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Abstract: Adulteration is one of the major concerns among all the quality problems of milk powder.
Soybean flour and rice flour are harmless adulterations in the milk powder. In this study, mid-infrared
spectroscopy was used to detect the milk powder adulterated with rice flour or soybean flour and
simultaneously determine the adulterations content. Partial least squares (PLS), support vector
machine (SVM) and extreme learning machine (ELM) were used to establish classification and
regression models using full spectra and optimal wavenumbers. ELM models using the optimal
wavenumbers selected by principal component analysis (PCA) loadings obtained good results
with all the sensitivity and specificity over 90%. Regression models using the full spectra and the
optimal wavenumbers selected by successive projections algorithm (SPA) obtained good results,
with coefficient of determination (R2) of calibration and prediction all over 0.9 and the predictive
residual deviation (RPD) over 3. The classification results of ELM models and the determination
results of adulterations content indicated that the mid-infrared spectroscopy was an effective technique
to detect the rice flour and soybean flour adulteration in the milk powder. This study would help to
apply mid-infrared spectroscopy to the detection of adulterations such as rice flour and soybean flour
in real-world conditions.
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1. Introduction

In general, milk is an important source of protein for adults and children. Specifically, milk is used
as an indispensable food in a large number of families to provide daily nutrition for infants. Therefore,
the quality and safety of dairy products has been a global concern. There is great demand for high
quality milk, and adding simple compounds into milk is a common practice to enhance the nutritional
value of milk and increase the economic profits. However, not all additions are legal. After the event
of melamine contamination in Chinese infant milk products in 2008, strict rules for milk quality and
safety inspection have been developed. However, the milk adulteration still cannot be avoided due to
the temptation of achieving high economic profits with lower cost.

Rice flour and soybean flour are harmless and the low prices of these flours make them attractive as
potential adulterants in dairy products. Rice flour could be added to milk to increase the solids-not-fat
content and viscosity [1,2]. Soybean flour contains plant proteins, thus it also could be used as milk-like
products blended in the milk powder to maintain the protein content of the product [3]. These two
kinds of flour adulterations will reduce the nutritional value of milk and also have negative effects on
those who consume milk as a daily nutritional supplement.

The similarity of milk powder, rice flour and soybean flour makes it difficult to identify the
adulterations by the naked eye. Detection of rice flour and soybean flour adulterations is of great
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importance for milk quality and safety inspection. There are various laboratory-based chemical methods
to identify adulterations in milk, but most of them are complex to operate, expensive, reagent wasting,
and cannot be used for rapid and accurate large-scale batch detection [4]. Therefore, a rapid, cheap
and high-accuracy technique for milk adulteration detection is of great importance.

Mid-infrared spectroscopy is a widely used spectroscopic technique based on the interaction of
molecules with electromagnetic radiation in the mid-infrared region. Mid-infrared spectroscopy is
capable of exploring the fundamental vibrations and associated rotational-vibrational structure of
chemical bonds. Mid-infrared spectroscopy has been implemented as a rapid, accurate, and cheap
technique in the detection of milk quality. Cecchinato et al. (2009) predicted rennet coagulation time
and curd firmness of milk using mid-infrared spectroscopy. The result indicated that mid-infrared
spectroscopy could be implemented for quality detection of milk from different dairy cattle
populations [5]. Ye et al. (2016) used mid-infrared spectroscopy to study the variation of the secondary
structure of protein induced by temperature in milk powders [6]. Fleming et al. (2017) predicted milk
fatty acid content in Canadian dairy cattle with mid-infrared spectroscopy combined with partial least
squares (PLS) models. The high accuracies obtained by PLS models demonstrated the possibility to
monitor fatty acid contents for cows in milk powder using mid-infrared spectroscopy [7].

Mid-infrared spectroscopy also has been used to identify adulterations in milk. Gondim et al. (2017)
proposed a sequential strategy to detect adulterants including formaldehyde, hydrogen peroxide,
chloride and so forth in milk using a mid-infrared spectroscopy. Seven different compound adulterations
were detected successfully, and 80% of samples were properly classified [8]. He et al. (2010) established
two-dimensional (2D) correlation spectroscopy using Fourier transform infrared spectroscopy (FTIR) for
the discriminative analysis of melamine, urea, tetracycline and glucose adulterants in milk in milk [9].
Santos et al. (2013) determined the level of adulteration with whey, synthetic milk, synthetic urine,
urea and hydrogen peroxide in milk successfully with mid-infrared microspectroscopy [10]. The studies
mentioned above mainly focused on the detection of several chemical components.

