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Abstract

Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma, and front line therapies 

have not improved overall outcomes since the advent of immunochemotherapy. By pairing DNA 

and gene expression data with clinical response data, we identified a high-risk subset of non-GCB 

DLBCL patients characterized by genomic alterations and expression signatures capable of 

sustaining an inflammatory environment. These mutational alterations (PIM1, SPEN, and MYD88 
[L265P]) and expression signatures (NF-κB, IRF4, and JAK-STAT engagement) were associated 

with proliferative signaling and were found to be enriched in patients treated with RCHOP that 

experienced unfavorable outcomes. However, patients with these high-risk mutations had more 

favorable outcomes when the immunomodulatory agent lenalidomide was added to RCHOP 
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(R2CHOP). We are the first to report the genomic validation of a high-risk phenotype with a 

preferential response towards R2CHOP therapy in non-GCB DLBCL patients. These conclusions 

could be translated to a clinical setting to identify the approximately 38% of non-GCB patients 

that could be considered high-risk and would benefit from alternative therapies to standard 

RCHOP based on personalized genomic data.

Introduction

As the most common form of aggressive non-Hodgkin lymphoma (NHL) afflicting nearly 

30,000 patients in the USA each year, diffuse large B-cell lymphoma (DLBCL) represents a 

significant challenge in hematology/oncology1, 2. New DLBCL treatments remain a clinical 

need despite the success of rituximab combined with CHOP chemotherapy 

(cyclophosphamide, doxorubicin, vincristine, and predisone), RCHOP, which results in 

durable responses in 60-70% of patients3. Those refractory to, or who relapse following, 

first-line therapy have a very poor outcome, with only 20% surviving beyond 5 years despite 

second-line therapies4-6. Rationally-targeted frontline strategies are needed, especially for 

those with high-risk disease or early clinical failure7. Herein, we present the case for 

precision targeting of a genetically-distinct population of RCHOP-insensitive DLBCL 

patients with targeted therapy.

Since 2002, DLBCL has traditionally been divided into two cell of origin (COO) 

subcategories based on tumor gene expression profiles (GEP): Activated B-cell (ABC) and 

Germinal Center B-cell (GCB). Patients with ABC tumors are characterized by a more 

aggressive profile and active NF-κB and BCR signaling pathways8, 9 while GCB cases are 

associated with alterations that drive aberrant chromatin-modification, PI3K signaling, and 

the upregulation of MYC and BCL2 through translocations or copy number gains10, 11. 

Recently, using tumor samples from patients treated with RCHOP, new classification models 

have focused on DNA alterations, including previously-identified drivers of aggressive 

disease such as MYD88 (L265P), CARD11, and TNFAIP312-19. MYD88 L265 mutations 

have specifically been shown to be enriched in aggressive ABC DLBCL cases16, 20, 21. Key 

downstream effects of oncogenic MYD88 include activation of the NF-κB, JAK/STAT, and 

upregulation of inflammatory cytokines, often augmented by the loss of the inhibitory 

TNFAIP3 gene19. The NOTCH signaling pathway has also been characterized in aggressive 

cases of DLBCL22. To date, none of these studies have impacted the design of phase III 

trials for untreated DLBCL patients; rather, these trials have focused on selecting and 

randomizing patients based on the International Prognostic Index (IPI) and tumor GEP. 

However, this strategy has failed to show benefit of adding novel agents to RCHOP based on 

these classifiers, and higher intensity therapies such as DA-EPOCH, ibrutinib, idelalisib, 

obinutuzumab, and bortezomib have all failed to improve outcomes in clinical trials21, 23-27. 

The field is now focused on designing trials based on personal tumor signatures12, 17, 18. 

Building on new genetic profiling studies to personalize clinical treatment could allow 

clinicians to add targeted therapies to the RCHOP backbone based on individual tumor 

signatures. Wilson et. al. showcased this methodology of precision medicine by identifying 

that the driver mutations of a BCR-driven, non-GCB tumor (CD79A, CD79B) can be 
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successfully treated with ibrutinib as a single agent and RCHOP + Ibrutinib (in patients 

younger than 60) when they would have likely failed standard RCHOP treatment21, 27, 28.

