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Abstract: A cooperative dynamic range-only simultaneous localization and mapping (CDRO-SLAM)
algorithm based on the sum of Gaussian (SoG) filter was recently introduced. The main characteristics
of the CDRO-SLAM are (i) the integration of inter-node ranges as well as usual direct robot-node
ranges to improve the convergence rate and localization accuracy and (ii) the tracking of any moving
nodes under dynamic environments by resetting and updating the SoG variables. In this paper,
an efficient implementation of the CDRO-SLAM (eCDRO-SLAM) is proposed to mitigate the high
computational burden of the CDRO-SLAM due to the inter-node measurements. Furthermore,
a thorough computational analysis is presented, which reveals that the computational efficiency of
the eCDRO-SLAM is significantly improved over the CDRO-SLAM. The performance of the proposed
eCDRO-SLAM is compared with those of several conventional RO-SLAM algorithms and the results
show that the proposed efficient algorithm has a faster convergence rate and a similar map estimation
error regardless of the map size. Accordingly, the proposed eCDRO-SLAM can be utilized in various
RO-SLAM applications.

Keywords: simultaneous localization and mapping (SLAM); range-only SLAM; sum of Gaussian
(SoG) filter; cooperative approach

1. Introduction

Simultaneous localization and mapping (SLAM), that is, localizing a robot while building a map
of unknown environments at the same time, has been a popular topic. It has been developed in several
forms, e.g., visual SLAM [1,2], bearing-only SLAM [3], range-only SLAM (RO-SLAM) [4–9], and their
combinations [10,11], etc.

Compared with other types of SLAMs, the RO-SLAM, which uses range sensors only, has some
distinguishing features. First, the range measurements are highly ambiguous. The potential location
of a node can be anywhere on a ring shape, as shown in Figure 1a. Such ambiguity progressively
disappears with the additional range measurements at different locations of a robot, as illustrated
in Figure 1b,c. Second, the map itself simply shows the locations of nodes. Therefore, the data
association issue, which is one of the main difficulties in other types of SLAMs, does not need to be
considered. Due to this simplicity, the RO-SLAM has been applied in a wide range of applications
such as submarine autonomous vehicles, search and rescue, etc., [6,12].
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Figure 1. Explanation of the conventional RO-SLAM algorithms. Red triangles and green crosses
indicate robots and neighbor nodes, respectively. Black and magenta dotted lines are the movement
of the robot and range measurements, respectively. Blue ellipse is a possible location of nodes.
The conventional RO-SLAM algorithms involve (a) the initial localization when receiving the first
measurement, (b) movement of a robot to disambiguate the x-axis, and (c) movement to disambiguate
the y-axis.

The Extended Kalman filter (EKF) has been widely employed as a standard solution to
the RO-SLAM problem, along with some beacon initialization methods, e.g., trilateration [4],
the probability grid [5], the particle filter [7], and the sum of Gaussian (SoG) filter [5,6]. The trilateration
method (or multilateration) is simple, but its performance can be seriously damaged by measurement
noise. The probability grid can perform better than the trilateration, but its performance depends on
the size and resolution of the grid. The particle filter can represent an arbitrary probability density
function (pdf) with a number of particles, such as a non-Gaussian ring shape for the beacon location
in the RO-SLAM; however, it has a high computational burden due to the large number of particles.
Compared with the particle filter approach, the SoG filter [5,6] can give a similar estimation accuracy
in a more computationally efficient way, because it can efficiently cover almost the same area of beacon
locations with a small number of Gaussian distributions. In this paper, the multilateration and SoG
approaches are utilized to determine the initial position to give a fast and accurate localization result.

To improve the estimation accuracy, several RO-SLAM algorithms employ a cooperative approach,
in which there are not only direct measurements between a robot and its neighboring nodes, but also,
other inter-node measurements are integrated for localization [8,9]. In Ref. [8], the inter-node
measurements were simply incorporated into the standard EKF based framework, and the efficiency
and scalability of the large scale sensor network were further improved by using the sparse extended
information filter (SEIF) based cooperative algorithm [9,13]. Recently, the SoG filter based cooperative
approach, called the cooperative dynamic RO-SLAM (CDRO-SLAM) [14], was introduced by using the
advantages of the SoG filter, such as the high estimation accuracy, as mentioned above. In addition, the
CDRO-SLAM can cope with moving nodes by appropriately manipulating the SoG filter, unlike other
RO-SLAM algorithms which assume that nodes are fixed.