The objective of this study was to explore the feasibility of using mid-infrared spectroscopy to detect
milk adulterated with rice flour and soybean flour. The specific objectives were to: (1) differentiate milk
powder, rice flour, soybean flour, milk powder adulterated with rice flour and milk powder adulterated
with soybean flour; (2) detect adulterations content in adulterated milk powder quantitatively.

2. Materials and Methods

2.1. Sample Preparation

Commercial milk powder (Whole milk powder, Anchor, New Zealand), rice flour (Pure rice flour,
Jinhuafang, Jinan Province, China) and soybean flour (Pure soybean flour, Wugukang, Shandong
Province, China) were purchased online (JingDong Mall). The content of main components in milk
powder, rice flour and soybean flour are shown in Table 1.

The milk powders were mixed with the rice flour and the soybean flour respectively. The percentage
(by weight) of adulterations were 0%, 5%, 10%, 15%, 20%, 25% and 30%, respectively. For each
adulteration percentage, a total of 10 g powders were prepared. Before mixing, the potassium bromide
(KBr) powders were dried at 105 ◦C and placed under an infrared lamp to reduce the influence of
water. The mixtures were accurately mixed by grinding manually for 3 min. To obtain samples for
mid-infrared spectra acquisition, 0.02 g mixtures of each adulteration percentage were weighed and
then mixed with 0.98 g (KBr) powders, and 0.1 g mixtures were weighed and pressed into pellets
using a tablet machine. To evaluate the differences among the milk powders, the rice flour and the
soybean flour, 120 samples of each powder were prepared, respectively. For milk powder adulterated
with rice flour (5%, 10%, 15%, 20%, 25% and 30%) and soybean flour (5%, 10%, 15%, 20%, 25% and
30%), 30 pellets of each adulteration percentage were prepared, respectively. Due to the software
error during spectra acquisition, spectra of some samples were missing. 119 samples of each powder
without adulterant were obtained. There were 29 samples for milk adulterated with different content
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of rice flour (5%, 25% and 30%), and there were 29 samples for milk adulterated with different content
of soybean flour (10%, 25% and 30%). In total, 177 samples of milk powder adulterated with rice flour
(5–30%) and soybean flour (5–30%) were obtained, respectively.

In order to explore whether mid-infrared spectroscopy could be used to distinguish different types
of powder, samples of milk powder, rice flour, soybean flour, milk powder adulterated with rice flour
and milk powder adulterated with soybean flour were randomly divided into the calibration set and
the prediction set at the ratio of 2:1. To detect the content of adulterants in milk powder quantitatively,
samples of milk powder adulterated with rice flour (0%, 5%, 10%, 15%, 20%, 25% and 30%) and milk
powder adulterated with soybean flour (0%, 5%, 10%, 15%, 20%, 25% and 30%) were also divided into
the calibration and the prediction sets at the ratio of 2:1 randomly.

Table 1. The content of main components in milk powder, rice flour and soybean flour.

Component
Content (g/100g)

Milk Powder Rice Flour Soybean Flour

Protein 24 0.3 32.8
Fat 28.8 0.3 18.3

Carbohydrate 38.4 95.6 30.5

2.2. Mid-Infrared Spectra Acquisition

The mid-infrared spectra of samples were acquired by a Fourier Transform Infrared (FTIR)
spectrometer (Nicolet iS10, Thermo Scientific, MA, USA) in the spectral range of 400–4000 cm−1.
The resolution was set as 4 cm−1. The spectra acquisition mode was transmittance. The scanning time
of each sample was set as 32, and the average spectrum of the 32 scans was used as the spectrum of
the sample.

2.3. Chemometric Methods

2.3.1. Principal Component Analysis

Principal component analysis (PCA) is a widely used feature extraction and data dimension
reduction method. PCA linearly transforms the original data into new orthogonal variables
(called principal component, PC), and the PCs are ranked from high to low according to the explained
variances. In general, the first few PCs explained the most of the total variance. In this study,
PCA was used to form the scores scatter plot and identify the optimal wavenumbers by loadings
inspection [11–14].