Aiolos/Ikaros-degrading immunomodulatory drugs (IMiDs®) such as thalidomide, 

lenalidomide, and pomalidomide play a pivotal role in the treatment of multiple 

myeloma29-31. More recently, a role for lenalidomide has been reported in phase II studies 

for the treatment of aggressive DLBCL32-34. The results of two clinical trials comparing 

RCHOP combined with lenalidomide (R2CHOP) versus RCHOP alone were recently 

reported35, 36. The phase III ROBUST trial was restricted to ABC-type DLBCL and failed to 

show significant clinical benefit of R2CHOP, but the phase II ECOG-ACRIN1412 trial was 

open to patients of all COO subtypes and showed significantly superior event free and 

overall survival benefits for those treated with R2CHOP. Early research highlighted the 

ability of lenalidomide to exploit synthetic lethality in ABC cell lines by deregulating 

oncogenic programs37. Lenalidomide binds Cereblon resulting in rapid degradation in 

transcriptional repressors Aiolos and Ikaros which leads to upregulation of interferon-

stimulated genes such as IRF7 and apoptosis in B-cells, particularly those associated with 

the ABC-DLBCL subtype38. In T-cells, the result is activation and IL-2 production39. These 

immunomodulatory effects made lenalidomide a prime candidate for treating aggressive 

cases of DLBCL, especially those with an inflammatory microenvironment. Herein, we 

report the profile of a high-risk ABC/non-GCB subset of DLBCL driven by genomic 

alterations in inflammatory genes that are susceptible to front-line treatment R2CHOP but 

continue to experience poor outcome with RCHOP alone33. These results showcase the 

success of personalized RCHOP + X therapy application based on the genetic signature and 

biological profile of patient tumors.

Materials and Methods

Study Population

A total of 196 patients with DLBCL were studied. Forty-seven patients with Ann Arbor 

stages II-IV were treated with R2CHOP from an investigator-initiated, open-label, single-

arm phase II study (NCT00670358) were included in the study33, 40. 149 newly diagnosed 

DLBCL cases treated with RCHOP, or R-immunochemotherapy (herein called RCHOP), 

and followed prospectively through the Molecular Epidemiology Resource (MER) of the 

University of Iowa/Mayo Clinic Lymphoma Specialized Program of Research Excellence 

(SPORE) were used as a matched contemporary cohort. Full details of this prospective 

cohort study of lymphoma outcomes have been previously published41. All patients 

provided written consent at enrollment into the clinical trial or MER for use of their clinical 

samples. Disease progression, relapse, unplanned re-treatment after initial 

immunochemotherapy, and death from any cause were verified through medical record 

review. Cell of origin (COO) was determined in the available R2CHOP samples by the 

Lymph2Cx assay (nanoString, N=45)42. For the MER RCHOP cases, COO was determined 

by GEP (N=36), nanoString (N=68), or Hans (N=35)43. For this study, DLBCL were 

categorized into GCB and non-GCB (ABC and Unclassified) groups. Baseline clinical 

characteristics of all patients in this study are shown in Table 1 and detailed clinical 

information for each cohort is provided in Supplemental Table 1.
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Whole Exome Sequencing

For the identification of DNA alterations in the RCHOP and R2CHOP cases, whole exome 

sequencing (WES) was performed. RCHOP-treated cases (N=149) were sequenced as 

previously described19. R2CHOP-treated cases (N=47) were sequenced as follows: DNA 

was extracted from formalin-fixed, paraffin-embedded (FFPE) DLBCL tumors using the 

QIAamp DNA FFPE Tissue Kit (Qiagen GmbH, Hilden, Germany) in the Mayo 

Biospecimens Accessioning and Processing Core. Prior to isolation, tumor blocks were 

reviewed by a Mayo Clinic hematopathologist, tumor areas were circled, and four 1 mm 

cores were used for DNA isolation. The minimum tumor purity for study was 30%. WES 

was performed at the Mayo Clinic Genome Analysis Core. Sequencing was carried out on 

an Illumina HiSeq 2000 at a depth of ~100 million 100 bp paired-end reads per sample. Data 

from all cases were mapped to human genome reference build 38 using BWA-MEM. Quality 

control was performed by FASTQC (v0.11.3). After realignment and recalibration by GATK 

(v3.4-46), SNV and INDELs from individual germline and tumor samples were called by 

GATK haplotype caller (v3.4-46). Variants were annotated using the Mayo Clinic in-house 

annotation tool BioR. Sample inclusion required a minimum of 20x coverage. Mutation data 

was visualized as a waterfall plot using the “complex heatmaps” R program tool44. Copy 

number alterations were determined and annotated for available cases as performed in Wenzl 

et. al. but not included in the overall analysis as no significant differences were seen between 

the RCHOP and R2CHOP samples. All WES data is available upon request.

