm: LIME

Input: (1) Complex Model f ; (2) Samples X; (3) Number of randomly

generated samples N

Steps:

1. Through feature screening, the more important d
′

features are

preliminarily obtained, allowing the interpretation version X
′

of X to be

obtained

2. A new sample Z
′

is generated by randomly perturbing X
′

; then, Z
′

is

restored to Z with the same dimensions as X. The complex model is used

to predict and obtain the labels

3. The newly generated dataset is fitted with a linear model

Output: The weight of the linear model

Continuous variables that satisfy normal distribution were
described as mean [standard deviation (SD)] and compared
by the 2-tailed Student’s t-test; otherwise, median [interquartile
range (IQR)] and Wilcoxon Mann–Whitney U-test were
used. A two-sided p-value <0.05 was considered statistically
significant. All statistical analyses were performed with Python
(version 3.8.5).

RESULTS

Among 1,736 patients. 362 patients were excluded because they
had more than four missing attribute values. After processing,
1,374 patients remained in the database. Two features (CK and
UREA) were removed because their missing value was larger
than 30% of their overall value; the average value of each feature
was used to fill in the remaining missing values. Thirty-two
features were selected for screening patients for COVID-19
(Table 2).

Baseline Characteristics
Table 2 presents the characteristics of the positive and negative
COVID-19 patients. The chi-square test for sex yielded a
Pearson’s chi-square value of 14.918, and p = 0.000 (close to
but not equal to zero) <0.05, indicating that the sex differences
between the positive and negative COVID-19 groups were
significant. In contrast, Student’s t-test or the Kruskal–Wallis test
showed that there was no difference in age, CREA, KAL, or MCH
between the two groups (p > 0.05).

Figure 1 shows that Sex (r = 0.13), GGT (r = 0.07), GLU (r
= 0.11), AST (r = 0.22), ALT (r = 0.18), LDH (r = 0.24), PCR
(r = 0.23), RBC (r = 0.17), HGB (r = 0.17), HCT (r = 0.16),
MCHC (r = 0.10), NE (r = 0.14), and Suspect (r = 0.32) were
positively correlated with the target, while, CA (r = −0.14), ALP
(r = −0.09), NAT (r = −0.10), WBC (r = −0.22), MCV (r =
−0.06), PLT1 (r = −0.11), LY (r = −0.09), MO (r = −0.05),
EO (r = −0.31), BA (r = −0.31), NET (r = −0.14), LYT (r =
−0.26), MOT (r = −0.17), EOT (r = −0.31), and BAT (r =

−0.29) were negatively correlated with the target. Therefore, we
believed that there were no redundant features and selected all of
them to develop the model.
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TABLE 2 | Characteristics of the positive and negative COVID-19 patients.

Total (N = 1,374) COVID-19 negative (N = 615) COVID-19 positive (N = 759) p-Value