In this paper, the efficient implementation of the CDRO-SLAM (eCDRO-SLAM) is proposed
by introducing several efficient implementation techniques to mitigate the high computational
burden of the CDRO-SLAM due to the inter-node measurements. Furthermore, its detailed
computational complexity analysis is also given, and the results show that the computational
efficiency of the eCDRO-SLAM is significantly improved over the CDRO-SLAM, which is shown in
the experiment results.

The main properties of the proposed eCDRO-SLAM can be summarized, where the first two
properties are obtained by inheriting from the advantages of the CDRO-SLAM:

• Accurate and fast localization results are achieved by incorporating the cooperative approach and
the SoG filter.

• Sensor nodes can be applied to dynamic environments where installed nodes are not fixed
or moving such as unstable and unstructured disaster sites, moving landmarks, interactive
information with human and non-fixed objects to analyze human activity, etc.
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• To mitigate the high computational cost induced by the inter-node measurements, several efficient
techniques are introduced, which greatly reduces the required computational complexity of the
proposed eCDRO-SLAM.

This paper is organized as follows: Section 2 derives the CDRO-SLAM, including a cooperative
scheme using inter-node measurements and a tracking scheme of non-fixed nodes. In Section 3,
an efficient implementation of the CDRO-SLAM (eCDRO-SLAM) is presented to mitigate the
computational burden due to the cooperative scheme. Section 4 verifies the performance of the
eCDRO-SLAM with several experimental results, and Section 5 gives the concluding remarks.

2. Cooperative Dynamic RO-SLAM

2.1. Overview

This section summarizes our previous work on the CDRO-SLAM [14], aimed at developing a
cooperative RO-SLAM under dynamic environments. The CDRO-SLAM algorithm is composed of
two stages: (i) the initialization stage estimates the initial locations of a robot and map by using
inter-node measurements, which improves and accelerates the map estimation and (ii) the movement
stage further refines the map generated in the initialization stage or tracks nodes in motion.

In more detail, the initialization stage is described in Algorithm 1. (i) Once the initial positions
of nodes are guessed with the help of iterative multilateration, it is refined by employing the sum of
Gaussian (SoG) filter approach. (ii) The SoG variables are first generated to find the candidate locations
of neighbors, and (iii) the SoG variables are updated by exploiting the inter-node measurements to
quickly reduce the number of candidates. (iv) The weighted SoG variables are merged into a single
Gaussian distribution to estimate the new positions of the nodes. (v) Furthermore, a method to transfer
the weight of the SoG variables is applied to resolve the inherent non-convexity in the anchor-free
localization. (vi) The above procedures are repeated until the positions of all nodes converge.

In the movement stage, a robot and/or some nodes can be moved. Firstly, if a robot moves,
its motion is updated using raw odometry data. Then, after receiving a new distance from the neighbor
node, the locations of the corresponding neighbor node and the robot are further refined by using
the EKF procedure, like in the usual RO-SLAM algorithms (see [15] for details). Secondly, for the
case where some nodes move, their movement can be tracked by properly manipulating the SoG
filter, which is illustrated in Algorithm 2 and Figure 2. (i) If j denotes an index of a moving node, the
movement of the jth node is first detected by one of motion detection techniques (e.g., the norm of
the accelerometer). (ii) When getting a newly modified distance due to the motion of the jth node,
the corresponding SoG variables are reset (see Figure 2a). After that, the new position of the jth node
is estimated by (iii) updating and (iv) merging the SoG variables (see Figure 2b). Finally, the SoG
variables from the jth node to its neighbor nodes are also recalculated by (v) resetting and (vi) updating
them to reflect the newly estimated position of the jth node (see Figure 2c).