Gene Expression Analysis

RNA from non-GCB RCHOP (N=104) and R2CHOP (N=42) treated tumors were assayed 

with the nCounter® PanCancer Pathways Panel with 730 cancer pathways genes 

(nanoString, Seattle WA), and analyzed with GenePattern tools from the Broad institute, 

including GENE-E, Comparative Marker Analysis, and Gene Neighbor analysis45, 46. GEP 

was normalized using standardized NanoString protocols (Positive Control Normalization 

and CodeSet Content Normalization). RNA from non-GCB RCHOP (N=45) and R2CHOP 

(N=14) treated tumors was analyzed in a second analysis.

Statistical Analysis

Graphpad Prism software and GenePattern tools were used to plot and format figures, 

analyze data, and calculate statistical significance46. Comparison of quantitative data 

between groups was done by Student’s t-test or one-way ANOVA test. Gene ontology 

analyses and protein-protein interactomes were generated using ToppGene Suite tools47. 

EFS was defined as time from diagnosis to progression or relapse, unplanned re-treatment 

after initial immunochemotherapy, or death from any cause. The primary clinical outcome 

metric used was event-free survival at 24 months (EFS24). Since most relapses in DLBCL 

patients occur in the first 24 months, EFS24 is an early predictor of long-term outcome7. 

RCHOP and R2CHOP populations were divided on the basis of EFS24 status to calculate 

favorability enrichment percentages for DNA alterations and T statistic metrics for gene 

expression among populations. Specifically, favorability enrichment percentages for DNA 

alterations were calculated as follows: (number of EFS24 achieved patients with a mutation/

total number of EFS24 achieved patients) – (number of EFS24 failed patients with a 
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mutation/total number of EFS24 failed patients. A positive value indicates mutation is 

enriched in EFS24 achieved patients and a negative value indicates mutation is enriched in 

EFS24 failed patients. EFS between groups were compared using the Kaplan-Meier method 

and the log-rank test. Multiple clinical factors were analyzed by a Chi-square test in 

Graphpad Prism. All reported P values were two-sided. P values less than 0.05 were 

considered statistically significant.

Results

Specific DNA Mutations Predict EFS24 and R2CHOP Response in DLBCL

The high prevalence of MYD88 mutations combined with the promising clinical results of 

R2CHOP in ABC DLBCL suggest that there are underlying biologic and genomic 

differences that may correlate with tumor-specific responses18, 33. To identify a genomic 

signature for high-risk DLBCL that was lenalidomide-responsive, we first used WES data to 

determine the mutation profile of both R2CHOP and RCHOP cases and then looked for 

enrichment of variants in the R2CHOP responsive tumors. 47 patients with DLBCL that met 

eligibility criteria were enrolled in the R2CHOP cohort and were evaluated against 149 

RCHOP comparison patients (Table 1). The outcome data are summarized for each 

treatment cohort in Table 2. The treatment cohorts did not significantly differ on the basis of 

either overall EFS or OS (overall survival) (Supplemental Figure 1). IPI and COO were 

significantly associated with outcome for the RCHOP population, but not for the R2CHOP 

population (Supplemental Figure 2). Mutations in known driver genes in both the R2CHOP 

and RCHOP cohorts, based on designation by one of the major DLBCL analyses12, 17, 18 are 

documented in Supplemental Figure 3 (N=211). We first identified genes that were mutated 

in both cohorts (N=186) and then calculated the presence of the alteration in populations that 

achieved or failed EFS247. Taking the difference between these values revealed whether 

R2CHOP treatment resulted in an increased association of a gene towards achieving EFS24. 

These results were plotted against each other in an XY scatter plot for all patients (Figure 

1A; left panel). This analysis in all GCB and non-GCB patients together did not reveal any 

genes that met the criteria for R2CHOP outcome improvement (10% enrichment in RCHOP 

EFS24 failure and 10% R2CHOP achievement), although SPEN, PIM, and MYD88 trended 

towards association. In a secondary analysis of non-GCB cases only, mutations in genes 

(N=60) were explored due to the specific benefits of R2CHOP seen in these patients (Figure 

1A; right panel) (Supplemental Table 2)7. Three genes were enriched in the RCHOP cases 

that failed EFS24 but achieved EFS24 with R2CHOP: PIM1, SPEN, and MYD88 (L265P) 