Age, year 60.40 ± 20.83 60.40 ± 20.83 62.27 ± 15.84 0.066

Female 583 (42.43%) 304 (49.43%) 279 (36.76%) <0.001

CA, mmol/L 2.20 ± 0.751 2.29 ± 0.74 2.14 ± 0.14 <0.001

CREA, mg/dl 1.18 ± 1.01 1.22 ± 1.20 1.14 ± 0.82 0.180

ALP, U/L 87.74 ± 64.26 94.18 ± 77.16 82.53 ± 50.95 0.001

GGT, U/L 66.12 ± 101.95 58.52 ± 118.90 72.27 ± 85.40 0.013

GLU, mg/dl 119.03 ± 55.85 112.19 ± 49.85 124.58 ± 59.73 <0.001

AST, U/L 47.11 ± 51.37 34.60 ± 33.44 57.25 ± 60.37 <0.001

ALT, U/L 40.15 ± 40.67 32.23 ± 35.22 46.56 ± 43.58 <0.001

LDH, U/L 336.86 ± 210.61 280.76 ± 243.48 382.33 ± 166.44 <0.001

PCR, 72.22 ± 79.59 52.86 ± 70.90 89.72 ± 82.43 <0.001

KAL 4.22 ± 0.51 4.25 ± 0.50 4.20 ± 0.52 0.101

NAT 138.58 ± 4.66 139.10 ± 3.92 138.15 ± 5.15 <0.001

WBC, 109/L 8.56 ± 4.75 9.73 ± 5.45 7.62 ± 3.85 <0.001

RBC, 1012/L 4.53 ± 0.73 4.40 ± 0.75 4.64 ± 0.69 <0.001

HGB, g/dl 13.18 ± 2.05 12.80 ± 2.13 13.49 ± 1.94 <0.001

HCT, % 39.32 ± 5.64 38.32 ± 5.79 40.14 ± 5.39 <0.001

MCV, fl 87.33 ± 6.93 87.76 ± 7.23 86.97 ± 6.65 <0.001

MCH, pg/cell 29.25 ± 2.69 29.27 ± 2.76 29.23 ± 2.63 0.783

MCHC, g Hb/dl 33.48 ± 1.34 33.34 ± 1.35 33.60 ± 1.32 <0.001

PLT1, 109/L 234.74 ± 95.89 246.55 ± 98.70 225.17 ± 92.51 <0.001

NE, % 72.35 ± 13.26 70.33 ± 13.47 73.98 ± 12.86 <0.001

LY, % 18.58 ± 11.00 19.73 ± 11.37 17.65 ± 10.62 0.001

MO, % 7.83 ± 3.88 8.06 ± 3.61 7.65 ± 4.08 0.045

EO, % 0.88 ± 1.62 1.43 ± 2.02 0.44 ± 1.00 <0.001

BA, % 0.34 ± 0.327 0.43 ± 0.31 0.26 ± 0.21 <0.001

NET, 109/L 6.45 ± 4.48 7.15 ± 5.28 5.88 ± 3.60 <0.001

LYT, 109/L 1.37 ± 0.95 1.64 ± 1.02 1.15 ± 0.83 <0.001

MOT, 109/L 0.62 ± 0.54 0.72 ± 0.45 0.54 ± 0.59 <0.001

EOT, 109/L 0.07 ± 0.14 0.12 ± 0.18 0.03 ± 0.08 <0.001

BAT, 109/L 0.02 ± 0.04 0.03 ± 0.05 0.01 ± 0.02 <0.001

Suspect, % 0.83 ± 0.33 0.71 ± 0.39 0.92 ± 0.23 <0.001

CA, calcium; CREA, creatinine; ALP, alkaline phosphatase; GGT, gamma-glutamyl transferase, an enzyme that converts glutamyl to glutamine; GLU, glucose; AST, aspartate

aminotransferase; ALT, alanine aminotransferase; LDH, lactate dehydrogenase, a type of enzyme that breaks down lactate; WBC, white blood cell; RBC, red blood cell; HGB,

hemoglobin, a protein that transports oxygen throughout the body; HCT, hematocrit, a metric representing the proportion of RBCs in the blood; MCV, mean corpuscular volume;

MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; PLT1, platelets; NE, neutrophil count (%); LY, lymphocyte count (%); MO, monocyte count

(%); EO, eosinophil count (%);BA, basophil count (%); NET, neutrophil count; LYT, lymphocyte count; MOT, monocyte count; EOT, eosinophil count; BAT, basophil count; Suspect,

suspected COVID-19.

ML Algorithms’ Performance Comparison
Data from 80% of the 1,374 patients were randomly selected and
used as the training set, while the data from the remaining 20%
of the patients were used as the testing set. The prediction models
were developed with the training set, and their performance
was evaluated with the testing set. Random forest, AdaBoost,
GBDT, and XGBoost were selected as the typical algorithms of
the ensemble learningmodel. The performance of theMLmodels
was evaluated by using the area under the receiver operating
characteristic curve (AUC).

The GBDT algorithm had the best fitting effect on the
COVID-19 dataset, with an accuracy of 93.8% and an AUC of
98.4% [95% CI (0.978, 0.990)] on the training set and 80.4 and

86.4% [95% CI (0.821, 0.907)], respectively, on the test set (see
Tables 3, 4 for details on the performance metrics).

As shown in Figure 2, the performance of GBDT was better
than that of random forest, AdaBoost, and XGBoost. DeLong’s
test was further used to assess the difference between two
AUCs, which confirmed that the AUC of the GBDT model was
significantly different from that of the other three models (p
< 0.01).

A calibration curve was obtained with the bucket method
(continuous data discretization) to observe whether the
prediction probability of the classification model was close to
the actual probability. It is an evaluation index of a probability
model. The calibration curve of the GBDT model was drawn
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FIGURE 1 | Correlation coefficient matrix heatmap of all 29 variables. The obtained numerical matrix is visually displayed through a heatmap. Orange indicates a

positive correlation, and green indicates a negative correlation. Color depth indicates the value of the coefficient, with deeper colors indicating stronger correlations.