Differences between the conventional SoG based RO-SLAM algorithms and the proposed
CDRO-SLAM are discussed in terms of the weight update scheme and computational complexity.
Figures 1 and 3 show the weight update processes of both approaches, respectively. For both algorithms,
the weight update starts when the first measurement between a robot and one of its neighbor nodes
is received, and then the potential location is assumed to be anywhere within a ring shape whose
radius is equal to the measurement (see Figures 1a and 3a). For conventional algorithms, the ambiguity
progressively disappears by moving a robot along with x and y axes, i.e., a non-collinear motion (see
Figure 1b,c). On the other hand, the proposed algorithm updates the weight by using inter-node
measurements without moving a robot. The ambiguity is gradually removed as more measurements
from the non-collinear adjacent nodes arrive (see Figure 3b,c).

The computational cost of the CDRO-SLAM is increased due to the inclusion of the SoG variables
for inter-node measurements. To reduce this computational burden, several efficient implementation
techniques such as the weight symmetry of the SoG distributions are introduced later in Section 3.
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Algorithm 1: Initialization stage of the CDRO-SLAM.
(M for the number of nodes, and i, j, m for the indices of nodes)

1 (i) Iterative multilateration
2 for i← 0 to M− 1 do
3 Initialize the location of ith node by using (1)–(4).
4 end

5 (ii) Generating SoG
6 for i, j← 0 to M− 1, (j 6= i) do
7 Generate the mean mk

ij, covariance Ck
ij, and weight wk

ij by using (5)–(7).

8 end

9 (iii) Updating SoG
10 Update the mean mk

ij and covariance Ck
ij using EKF.

11 /* Algorithms 3 and 4 */
12 for i, j, m← 0 to M− 1, (j 6= i, m 6= i, m 6= j) do
13 Compute and normalize the likelihood lk

ij,m.

14 Update and normalize the weight wk
ij.

15 end

16 (iv) Merging SoG
17 for i← 0 to M− 1 do
18 Compute the new location of the ith node with (8)–(9).
19 end

20 (v) Transferring weight
21 for i, j← 0 to M− 1, (j 6= i) do
22 Transfer the weight wk

ij by using (11).

23 end

24 (vi) Determining convergence
25 for i← 0 to M− 1 do
26 Determine the convergence of the ith node.
27 end
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Figure 2. Description of the updated procedures for tracking moving nodes. (a) Reset the SoG variables
from the neighbor node to the moving node, (b) update and merge the SoG variables, and (c) reset
the SoG variables from the moving node to its neighbor nodes and update the corresponding weights.
The red squares and green crosses represent the moving nodes and neighbor nodes, respectively.
The black dotted line represents the movement of a node.



Sensors 2020, 20, 3306 5 of 16

Algorithm 2: Moving stage of the cooperative dynamic range-only simultaneous localization
and mapping (CDRO-SLAM).
(M represents the number of nodes, and i, j, m represent the indices of nodes)

1 (i) Detecting movement
2 Detect whether the jth node is moving or not.

3 (ii) Resetting SoG (Figure 2a)
4 Reset the mean mk

ij, covariance Ck
ij, and weight wk

ij using Equations (5)–(7).

5 (iii) Updating the SoG (Figure 2b)
6 Update the mean mk

ij and covariance Ck
ij using EKF.

7 /* Algorithms 3 and 4 */
8 for i, m← 0 to M− 1, (i 6= j, m 6= i, m 6= j) do
9 Compute and normalize the likelihood lk

ij,m.

10 Update and normalize the weight wk
ij.

11 end

12 (iv) Merging the SoG (Figure 2b)
13 Estimate the new location of the jth node.

14 (v) Resetting the SoG (Figure 2c)
15 for i← 0 to M− 1, (i 6= j) do
16 Reset the mean mk

ji, covariance Ck
ji, and weight wk

ji using Equations (5)–(7).

17 end

18 (vi) Updating the weight (Figure 2c)
19 for i, m← 0 to M− 1, (i 6= j, m 6= i, m 6= j) do
20 Compute and normalize the likelihood lk

ji,m.