(Supplemental Figure 4; Table 3). PIM1 and MYD88 mutations have previously been 

observed to occur together, but SPEN mutations were observed to be almost entirely 

independent from both48. A separate analysis of GCB DLBCL was also performed and no 

genes were associated with and EFS24 R2CHOP response. A heatmap showing differential 

enrichment of genes associated with non-GCB R2CHOP EFS24 response is shown in Figure 

1B. Together, PIM1, SPEN, or MYD88 (L265P) mutations were present in 38.0% of all non-

GCB cases (N=30/79) and are herein referred to as R2CHOP EFS24 responder alterations 

(RA).
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We next analyzed the overall EFS of R2CHOP and RCHOP treated non-GCB cases with or 

without RA. In the R2CHOP cases, patients with a RA had a better overall EFS (P = 0.051) 

compared to wild type patients (no RA) (Figure 1C, left panel). In contrast, RCHOP treated 

non-GCB patients with a RA had a significantly worse overall EFS (P = 0.0004) compared 

to patients without a RA (Figure 1C right panel). Patients incurring a single RA were not 

significantly different than those incurring multiple RA, suggesting that a mutation in any 

one of the RA genes may predict response to R2CHOP (Supplemental Figure 5). In a 

secondary analysis, R2CHOP and RCHOP samples were clustered based on criteria from 

Chapuy et. al (Supplemental Table 2). While the sample size was small, these data suggest 

that the C1 and C5 subtypes were responsive to R2CHOP (Supplemental Figure 6). This is 

most likely due to the fact that C1 is enriched for SPEN mutations and C5 is enriched for 

MYD88 and PIM1 mutations12, 18.

Gene Ontology Analysis Reveals Unique Signature of R2CHOP Response Program

To explore the genetic programs and pathways that were susceptible to R2CHOP, gene 

ontology analysis was performed. Of the 60 driver genes with mutations in both RCHOP and 

R2CHOP non-GCB patient cohorts, 46 were more associated with achieving EFS24 in 

patients treated with R2CHOP. Gene ontology analysis revealed the top 20 cellular pathways 

associated with these genes (Figure 2A)47. Specific genetic programs associated with the 

highlighted pathways are shown in Figure 2B. The cases achieving EFS24 were enriched for 

mutations in genes associated with chromatin modification, cytokine production, IRF4, TLR 

signaling, IFNG signaling, and the NOTCH and NF-κB pathways (Supplemental Table 3). 

These results provide insights towards high-risk pathways activated in DLBCL that are 

vulnerable to the addition of IMiDs.

Genetic Expression Programs with Specific Favorable Response to R2CHOP Identified

We next analyzed gene expression data from the PanCan panel of 730 B-cell-related genes to 

determine gene expression profiles characteristic of the high-risk/R2CHOP-profile. Gene 

expression data was available on 59 non-GCB DLBCL cases (45 RCHOP; 14 R2CHOP). A 

two-sided comparative marker analysis T statistic test was applied to assess what genes 

displayed differential expression based on achieving EFS24 in both populations 

(Supplemental Table 4)45. Each gene was assigned a T statistic value based on this analysis. 

Positive values indicated greater RNA expression in the patient population that achieved 

EFS24, and negative values indicated greater RNA expression in the patient population that 

failed EFS24. The collective R2CHOP and RCHOP EFS24 T values were significantly 

different for 18 previously-defined gene expression signatures (Figure 3A). Non-GCB 

patients treated with R2CHOP had superior EFS24 when expressing genes associated with 

high MYD88, NF-κB, STAT3, JAK, IRF4, and OCT2 induction. The ABC and proliferation 

signatures were also associated with achieving EFS24 when treated with R2CHOP instead 

of RCHOP. IRF4 dysregulation has been previously highlighted as a mechanism of 

lenalidomide response37. In contrast, cases that were associated with EFS24 failure when 

treated with R2CHOP expressed genes associated with the Stromal-2, lenalidomide-

repressed, CNS, HRAS, TGFB, E2F3, JAK-downregulated, and MYC upregulation 

signatures.
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To visualize gene expression relationships, normalized T statistics for R2CHOP and RCHOP 

were plotted against one another in an XY scatter plot. The difference between the two was 

used to assess whether a gene was more associated with achieving EFS24 if treated with 

R2CHOP. In total, 113 genes were identified; the top three were MAP3K14, IL2RB, and 