2.3.2. Calibration Models

In this study, calibration models including discriminant models and regression models were used.
Discriminant models were built to discriminate the milk powders, rice flour and soybean flour and
to discriminate the milk powder adulterated with rice flour and soybean flour. Regression models
were used to quantitatively detect adulteration content. Partial least squares (PLS), extreme learning
machine (ELM) and support vector machine (SVM) were all used to build both kinds of models.

PLS is the mostly used chemometric method in spectral data analysis. PLS reveals the linear
relationship between the independent matrix (X) and the dependent variables (Y). PLS transforms X
and Y into new variables at the same time. PLS tries to maximize the variances of the new variables and
find the maximum correlation between the new variables of X and Y. For regression and discrimination,
the modelling procedures are the same. For regression, Y is the real numbers representing the features
to be predicted. For discrimination, Y is the integer numbers or dummy numbers representing the
categories [15–18]. To conduct PLS, the optimal number of latent variables were determined by
leave-one-out cross validation. ELM is a widely used feedforward neural network. ELM chooses the
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weights connecting inputs to hidden nodes randomly without modification. The main parameter
of ELM to be determined is the number of neurons in the hidden layer. ELM has the same training
procedure for classification and regression [19–21].

ELM has the characteristics of good generalization ability and fast computation. Activation
function is the key to ELM models, and there are various activation functions such as Sigmoid function,
sine function and radial basis function, etc. In this study, radial basis function (RBF) was used
as activation function. To conduct ELM, the optimal number of neurons in the hidden layer was
determined by comparing the performances of ELM models using different number of neurons, and the
ELM models were also built by using leave-one-out cross validation.

SVM is a machine learning method for classification and regression. SVM tries to map the
original data into a high-dimension space and build hyperplanes in the high-dimension space to
maximally separate samples for classification. For regression, SVM tries to map the original data into
a high-dimension space and solve the linear regression problem in the high-dimension space. Kernel
function is the key to the mapping. The generally used kernel functions are RBF, polynomial, linear
and Sigmoid kernel functions. In this study, RBF was used as kernel function for both classification and
regression [22,23]. To conduct SVM, the optimal parameters C and g were determined by a grid-search
procedure from 2−8 to 28, and the SVM models were built using five-fold cross validation.

2.4. Variable Selection

The acquired mid-infrared spectra contained background information and redundant information.
Optimal wavenumbers selection is used to select a few most informative wavenumbers for further
analysis to reduce the influence of background information and redundant information. With fewer
wavenumbers, the model inputs will be reduced and the model will be simplified. In this study,
optimal wavenumbers were selected for discrimination of milk and its adulterations (rice flour and
soybean flour), discrimination of milk adulterated with different adulterations and determination of
the adulteration content.

Loadings of variables are the correlation coefficient between the original variables and new
variables in each PC of PCA. In each PC, absolute loading value indicates the importance of the
corresponding variable. Loadings of the first few PCs are therefore used for variable selection.
In this study, PCA loadings were used to select optimal wavenumbers for discrimination of
milk and its adulterations (rice flour and soybean flour), discrimination of milk adulterated with
different adulterations.

Successive projections algorithm (SPA) is a forward variable selection method. SPA is conducted
in two steps. Firstly, SPA calculates the projections of one variable on the others and selects the
variables with maximum projection into the candidate subset. The variables are ranked according to
the projections. Then a calibration model is built on the different number of variables to evaluate the
selected variables. The variables with the best model performances are selected [24–28]. In this study,
multiple linear regression was used to evaluate the selected variables for content determination.

2.5. Software and Model Evaluation

In this study, PLS and second derivative were conducted on Unscrambler® 10.1 (CAMO AS,
Oslo, Norway), while PCA, ELM, and SVM were performed on MATLAB R 2014b (The Math Works,
Natick, MA, USA).