21 Update and normalize the weight wk
ji.

22 end
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Figure 3. Explanation of the weight update scheme in the CDRO-SLAM. Red triangles and green
crosses indicate robots and neighbor nodes, respectively. Black and magenta dotted lines are the
movement of the robot and range measurements, respectively. Blue ellipse is a possible location of
nodes. The CDRO-SLAM involves (a) the initialization of the SoG variables when receiving the first
measurement, (b) determining the SoG distribution after updating the weight with the first inter-node
measurement, and (c) the second inter-node measurement.
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2.2. Initialization Stage

2.2.1. Iterative Multilateration

The initial estimation is done by employing the modified iterative multilateration method so that
errors are not propagated in each iteration. As stated in [16], the first three nodes are supposed to be
placed at the origin, on the positive x-axis, and in the upper half plane, respectively, as follows:

p0(n) = (x0(n), y0(n)) = (0, 0) (1)

p1(n) = (x1(n), y1(n)) = (d01, 0) (2)

p2(n) = (x2(n), y2(n))

=

(
d2

01 + d2
02 − d2

12
2x1(n)

,
√

d2
02 − x2

2(n)

)
. (3)

In Equations (1)–(3), pi(n) is defined as the position of the ith node at iteration n, and dij is
the distance measurement between the ith and jth nodes. The next node is localized by exploiting
the positions of the first two nodes as in p2(n), resulting in the following two candidates due to
its ambiguity:

pm(n) = (xm(n), ym(n))

=

(
d2

01 + d2
0m − d2

1m
2x1(n)

,±
√

d2
0m − x2

m(n)

)
. (4)

The sign of ym(n) can be chosen as the one whose estimated distance from pm(n) to p2(n) is
closer to the measurement d2m. Note that pm(n) is affected by the position error of p1(n), as shown in
Equation (4). The above procedures (i.e., Equations (1)–(4)) are used in Algorithm 1.

2.2.2. Generating SoG

After guessing the initial positions of a robot and map, SoG variables are generated as shown in
Figure 4. Note that in the conventional SoG based RO-SLAM methods, only the SoG variables between
robot and its neighbor nodes are generated, while in the proposed CDRO-SLAM, those between any
pair of two nodes are generated. For two different nodes (let us say the ith and jth nodes, i 6= j),
the mean mk

ij, covariance Ck
ij, and weight wk

ij are generated as described in [5,6]:

mk
ij =

[
xi(n) + dij cos ( 2πk

N )

yi(n) + dij sin ( 2πk
N )

]
, (5)

Ck
ij =

[
vr vt

] [σ2
r 0

0 σ2
t

] [
vT

r
vT

t

]
, (6)

wk
ij =

1
N

, (7)

where k = 0, 1, . . . , N − 1, is an index of SoG, and N is number of SoG, respectively. Note that the
procedures of generating the SoG variables (i.e., Equations (5)–(7)) is utilized in Algorithms 1 and 2.
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Figure 4. Generation of SoG variables. The dotted magentaline represents the measurement. vr and vt

are, respectively, the radial and tangential unit vectors, and σr and σt denote, respectively, the radial
and tangential standard deviations.

2.2.3. Updating SoG

The update scheme of SoG variables consists of two parts. When collecting the current
measurement dij, the corresponding mean mk

ij and covariance Ck
ij are first updated using the standard

EKF procedure (see [15]). After that, the weights wk
ij between all inter-nodes are updated by using the

inter-node measurements to remove the ambiguity.
A detailed update procedure for the weight wk

ij is summarized in Algorithm 3. In order to update

wk
ij between the ith and jth nodes, the likelihood lk

ij,m is first computed with respect to the mth nodes
connected with the jth node (in lines 2–5 of Algorithm 3), where m is an index of the neighbor nodes.
After the normalization of lk

ij,m in lines 6–8, the weight wk
ij is updated in lines 9–11 and normalized

in lines 12–14. The above procedures are performed for all possible mth neighbor nodes, i.e., m 6= i,
m 6= j. As more measurements dmj are used, the updated weight wk

ij becomes a larger value if dk
ij,m is

close to dmj; otherwise, it will converge rapidly to zero.

Algorithm 3: Weight update procedure.