Specifically, redder colors indicate correlation coefficients closer to 1, and greener colors indicate coefficients closer to −1.

with the predicted probability as the abscissa and the true
probability in each bin as the ordinate. As shown in Figure 3, the
calibration curve was close to the diagonal, indicating that in the
model testing experiment, the GBDT model performed well.

Explanation of the Best Model
Feature Importance of GBDT
The meaning of “GradientBoostingClassifier (n_estimators =

100, learning_rate = 1.0, max_depth = 1, random_state = 0)”
in classifying the patients could not be explained to the doctors
sufficiently. In general, the interpretability of GBDT is reflected
in its feature importance. The feature importance derived from
the XGBoost model is shown in Figure 4.

Interpretation by LIME
Local interpretable model-agnostic explanations selects a
specific sample in the test dataset to obtain the probability
value of each class and explains the reason for assigning
the probability. Figure 5 shows the prediction results of
the sample. The figure shows which features determined
that the sample should be classified as COVID-19 positive
(blue) and which determined that the sample should be
classified as COVID-19 negative (orange). The values of the
features for the sample are listed in the figure to show the
contribution of the features. Specifically, CA, PCR, and LDH
were important factors for determining positive COVID-
19 patients. These three features were further discretized
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TABLE 3 | Performance of random forest, AdaBoost, GBDT, and XGBoost models in screening COVID-19.

Model Accuracy Precision Recall Sensitivity F1 score Youden’s index

Random forest 74.2% 70.8% 90.8% 53.7% 0.795 0.589

AdaBoost 76.7% 78.2% 80.3% 72.4% 0.792 0.553

GBDT 80.4% 80.3% 85.5% 74.0% 0.828 0.615

XGBoost 75.3% 73.3% 86.8% 61.0% 0.795 0.565

TABLE 4 | Performance of random forest, AdaBoost, GBDT, and XGBoost models to screen COVID-19.

Model AUC AUC_95% CI AUC_SD AUC_p value Confusion matrix

Random Forest 85.7% 0.813, 0.902 0.02 <0.001 [66, 57], [14, 138]

AdaBoost 85.4% 0.810, 0.899 0.02 <0.001 [89, 34], [30, 122]

GBDT 86.4% 0.821, 0.907 0.02 <0.001 [91, 32], [22, 130]

XGBoost 84.9% 0.803, 0.894 0.02 <0.001 [75, 48], [20, 132]

FIGURE 2 | Receiver operating characteristic (ROC) curves for the machine

learning models in screening COVID-19.

and used to developed a simplified decision tree model
(Figure 6).

DISCUSSION

The COVID-19 outbreak is currently under control in China
and is in a state of normalized prevention and control,
but imported cases from other countries occur often, and
the number of infections worldwide continues to rise.
Virus nucleic acid detection is the “gold standard” for the
diagnosis of COVID-19. However, due to premature collection
times, nonstandard collection methods, and inaccurate

FIGURE 3 | Calibration curve for the internal validation set. The calibration

curve was plotted using the bucket method (continuous data discretization) to

observe whether the prediction probability of the classification model is close

to the empirical probability (that is, the real probability). Ideally, the calibration

curve lies along the diagonal (i.e., the prediction probability is equal to the

empirical probability).

collection locations, false negative results have occurred
many times in virus nucleic acid detection (37). Chest CT
plays an important role in the early diagnosis of COVID-
19, with a high sensitivity but low specificity (25%) (38).
Therefore, developing a new strategy for achieving a rapid
and accurate diagnosis for COVID-19 is essential from a
clinical perspective.

Since the start of the COVID-19 outbreak, a large number
of scholars have been committed to applying AI technology
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FIGURE 4 | Influence of input features on the outcome of the XGBoost model. The top three features are LDH, WBC, and EOT. It indicates that they have important

auxiliary diagnostic significance for COVID-19. The model found that patients with higher WBC count, higher LDH level, or higher EOT count, were more likely to have

COVID-19. It might assist physicians to make their decisions.

to rapidly diagnose COVID-19. Wu et al. (39) constructed a
COVID-19 differential diagnosis model by mining 11 key blood
indices through an ML algorithm and obtained accuracy rates of
0.9795, 0.9697 and 0.9595 with their cross-validation set, test set
and external validation set, respectively. Li et al. (40) developed a
deep learning model based on CT images to distinguish COVID-
19 from community-acquired pneumonia. With the independent
validation set, the AUC for identifying COVID-19 was 0.96
and that for identifying community-acquired pneumonia was
0.95. Ozturk et al. (8) constructed a deep learning classification
model based on the chest X-ray films of COVID-19 patients.
The results showed that the accuracy of the model in performing
two-class and multiclass classification were 0.9808 and 0.8702,
respectively. All the AI models in the above studies showed
good diagnostic performance but only included a single index for

evaluation and analysis and participation in model construction
(laboratory examination index or chest image index). Combined
with the comprehensive analysis of clinical manifestations,
laboratory examination, CT and other indicators, this study
jointly constructed a predictive diagnosis model for COVID-
19 based on ML that better reflects the real-world COVID-
19 situation.