Receiver operating characteristics (ROC) is used to illustrate the discriminant performances of
models. True Positive (TP), False Positive (FP), True Negative (TN) and False Negative (FN) are
terminologies used in the description of ROC [29]. The equations of sensitivity and specificity are
presented as follows:

Sensitivity =
TP

TP + FN
× 100% (1)
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Speci f icity =
TN

FP + TN
× 100% (2)

where TP means the classified result and the actual label are both positive. FP stands for the classified
result is positive while the actual label is negative. TN means the classified result and the actual
label are both negative. FN means the classified result is negative while the actual label is positive.
For a good classifier, sensitivity and specificity should be close to 100%.

The performances of regression models were evaluated by the coefficient of determination (R2),
root mean square error of the calibration set (RMSEC) and prediction set (RMSEP). The residual
predictive deviation (RPD) was also used to evaluate the model performances. According to
Zornoza et al. (2008), models with R2 over 0.9 or RPD over 3 showed excellent performances, models
with R2 between 0.81 and 0.90 or RPD between 2.5 and 3 showed good performances and R2 between
0.61 and 0.8 or RPD between 2.0 and 2.5 indicated that the models could be used for prediction [30].

3. Results and Discussion

3.1. Spectra Profiles

There was obvious noise in the head and end of the spectra due to system error. Therefore, only
the spectra at the range of 737.1565 cm−1–3147.2580 cm−1 were analyzed in this study. The mid-infrared
spectra were preprocessed by wavelet transform to reduce the noise, and the wavelet function was
Daubechies 8 with the decomposition level being 3. The denoised spectra were then preprocessed
by area normalization to reduce the light variation among different samples. Figure 1a shows the
average spectra of milk powder, rice flour, soybean flour, milk powder adulterated with rice flour and
milk powder adulterated with soybean flour. To match the sample number of adulterated samples,
30 milk powder samples were randomly selected. Differences could be observed among different
samples. The spectral peaks and valleys in the spectra were quite similar. Although the spectral
curves of different samples were similar, their transmittance value were different, and some of the
wavenumbers showed obvious differences. The spectral differences of milk powder adulterated with
different contents were also observed.

As shown in Figure 1a, differences of transmittance spectra could be found among the average
spectrum of milk powder, rice flour and soybean flour. Specifically, the two transmittance valleys near
2800 cm−1 are characteristics of CH2 symmetric stretching of fatty acid [31]. The valley near 1700 cm−1

is associated with amide I and II, which can be connected with protein content [32]. Two characteristics
valleys around 1400 and 1600 cm−1 are due to symmetric and asymmetric stretching of C-O bonds from
carboxylate groups [33]. The peak in the range of 700–1200 cm−1 is assigned to carbohydrate chain
vibrations [34]. The differences of these wavebands reflected the differences of the related compositions
differences of fat, protein and carbohydrate. The spectral differences matched with the differences on
the content of fat, protein and carbohydrate in Table 1. However, these spectral differences presented
the differences of compositions qualitatively, and the quantitative relationship between the spectral
differences and composition differences needs further exploration. The characteristic bands in this
region can be used for adulterants detection.

Figure 1b,c shows the average spectra of milk powder adulterated with different contents of rice
flour (0%, 5%, 10%, 15%, 20%, 25% and 30%) and different contents of soybean flour (0%, 5%, 10%,
15%, 20%, 25% and 30%), respectively. The wavebands with differences in Figure 1b,c were similar
to those in Figure 1a. The milk powder adulterated with different contents of rice flour and soybean
flour varied in the chemical compositions (fat, protein and carbohydrate, etc.), which resulted in the
differences in transmittances spectra. For milk powder adulterated with rice flour, larger differences
could be found between the unadulterated milk powder and the adulterated one, and the differences
among adulterated samples were smaller. For milk powder adulterated with soybean flour, differences
could be found among samples adulterated with different content of soybean flour (0%, 5%, 10%, 15%,
20%, 25% and 30%), but the differences were small.
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3.2. PCA Scores Scatter Plot Analysis

PCA was conducted to explore the sample distribution in the scores scatter plots. PCA was
conducted on the calibration set, and PCA scores scatter plots of PC1 vs PC2, PC1 vs PC3 and PC2 vs
PC3 are shown in Figure 2, the first three PCs contributed to 98.888% of the total variances. Samples
of milk powder, rice flour, soybean flour, milk powder adulterated with rice flour and milk powder
adulterated with soybean flour showed clear clusters in different scores scatter spaces, and clear
separation could be observed. Moreover, overlaps could be found among different kinds of flour.
PCA scores scatter plots indicated that there were differences among milk powder, rice flour, soybean
flour, milk powder adulterated with rice flour and milk powder adulterated with soybean flour. There
were potentials to identify these samples using mid-infrared spectroscopy.
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3.3. Classification Models of Powder Samples