1 for m← 0 to M− 1, m 6= i, m 6= j do
2 for k← 0 to N − 1 do
3 dk

ij,m =
∥∥∥mk

ij − pm(n)
∥∥∥

4 lk
ij,m = 1√

2πσ2
exp

(
− (dk

ij,m−dmj)
2

2σ2

)
5 end
6 for k← 0 to N − 1 do

7 lk
ij,m =

lk
ij

∑k lk
ij

8 end
9 for k← 0 to N − 1 do

10 wk
ij = wk

ij × lk
ij,m

11 end
12 for k← 0 to N − 1 do

13 wk
ij =

wk
ij

∑k wk
ij

14 end
15 end
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2.2.4. Merging SoG

After updating the SoG variables, the weighted SoG is merged into a single Gaussian distribution
to estimate the new locations of nodes. A closed-form solution [17,18] for the merged SoG is employed
for the new location pi(n + 1) and its covariance Ci(n + 1), as follows:

pi(n + 1) =
1

∑j,k

(
wk

ji

) ∑
j,k

(
wk

jim
k
ji

)
, (8)

Ci(n + 1) =
1

∑j,k

(
wk

ji

) ∑
j,k

wk
ji(C

k
ji + C̄k

ji), (9)

C̄k
ji =

(
mk

ji − pi(n + 1)
) (

mk
ji − pi(n + 1)

)T
. (10)

2.2.5. Transferring Weight

Due to the inherent non-convex nature of anchor-free localization, a local solution can be obtained
after merging SoG variables. To prevent falling into a local solution due to a small weight being
ignored, a weight transfer method is introduced here by distributing weights around the maximum
weight. If kmax indicates an index of the maximum weight from the SoG distribution, the weight can
be heuristically distributed as a Gaussian distribution at the center of kmax. More specifically, with the
mean distance between two indices kmax and k, defined by dkmax−k = ‖mkmax

ij −mk
ij‖, the weight is

distributed as follows:

wk
ij =

1√
2πσ2

exp

(
−

d2
kmax−k

2σ2

)
, (11)

where σ is experimentally determined (e.g., 0.5). Finally, the weight wk
ij is normalized to ensure that its

sum is 1.
The effectiveness of the proposed weight transfer technique was verified with a simulation,

as shown in Figure 5. In the simulation, five nodes were deployed, where four nodes were placed in a
rectangular shape and a robot was moved inside the rectangular shape. The noise variance was set
to 0.3–0.8. The RMSE performance was obtained by ensemble averaging over 20 independent trials.
As shown in Figure 5, the RMSE performance improved by about 50% with the proposed weight
transfer method because it gives a chance to avoid a local minimum.

Figure 5. The root-mean-square error (RMSE) performance of map estimation with and without the
weight transfer technique.
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2.2.6. Convergence

The convergence of each node is determined by using p̃i(n), the time-average of pi(n), as follows:

p̃i(n + 1) = αp̃i(n) + (1− α)pi(n). (12)

If ‖p̃i(n + 1)− p̃i(n)‖ < ε, then the corresponding node is considered to be converged. Here, ε is
a small positive constant threshold. If not converged, the procedure from Section 2.2.3 to Section 2.2.4
is repeated when a new measurement is available.

2.3. Moving Stage

As mentioned in Section 2.1, the movement of any node can be tracked in the moving stage.
Unlike the conventional RO-SLAM algorithms, the proposed CDRO-SLAM can deal with the
movement of the neighbor nodes as well as the robot’s movement. In particular, the tracking procedure
during the movement of neighbor nodes was derived in Algorithm 2 by adopting a detection and
tracking moving object (DATMO) strategy [19] into a SoG approach. As shown in Algorithm 2,
the same procedures as in the initialization stage are recombined; thus, the detailed procedure for the
moving stage is not given here. Before concluding this section, it should be noted from Algorithm 2
that the indices of SoG variables in (ii) and (iii) of Algorithm 2 are symmetric counterparts of those
in (v) and (vi) (see Figure 2b,c), which will be utilized when developing an efficient implementation,
as described in the following section.

3. Efficient Implementation

Due to the extra SoG variables between the inter-nodes, the CDRO-SLAM [14] has a greater
computational cost compared with the conventional SoG based RO-SLAM algorithms which use
only the direct measurements between a robot and its neighbor nodes. To mitigate this incurred
computational burden, several efficient implementation techniques are proposed here.

Efficient implementation can be applied to the corresponding computation parts shown in
Algorithms 1–3. Especially, the weight update procedure that causes the main computational burden
is summarized in Algorithm 3 for the original one and Algorithm 4 for the efficient implementation to
show the computational efficiency.

Algorithm 4: Efficient weight update procedure.