STAT3 on the basis of T statistic differential (Figure 3B). Other notable genes include JAK1, 

SOS1, and IL6R. The 113 gene set was next used to assess gene-gene interaction 

enrichment. The top 50 partners of this network are shown in Figure 3C. The top and bottom 

5% (37/730) of genes were isolated for gene ontology analysis. The R2CHOP cases that 

achieved EFS24 were enriched for genes involved in cell cycle, IL6, JAK-STAT, IL2, and 

STAT3 pathways (Figure 3D). Of note, patients who failed R2CHOP were enriched for 

genes involved in PI3K-AKT, RAS, MAPK, WNT, and EGFR signaling, pathways recently 

highlighted as mechanisms of lenalidomide resistance in multiple myeloma31. IL2RB and 

STAT3 transcript levels were significantly negatively correlated with the RAS signaling 

components RASGRP2 and HRAS (Supplemental Figure 7). Analysis of tumor 

microenvironment components through xCell RNA analysis revealed that a low CD8+ T-cell 

signature was associated with R2CHOP patients that failed EFS24 (Supplemental Figure 8). 

This aligns with lenalidomide’s mechanism of action involving T cell activation resulting in 

tumor cell cytotoxicity.

Gene Expression Neighbor Analysis of R2CHOP Responders Reveal Mechanisms of 
Lenalidomide

From the 113 genes that predicted differential EFS24 response between RCHOP and 

R2CHOP, 3 genes displayed the greatest associations with R2CHOP EFS24 achievement 

and RCHOP EFS24 failure: MAP3K14, IL2RB, and STAT3. To identify genes that were 

closely associated with these targets, Genetic Pearson Distance was calculated. Genes with a 

smaller (closer) distance to a target gene most closely match the expression patterns of that 

gene. Genetic distance was calculated and plotted against all 730 genes for MAP3K14, 

IL2RB, and STAT3 (Figure 4A). The MAP3K14 plot highlights its key role as a nonconical 

NF-κB activator, sharing matching expression profiles with genes such as SOS1, GSK3B, 

PIM1, and MYD88. Next, a protein-protein interaction network was generated using 

ToppGene suite tools47. The top 50/359 protein-protein interaction partners between 

MAP3K14, IL2RB, and STAT3 based on K-step Markov prioritization are displayed (Figure 

4B). However, the most specific correlative relationship emerged between IL2RB and 

STAT3. These two genes are so closely linked that IL2RB is the top expression neighbor to 

STAT3 (Figure 4C, left panel). This close relationship highlights several gene expression 

neighbors that are shared between IL2RB and STAT3. Genes within the top 10% of genetic 

distance of both are highlighted (N = 30) in the zoomed figure (Figure 4C, right panel). The 

MYD88 and JAK3 genes were also within the top 10% of MAP3K14 genetic distance. Other 

notable genes that shared expression patterns with both IL2RB and STAT3 included 

NOTCH2, IRAK3, JAK2, and IFNG.

Responder Alterations are Associated with Specific Patterns of Gene Expression

To integrate the genomic and transcriptomic data described above and identify lenalidomide 

sensitive mechanisms, the relationships between the RA (PIM1, SPEN, and MYD88) and 

the RNA pathway genes associated with R2CHOP EFS24 were explored. 15 of the 44 non-

Hartert et al. Page 7

Leukemia. Author manuscript; available in PMC 2021 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GCB RCHOP patients with paired DNA and gene expression data had a RA. T statistic 

differential expression analyses were performed for all 730 PanCan genes in those cases 

with or without RA. The top 5% genes with overall increases or decreases in patients with 

individual RA are noted (Figure 5A). The top 5% genes with overall increases in patients 

with any of the RA are listed in Figure 5B. A graphic summarizes the signaling pathways 

associated with the RA and highlight a potential mechanism of lenalidomide action, 

including inhibition of the NOTCH, NF-κB, and JAK-STAT pathways.

Discussion

Non-GCB DLBCL cases have been linked with inferior rates of overall survival as a result 

of aggressive activation of survival and proliferation pathways9, 49-51. This includes 

constitutive activation of the NF-κB transcription factor family via dysregulation of genes 

such as MYD88 or NOTCH and results in a chronic inflammatory cytokine milieu14, 16, 22. 