Artificial intelligence technology has an excellent ability
to process big data and mine complex medical information.
In medical scenarios, the most common problem is binary
classification, such as predicting whether a patient has a disease
through data analysis and model establishment. Simple models
used to solve classification problems include logistic regression,
decision tree, and SVM. However, due to the limitations of these
simple models, they often cannot achieve optimal prediction
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FIGURE 5 | Influence of nine variables on the outcome of the XGBoost model. Because PCR ≤9.30 and CA >2.29 were the most significant features, the

classification of this sample was confirmed as positive.

FIGURE 6 | Simplified decision tree model based on the top three features.

efficiency, so the application of ensemble learning models is
becoming more widespread in the machine learning field.
AdaBoost was the first boosting model and functions by training
different weak models based on the same training dataset and
then integrating these weak models to form a stronger classifier
with a better effect. XGBoost is a machine learning method
focusing on the gradient lifting algorithm. The loss function
is expanded as a second-order Taylor expansion, the second
derivative of the loss function is used to optimize the loss
function, and depending on whether the loss function is reduced,
a decision on whether to split nodes is made. The disadvantage of
XGBoost is that it is sensitive to outliers.

In GBDT, a tree is trained first by using the training set
and the real classification of the samples; then, the tree is used
to predict the classification of the training set to obtain the

predicted value of each sample, and the deviation between the
predicted value and the true value, that is, the residual, is used
as the standard answer to train the next tree. Then, the residual
is used to train a third tree, and the final prediction result
is obtained. Because the growth process of the decision tree
continuously selects and segments features, GBDT composed
of a large number of decision trees has inherent advantages
and can easily yield the importance ranking of its features. The
advantages of the chosen methods over the others are as follows.
(1) The prediction accuracy is higher, it is more suitable for low-
dimensional data, and it can contend with nonlinear data. (2) It
can flexibly handle various types of data, including continuously
and discretely valued data. (3) In the case of a relatively short
parameter adjustment time, the preparation rate of the prediction
can be high relative to that of SVM. (4) Certain robust loss
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functions, such as the Huber and quantile loss functions, make
the model very robust to outliers.

The model constructed in this study has high clinical
application value. The three features identified, LDH, WBC, and
EOT, can assist doctors in rapidly and accurately diagnosing
COVID-19 patients. Under normal circumstances, LDH is
limited to the cytoplasm of tissue cells; it is released only when
cell damage and necrosis cause an increase in cell membrane
permeability, resulting in a rise in serum LDH concentration.
The degree of lung tissue injury is directly proportional to the
level of serum LDH, so the level of serum LDH can indirectly
reflect the severity of the disease. The sickness is mild when
a patient is first infected with SARS-CoV-2. As the disease
progresses, the condition gradually worsens, and the LDH level
gradually increases (41, 42). The number of white blood cells
in a unit volume of blood is measured by the white blood cell
count (WBC). White blood cells are an important part of the
body’s defense system and a common marker for identifying
infection, with a high specificity in the diagnosis of infectious
fever. According to previous research, infection should still be
considered first when the WBC rises. SARS-CoV-2 infection
stimulates the innate and adaptive immune responses of the
infected body, resulting in a series of inflammatory reactions
and pathological changes. The excessive immunological response
of the body to external stimuli such as viruses and bacteria
is referred to as a cytokine storm (43). It can cause the body
to quickly produce a large number of cytokines, such as IL-6,
IL-12, IL-8, and IFN-α; this abnormal increase in the number
of cytokines can cause aggregation of eosinophils and other
infectious lesions. The organs and tissues are also severely
damaged in the process of effectively eradicating the infection
(44, 45).