1 for m← 0 to M− 1, m 6= i, m 6= j do
2 for k← 0 to N − 1 do
3 dk

ij,m =
∥∥∥mk

ij − pm(n)
∥∥∥

4 lk
ij,m = 1√

2πσ2
exp

(
− (dk

ij,m−dmj)
2

2σ2

)
5 wk

ij = wk
ij × lk

ij,m

6 end
7 end
8 for k← 0 to N − 1 do

9 wk
ij =

wk
ij

∑k wk
ij

10 end
11 for k← 0 to N − 1 do
12 r = mod(k + N/2, N)

13 wr
ji = wk

ij

14 end
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3.1. Reduced Normalization

When computing the likelihood lk
ij,m, its normalization can be omitted without damaging the

performance. Similarly, the normalization of the weight wk
ij can be carried out only once after the end

of for-loop m.

3.2. Symmetric SoG Distribution

Obviously, a higher weight represents a higher probability of the existence of a node. Let us
consider two weights wk

ij and wk
ji for i 6= j. As shown in Figure 6a, the high weight area for each node

is symmetrical, i.e., a high wk
ij occurs in the direction of a negative y-axis for the wk

ij distribution, and a

high wk
ji occurs in the direction of the positive y-axis for the wk

ji distribution.

In Figure 6b, the calculated distribution of two weights wk
ij and wk

ji is described when N = 32

without considering symmetry. If the symmetry property is used, once wk
ij is computed (the highest

probability occurred in k = 25), its counterpart wk
ji can be simply copied from wk

ij by using the modulo
operation (shown in lines 11–14 of Algorithm 4), which gives k = 9 for the highest probability and is
equal to the index with the calculated distribution of wk

ji in Figure 6b.
Furthermore, the symmetry property can be applied in the movement stage. As discussed in the

previous section, the SoG distributions of (iii) and (vi) in Algorithm 2 are symmetrical counterparts of
each other. Therefore, the weight wk

ji of (vi) of Algorithm 2 is simply symmetrically copied from the

weight wk
ij that was previously computed in (iii) of Algorithm 2.
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(b)
Figure 6. Weight symmetry between wk

ij and wk
ji. The green crosses represent the estimated positions

of the ith and jth nodes. (a) The SoG variables are distributed in the xy plane, and the weight is shown
on the z-axis. (b) The weights wk

ij and wk
ji are depicted against the SoG index k.
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3.3. Removal of Low Probability

As investigated in several SoG based RO-SLAM algorithms, the merging procedure can be
efficiently realized by dropping small Gaussian weights in Equations (8)–(9). The threshold value can
be set as small enough, e.g., 0.00001/N [20], where N is the number of SoG.

3.4. Efficiency Analysis

In order to show the efficiency, two versions of the proposed algorithm are considered: one is the
original CDRO-SLAM and the other is its efficient implementation version (eCDRO-SLAM) with the
aforementioned efficient techniques. The computational efficiency of CDRO-SLAM and eCDRO-SLAM
is also compared with that of several conventional RO-SLAM algorithms, i.e., the efficient probabilistic
RO-SLAM (EPRO-SLAM) [6] and the RBPF-based RO-SLAM (RBPF-RO-SLAM) algorithm [7].

The required computational complexity for updating the weight is considered in terms of the
computing likelihood number lk

ij,m, which is cost-dominant and is summarized in Table 1. Here, M, Q,
and N are the numbers of nodes, particles, and SoG, respectively. Note that RBPF-RO-SLAM requires
a higher computational cost than EPRO-SLAM, since Q = β · dij is usually determined to be much
larger than N, e.g., Q ≥ 1000 and N = 32, where β = [400, 2000] [7].

Table 1. Computational complexity of updating the weight.

Algorithms Likelihood

EPRO-SLAM [6] N
RBPF-RO-SLAM [7] Q

CDRO-SLAM N(M− 2)
eCDRO-SLAM N(M− 2)/2

For CDRO-SLAM, Algorithm 3 requires N(M − 2) computations, and for eCDRO-SLAM,
Algorithm 4 needs N(M − 2)/2 computations, on average. The computation of Algorithm 4 is
reduced by half compared with Algorithm 3.