Past work has highlighted the potential benefit of the immunomodulatory drug IMiD® 

lenalidomide in this patient population, however much of this work has focused on either in 

vitro or clinical studies, with lack of insight on the impact of lenalidomide on patient derived 

samples. We have extended upon these observations by aligning clinical data with DNA and 

gene expression analysis from patients treated on trial with R2CHOP, and we are the first to 

identify a high-risk profile of non-GCB patients that benefit from the addition of 

lenalidomide to RCHOP. These results highlight the potential of precision medicine 

strategies in DLBCL to identify a vulnerable patient population, validate a genetic 

phenotype, and apply a personalized therapy that elicits a favorable response when standard 

therapy likely would not.

We report three gene alterations to be predictive of high-risk DLBCL that fail standard 

RCHOP yet are susceptible to R2CHOP: PIM1, SPEN, and MYD88 (L265P). Each have 

well-documented roles in non-GCB DLBCL, with MYD88 being supported by numerous 

studies16, 52, 53. The high incidence of MYD88 mutations combined with the clinical results 

of R2CHOP in ABC DLBCL suggest that there are underlying biologic and genetic 

differences that may account for ABC-specific responses18, 33. Mutations in MYD88 have 

also been specifically linked with a supportive cytokine milieu that sustains an inflammatory 

JAK-STAT phenotype20. Other work has highlighted the self-sustaining capabilities of active 

STAT3 signaling and its reliance on NF-κB-triggering mechanisms54. PIM1 alterations and 

those that activate NOTCH signaling (SPEN) have also been documented to induce an 

inflammatory cytokine environment22, 55-57. In support of our finding, MYD88 and PIM1 
alterations were clustered into the unfavorable C5 and MCD genomic subtypes and are 

associated with aggressive NF-κB signaling12, 18. SPEN has also been identified as an 

unfavorable marker in the non-GCB phenotype and is present in the C1 and BN2 clusters, 

which resemble a novel non-GCB phenotype more reliant on NOTCH and immune 

escape12, 17, 18. Together these studies suggest that PIM1, SPEN, and MYD88 (L265P) are 

associated with high-risk non-GCB DLBCL and drive activation of inflammatory TLR 

signaling, NOTCH, and IRF437. While these are not known direct targets of lenalidomide, 

they are expressed in tumors that have vulnerabilities to lenalidomide.
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Building on the genomic studies, our PanCan analysis was able to identify gene expression 

patterns that reflected the high-risk profile and R2CHOP susceptibility. Inflammatory 

pathways such as JAK-STAT, NF-κB, IRF4, MYD88, and OCT2 displayed significantly 

greater association with achieving EFS24 when treated with R2CHOP compared to RCHOP. 

High-risk patients are likely receiving benefit from lenalidomide’s interference with 

continuous loops of IRF4, NF-κB, and STAT transcription factor signaling. Conversely, 

signatures associated with R2CHOP failure included the Stromal-2 survival, lenalidomide-

repressed genes, CNS lymphoma, E2F3, HRAS, TGFB, and MYC upregulation signatures. 

These pathways likely identify a subset of non-GCB patients that rely on a supportive tumor 

microenvironment (TME) and proliferative signaling.

Upon further analysis of the gene expression data we identified MAP3K14, IL2RB, and 

STAT3 as predictors of high-risk disease on the basis of EFS24. MAP3K14, also known as 

NIK, emerged as a key component of sustained noncanonical NF-κB signaling associated 

with MYD88, and equally interesting was the highly-correlated pair of IL2RB and STAT3 
expression20, 58-60. This partnership has been previously observed, as IL2RB, IL6, and 

STAT3 displayed significantly responsive expression and were significantly associated with 

STAT3 ChIP-seq peaks54. JAK1, JAK2, JAK3, IL6R, SOS1, MYD88, NOTCH2, and IFNG 
were also expressed at high levels in unfavorable RCHOP cases22, 54-57, 61. Based on these 

results, IL2RB and STAT3 could prove to be useful predictive markers for high-risk disease 

and R2CHOP response. The JAK-STAT pathway and resulting cytokine signaling profile 

was specifically highlighted by the rrDLBCL study by Morin and colleagues, making this 

observation all the more fitting as a high-risk pathway20. Integrative analysis of the DNA 

and gene expression data revealed how each RA (PIM1, SPEN, and MYD88) uniquely 

influences an inflammatory phenotype. Several genes associated with NF- κB engagement 

displayed greater expression in patients with any of the alterations (CARD11, PLCG2, and 
JAK1), but the SPEN profile was uniquely associated with microenvironment and NOTCH 
genes, highlighting its presence in the novel C1 and BN2 genetic classifications.