The application of AI technology in the medical field has
created new opportunities for solving many medical challenges.
However, it can be difficult for users to understand the internal
working principle and decision-making process of the model
due to its inherent inexplicability. This reduces doctors’ trust
and acceptance of the AI model and limits the development of
AI products in the medical field. Therefore, the construction
of interpretable AI models has become the focus of research in
recent years. The decision tree model can reflect both linear and
nonlinear relationships, allowing it not only to make accurate
predictions but also to be interpretable (46). The interpretability
of the model is reflected in both global interpretability and
local interpretability. The global interpretability shows that the
decision tree model can visualize the weight of each index
variable, allowing it to assess the value of each index in the
prediction model. The higher the index weight value is, the
greater the importance of the index. In this study, LDH was the
most important index in the construction of the GBDT model,
with a weight value of 0.145. Local interpretability explains the
diagnosis results for a specific case, which can indicate which
indicators support the diagnosis of the disease, which indicators
deny the diagnosis of the disease, and the basis for the diagnosis,
which is helpful in making an individualized prediction for each
patient and providing accurate treatment. To determine whether
a patient is infected with COVID-19, the patient is selected from

the validation set and input into the LIME model. The results
show that although the CA and PCR2 indicators confirm that
the model can diagnose COVID-19 patients, all other indicators
deny a diagnosis of COVID-19; the overall tendency, however,
is toward a positive diagnosis of COVID-19 for the patient,
consistent with the actual patient diagnosis (Figure 5).

In the fight against COVID-19, top international journals have
published many research results, including epidemiological and
clinical feature analysis, epidemic trend prediction, death-related
risk factors, prognostic impact of basic diseases, and critical
disease prediction models, which provide important scientific
support for this fight and play a positive role in guiding epidemic
prevention and control. In a study published in the Lancet, a
susceptible-exposed-infectious-recoveredmetapopulationmodel
was used to simulate epidemics across all major cities in China.
The study suggested that preparedness plans and mitigation
interventions should be readied for quick deployment globally
(47). In a study published in JAMA, Pan et al. (48) applied
surveillance data to quantify the temporal evolution of the
intensity of COVID-19 transmission across different periods.
Their study may have important implications for ongoing and
potential future nonpharmaceutical bundles in the US and other
nations with respect to daycare for children (49). Liang et al.
(50) developed a clinical risk score to predict the occurrence
of critical illness in hospitalized patients. The score may help
identify patients with COVID-19 who may subsequently develop
a critical illness. Vaid et al. (51) developed machine learning
models to predict critical illness and mortality in a cohort
of patients in New York City. These models identified at-risk
patients and uncovered underlying relationships that predicted
patient outcomes. In most studies, a kind of model was applied
without considering the ensemble learning algorithms.

This study used a small sample of COVID-19 patients, which
may affect the accuracy of the results. Additionally, utilizing
a deep learning model with such a small sample size is not
ideal. The dataset is not sufficiently standardized, resulting in
the elimination of several indicators due to the large number of
missing values. In future research, the sample sizemust be further
increased, and a more standardized sample set should be selected
to confirm the results of this study.

CONCLUSIONS

In this study, random forest, AdaBoost, GBDT, and XGBoost
algorithms were used to develop bagging and boosting ensemble
learning models to predict disease risk and then compared in
terms of the AUC, accuracy, recall, and F score. Finally, the
optimal model was explained by way of the LIME algorithm.
Taking the COVID-19 data as a case study, the research is
summarized as follows.

First, compared with other classifiers, the precision of GBDT
was 80.3%, and the recall was 85.6%. TheAUCwas 86.4% [95%CI
(0.821, 0.907)], indicating better performance. Therefore, GBDT
was chosen as the prediction model for the early diagnosis of
COVID-19. The model, which was developed based on blood
tests, can provide an alternative method to rRT-PCR for the fast
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and cost-effective identification of COVID-19-positive patients.
It is especially effective in places where outbreaks are on the rise.

Second, the risk factors in the prediction model were
visualized using the LIME algorithm. CA, PCR, and LDH were
revealed as important factors for identifying patients positive for
COVID-19. These findings can help doctors control and treat
patients in a timely manner. In addition, the same method can
be extended to predict other diseases.

Third, in future studies, multiple features will be fused to
enhance the richness and effectiveness of the features. In the
ensemble strategy, stacking is a hierarchical model integration
framework that will be incorporated into an integration model
in future studies. Finally, for classification algorithms, the most
popular models were tested. To obtain improved precision in
early disease risk identification, combinations of models will be
investigated, model complexity will be reduced, and graph neural
networks will be integrated in future works.
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4. Rózański M, Walczak-Drzewiecka A, Witaszewska J, Wójcik E, Guziński A,
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