It is not easy to compare non-cooperative and cooperative algorithms at the same level because
their approaches to estimating the location are totally different, i.e., the cooperative algorithms use
many inter-node measurements for the map estimation, but the non-cooperative algorithms use
robot movement to measure independent and direct ranges between the robot and its neighbors.
As illustrated in Figure 1a–c, the EPRO-SLAM requires several direct measurements at the non-collinear
locations to remove the ambiguity in the location of nodes, which results in αN computations in total,
where α is the number of required direct measurements at the non-collinear locations. On the other
hand, the proposed CDRO-SLAM can yield an accurate location even with one iteration, as described
in Figure 3a–c. In this case, the computational burden ratio of the proposed eCDRO-SLAM over
EPRO-SLAM is (M−2)/2

α at each iteration. When α is minimal (i.e., α = 3 as shown in Figure 1),
the computational complexity ratio can be approximately M

6 . In the case of (at least) α ≈ M, to achieve
a similar ambiguity level to the proposed eCDRO-SLAM, the ratio can be approximately 1

2 .
Furthermore, when updating all nodes, the total computational burden of the proposed

eCDRO-SLAM is NM(M− 1)(M− 2)/2, since there are M(M− 1) SoG variables between inter-nodes;
thus, the total computational burden ratio is about NM(M−1)(M−2)/2

NMα ≈ M/2 for α ≈ M, i.e., the total
computational burden increases linearly as the number of nodes, M, increases.

4. Experiments

As shown in Figure 7, two sets of experiments were conducted with the same number of nodes
(M = 9) but different sizes (3.6 m × 4.8 m for Experiment 1 and 6.6 m × 8.4 m for Experiment 2).
In the experiments, the motion of the robot was arbitrary controlled remotely by a person, and it was
represented by using the measured odometry in Figure 7. Also, TurtleBot3 Burger and Pozyx [21]
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were used in the experiments for the ultra-wide-band (UWB) measurements . For the acquisition
of measurements, all the inter-node measurements were initially collected while a robot remained
still, and then the direct measurements were collected while the robot moved, in order to clearly
show the difference of weight update scheme between the conventional RO-SLAM and the proposed
eCDRO-SLAM. The performance of the eCDRO-SLAM with the inter-node measurements was verified
with real experimental data, and it was compared with EPRO-SLAM [6] and RBPF RO-SLAM [7],
which use direct measurements only. Note that the proposed eCDRO-SLAM was considered only
because it gave almost same performance when compared with the CDRO-SLAM, except the
computational efficiency. The computational complexity comparison of the eCDRO-SLAM and
CDRO-SLAM will be given in Section 4.3. The map estimation and the tracking performance of
moving nodes were also investigated.
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Figure 7. Deployment of nodes and odometry for (a) Experiment 1 and (b) Experiment 2.

4.1. Map Estimation Performance

The map estimation performance for the two experiments is illustrated in Figure 8, and the
following results can be observed:

• The conventional algorithms exhibited a slower convergence rate and higher initial map estimation
error than the proposed eCDRO-SLAM, since their convergence depends on both the movement
of the robot and the rate of measurements. On the other hand, the convergence of the proposed
eCDRO-SLAM depends only on the rate of measurements and is accelerated by employing the
inter-node measurements, as discussed before.

• As shown in Figure 8, the proposed eCDRO-SLAM estimates the map even without the movement
of a robot; on the other hand, the conventional algorithms can only estimate the map when a
robot moves.

• During the refinement of Experiment 1, all algorithms achieved a similar RMSE of about 0.2 m.
On the other hand, for Experiment 2, the RBPF-RO-SLAM algorithm (0.56 m) yielded a higher
RMSE than the EPRO-SLAM algorithm (0.72 m), as expected. Furthermore, the proposed
eCDRO-SLAM algorithm (0.21 m) obtained a better performance than the non-cooperative
RBPF-RO-SLAM algorithm. The difference between the two experiments comes from the
odometry error. The performance of the RBPF-RO-SLAM (also the EPRO-SLAM) suffered from
not only the measurement error but also the odometry error, especially in the large area; on the
other hand, the proposed eCDRO-SLAM was affected only by the measurement error, which led
to a similar map estimation result for both experiments, regardless of the difference in size.
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Figure 8. Map estimation performance obtained by the proposed eCDRO-SLAM and the conventional
RO-SLAM algorithms [6,7] for (a) Experiment 1 and (b) Experiment 2.