In conclusion, our combined analysis of DNA and RNA across R2CHOP and RCHOP 

treatment cohorts identifies a high-risk non-GCB phenotype that is capable of sustaining 

JAK-STAT and NF-κB signaling, and is sensitive to R2CHOP. This phenotype encompasses 

approximately 38% of non-GCB patients, and the positive results of the ECOG-ACRIN1412 

highlight the clinical success of R2CHOP. Our data supports the hypothesis that R2CHOP 

has activity in tumors reliant on IRF4, NF-κB, and STAT transcription factors, leading to a 

loss of proliferative feedback systems. Although promising and highly relevant due to the 

use of early phase clinical trial samples and a large comparison cohort, these conclusions 

require additional validation that can be done as R2CHOP trial samples with existing tissue 

and long term follow up become available. The RA signature generated in this work could 

retrospectively identify patients in larger studies (such as the ROBUST trial) that would 

most likely benefit from the combination. Combined with prior studies on RCHOP + 

ibrutinib21, 28, 62, the groundwork for a precision therapy approach in DLBCL in which 

DNA or RNA profiles can be used to identify patients early in treatment who may not 

benefit from the current standard of care, RCHOP, and who would benefit from the addition 

of lenalidomide or other targeted agents.
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Figure 1: Identification of DNA Alterations that Predict High-risk non-GCB DLBCL that 
Respond to R2CHOP.
(A) Association of individual genes with EFS24 response to RCHOP (x-axis) and R2CHOP 

(y-axis) are compared on an XY scatter plot. The data from both GCB and non-GCB 

patients are plotted in the left panel; data from non-GCB patients only are plotted in the right 

panel. (B) Heatmap showing differential enrichment of alterations in non-GCB patients who 

fail EFS24 with RCHOP but achieve with R2CHOP. Scale shown represents percentage 

enriched in EFS24 population. Genes with 10% or lesser favorability in RCHOP and 10% or 

greater favorability in R2CHOP were designated as EFS24 responder alterations (RA). (C) 

Kaplan-Meier curves for event free survival of R2CHOP (N=18) and RCHOP (N=61) 

treated cases. 95% CI ranges are shown as dotted lines.
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Figure 2: Pathway Enrichment of DLBCL Cases that Respond to R2CHOP.
(A) The top 20 pathway enrichments for genes associated with an improved R2CHOP 

EFS24 response are represented in a bar graph through −log10 false discovery rate (FDR) 

significance values. (B) An orbital diagram is divided into four quadrants representing 

ontology characteristics of R2CHOP favorable gene sets. Ontologies are labelled with their 

title and their −log10 FDR value. More significant FDR values approach the center of the 

orbital. The following thresholds designate −log10 FDR orbitals: outer orbit = 1.33 to 5, 

intermediate orbit = 5 to 10, and inner orbit = 10+. Size of the ontology is determined by a 

normalized threshold of relative genes in the hit list compared to the total number of input 

genes.
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Figure 3: RNA Expression Analysis Reveals R2CHOP Response Pathways.
(A) Mean values of signature gene EFS24 association T statistics for each treatment are 

plotted as bar graphs for R2CHOP (red) and RCHOP (white) favorability. Positive T values 

represent greater gene expression in patients that achieved EFS24. Negative T values 

represent greater gene expression in patients that failed EFS24. Error bars represent the 95% 

confidence interval. Difference in means was observed with a student’s t test with 

significance achieved at α = 0.05. (B) Individual genes are plotted in an XY scatter plot 

based on their EFS24 T value associations with RCHOP and R2CHOP. T statistics have 

been normalized to facilitate presentation. R2CHOP responder expressers are highlighted in 

red (N=113). (C) Top interacts of the 113 responder expressers are displayed by their 

significance. (D) Pathway enrichment analyses were performed for the top and bottom 5% 

of genes that displayed a shift in expression from poor EFS24 RCHOP cases to favorable 

EFS24 R2CHOP cases and vice versa. Ontologies composed of genes enriched for R2CHOP 

success (red) and failure (black) are documented on the basis of −log10 FDR value.
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Figure 4: Nearest Neighbor Analysis of Top Responder Genes Reflect NF-κB, JAK/STAT, and 
Cytokine Signaling Programs.
(A) Plots illustrate ranked Pearson distance between responder genes and the other 729 

PanCan genes. For each plot, genes to the left of the X-axis and designated in red represent 

genes with similar expression profiles as the target gene. Those with greater Pearson 

distance are plotted to the right and exhibit dissimilar expression patterns to the target gene. 