4.2. Node Tracking Performance

The node tracking performance of the proposed eCDRO-SLAM was verified with Experiment 1.
Each node moves continually in a square shape one-by-one. The tracking performance was measured
after the initialization stage, and its result is illustrated in Figure 9. The average localization error
was about 0.3688 m in the movement stage, somewhat larger than that of the initial stage; however,
a reasonable tracking performance was achieved using the range sensor only. The tracking performance
of the proposed eCDRO-SLAM can be further improved if a node moves in a stop-and-go way or if
some sensors such as the inertial measurement unit (IMU) are fused. On the other hand, the most
conventional RO-SLAM algorithms (including EPRO-SLAM [6] and RBPF-RO-SLAM [7]) cannot be
applied to dynamic environments where nodes can have motion.
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Figure 9. Node tracking performance of the eCDRO-SLAM for Experiment 1.

4.3. Computational Complexity

In Table 2, the computational complexity of the proposed algorithm and the conventional
algorithms is summarized in terms of the average CPU time per sample for updating the weight
wk

ij and for executing the complete algorithm. The CPU time was measured through implementation
in a MATLAB simulation with an Intel Core i7 processor of 3.3 GHz and 8 GB memory.

Table 2. Required CPU time for Experiment 1.

Algorithms CPU Time (ms)
Weight Total

EPRO-SLAM [6] 0.032 1.70
RBPF-RO-SLAM [7] 0.415 13.3

CDRO-SLAM 0.170 22.7
eCDRO-SLAM 0.101 9.20

The required CPU time for computing the weight shown in Table 2 has a similar tendency to that
of the efficiency analysis shown in Section 3.4. When considering the total CPU time, it is assumed
that all algorithms spend most of the CPU time in updating the weight and merging SoG variables (or
particles) to simplify the analysis. From the total CPU time results, we can see the following:

• The total computational burden ratio of the proposed eCDRO-SLAM over the CDRO-SLAM
(9.20/22.7 ≈ 0.405) is smaller than the expected ratio of the weight (0.101/0.170 ≈ 0.594),
since the eCDRO-SLAM is efficiently implemented for both updating and merging SoG processes.
As indicated in Section 3.4, the efficiency of the eCDRO-SLAM is about half that of the
CDRO-SLAM.

• The eCDRO-SLAM requires 9.20− 0.101× (9× 8) = 1.93 ms to merge SoG variables between
all inter-nodes, and the EPRO-SLAM needs 1.70 − 0.032 = 1.67 ms to merge only one SoG
distribution. This efficiency of the eCDRO-SLAM is obtained due to the fast convergence of the
weight and because small enough weights are dropped in the merging process. Furthermore,
the eCDRO-SLAM is computationally efficient in terms of achieving a similar ambiguity level,
since the EPRO-SLAM may require M = 9 iterations (see Section 3.4) and, in this case, it needs
1.7 ms × 9 = 15.3 ms in total.
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• Despite the cooperative approach, the proposed eCDRO-SLAM was executed using a smaller
total CPU time than the non-cooperative RBPF-RO-SLAM. Note that the RBPF-RO-SLAM spends
most of the CPU time for transforming particles into a Gaussian filter.

5. Conclusions

In this paper, an efficient cooperative dynamic RO-SLAM (eCDRO-SLAM) based on the sum
of Gaussian (SoG) filter integrating all inter-node measurements for the localization was proposed.
A new framework to update the SoG variables using the inter-node measurements leads to faster map
estimation with less error than conventional RO-SLAM algorithms using the direct measurements only.
Also, several efficient implementation techniques such as the weight symmetry of the SoG distributions
were introduced to alleviate the additional computational burden induced when calculating the SoG
variables between inter-nodes.

Furthermore, the proposed eCDRO-SLAM was designed to track the movement of some nodes
by resetting and updating the SoG variables. With the dynamic property and computational efficiency,
its application can be extended to various dynamic environments that are full of movable objects such
as unstable disaster sites, unstructured fields, or temporal deployment of robots/devices.

As a future work, a sensor fusion approach integrating the IMU, odometry, and range sensor will
be considered to improve the localization and node tracking performance. Furthermore, we will apply
the proposed algorithm to various RO-SLAM applications such as robot-assisted search and rescue
application and ambient intelligence environments.
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