(B) A bar graph highlights the top 50 protein-protein interaction partners between 

MAP3K14, IL2RB, and STAT3 based on k-step Markov distance. (C) A scatter plot 

documents the correlative genetic partners of IL2RB and STAT3 for all genes. Dotted lines 

designate limits for top 10% closest genes to each. 23/730 genes meet these criteria and are 

shaded in red. A zoomed view of these gene neighbors is displayed in the bottom plot. 

MYD88 and JAK3 are also top 10% gene partners with MAP3K14 and highlighted with a 

dark border.
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Figure 5: Responder Alterations Correspond to Distinct RNA Expression Profiles.
Combined data from 44 cases that had paired WES and PanCan data was used for analysis, 

R2CHOP (N=13) RCHOP (N=31). 15 patients had at least one RA. (A) The top 5% and 

bottom 5% (N=37 each) of genes associated with the presence of each RA are visualized 

through dot plots. Genes with greater differential expression in the presence of an RA are 

closer to the top (greater T value; green) and genes with lesser expression in the presence of 

an RA are closer to the top (lower T value; red). Each RA is individually documented. (B) 

The table documents genes associated with greater differential expression in the presence of 

any RA. (C) A graphic summarizes the DNA alterations and the hypothesized high-risk 

phenotype. RA are designated green, genes associated with greater expression in yellow, and 

hypothesized cytokines in red.
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Table 1

DLBCL Patient Characteristics by Treatment

RCHOP (N=149) R2CHOP (N=47) P-Value

Age median (range) 64 (26-89) 61 (19-87) 0.15*

IQR 56-72 56-71

Age ≥ 60 96 (64.4%) 27 (57.4%) 0.39†

Male 91 (61.1%) 29 (61.7%) 0.99†

PS 2+ 21 (14.1%) 5 (10.6%) 0.63†

Ann arbor stage III-IV 93 (62.4%) 42 (89.4) <0.0001†

2+ extranodal sites 29 (19.5%) 14 (29.8%) 0.16†

LDH > ULN 76 (58.0%) # 29 (61.7%) 0.73†

IPI

0 - 1 46 (30.9%) 16 (34.0%) 0.52‡

2 45 (30.2%) 12 (25.5%)

3 43 (28.9%) 11 (23.4%)

4 - 5 15 (10.1%) 8 (17.0%)

COO

ABC 50 (33.6%) 14 (29.8%) 0.86‡

GCB 78 (52.3%) 27 (57.4%)

Unclassified 11 (7.4%) 4 (8.5%)

N-miss 10 (6.7%) 2 (4.3%)

EFS24 Achieved 100 (67.1%) 34 (78.7%) 0.15†

Abbreviations: R2CHOP, lenalidomide added to RCHOP; IQR, interquartile range; PS, performance score; IPI, international prognostic index; 
COO, cell of origin; EFS24, event-free survival over 24 months

*
Unpaired t test

†
Fischer’s exact test

‡
Chi square test

#
18 cases without data
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Table 2

Treatment Summary by COO

RCHOP GCB RCHOP non-GCB R2CHOP GCB R2CHOP non-GCB

N 78 61 27 18

EFS24 74.4% 57.4% 81.5% 77.8%

OS24 82.1% 72.1% 96.3% 88.9%

EFS HR
95%CI

Reference 1.67*
1.03 to 2.72

Reference 0.709
0.237 to 2.12

EFS OS
95%CI

Reference 2.18**
1.27 to 3.74

Reference 0.738
0.152 to 3.58

Abbreviations: EFS, event-free survival; OS, overall survival; HR, hazard ratio; CI, confidence interval
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Table 3

EFS24 Responder Alteration Details

RCHOP
Achieved

RCHOP
Failed

R2CHOP
Achieved

R2CHOP
Failed

Proportional
Difference Pathway

PIM1 5/35 8/26 5/14 0/4 0.522 Cell Survival/Proliferation, Somatic Hypermutation

SPEN 2/35 5/26 3/14 0/4 0.349 NOTCH

MYD88 (L265P) 3/35 5/26 3/14 0/4 0.321 NFKB

Results are reported in decimal porportions on the basis of EFS24
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