3.3.1. Classification Models Using Full Spectra

Identification of milk powder, rice flour, soybean flour, milk powder adulterated with rice flour and
milk powder adulterated with soybean flour provided the first screen of adulterated milk. The category
values of milk powder, rice flour, soybean flour, milk powder adulterated with rice flour and milk
powder adulterated with soybean flour were coded as 00001, 00010, 00100, 01000, 10000 for PLS models,
and assigned as 1, 2, 3, 4 and 5 for SVM models and ELM models. The samples were split into the
calibration set and the prediction set at the ratio of 2:1. There were 480 samples in the calibration set
and 231 samples in the prediction set.

The discriminant results are shown in Table 2. Good classification results were obtained, with most
of the sensitivity and specificity over 90%, although performances of different models varied.
The prediction results of the first category (milk) seemed to be easily confused with the fourth
category (milk adulterated with rice flour) for PLS and SVM models, with sensitivity in the range of
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60%–75%, which could be caused by the similarity of their spectral curves. ELM model outperformed
the other two models, with sensitivity and specificity of calibration set all reaching over 99%, and the
two indicators of prediction set reaching 87%, 97%, respectively. The good results of the ELM model
indicated that it was effective to classify milk powder, rice flour, soybean flour, milk powder adulterated
with rice flour and milk powder adulterated with soybean flour by the mid-infrared spectroscopy.

3.3.2. Optimal Wavenumbers Selection

There were 5000 variables in each spectra, and some of the variables were uninformative. These
uninformative variables might affect the modelling performances. Therefore, it was necessary to select
informative variables contributing more to the classification to reduce the number of input variables,
which could simplify the models and improve the robustness of models. As shown in Figure 3, loadings
of the first three PCs obtained by PCA were used to select informative variables. The first three PCs
explained over 98% of the total variances, and scores scatter plots of the first three PCs showed clear
separation of different kinds of samples. Table 3 shows the selected optimal wavenumbers, and 42
wavenumbers were selected for classification.

Table 2. Confusion matrix of models using full spectra.

Model Par. 1 Sample Number
Pre. 2

Sensitivity (%) Specificity (%)
M.3 R. S. MR. MS.

PLS 17

Cal. 4

M. (80) 80 0 0 0 0 100.00 100.00
R. (80) 0 80 0 0 0 100.00 100.00
S. (80) 0 0 80 0 0 100.00 100.00

MR. (120) 0 0 0 120 0 100.00 99.72
MS. (120) 0 0 0 1 119 99.17 100.00

Pre.

M. (39) 27 0 0 12 0 69.23 100.00
R. (39) 0 39 0 0 0 100.00 100.00
S. (39) 0 0 39 0 0 100.00 100.00

MR. (57) 0 0 0 57 0 100.00 93.10
MS. (57) 0 0 0 0 57 100.00 100.00

SVM 147,
0.0039

Cal.

M. (80) 80 0 0 0 0 100.00 100.00
R. (80) 0 80 0 0 0 100.00 100.00
S. (80) 0 0 80 0 0 100.00 100.00

MR. (120) 0 0 0 120 0 100.00 99.72
MS. (120) 0 0 0 1 119 99.17 100.00

Pre.

M. (39) 29 0 0 10 0 74.36 98.44
R. (39) 0 39 0 0 0 100.00 100.00
S. (39) 0 0 39 0 0 100.00 100.00

MR. (57) 0 0 0 57 0 100.00 94.15
MS. (57) 3 0 0 0 54 94.74 100.00

ELM 78

Cal.

M. (80) 80 0 0 0 0 100.00 100.00
R. (80) 0 80 0 0 0 100.00 100.00
S. (80) 0 0 80 0 0 100.00 100.00

MR. (120) 0 0 0 120 0 100.00 99.72
MS. (120) 0 0 0 1 119 99.17 100.00

Pre.

M. (39) 34 0 0 5 0 87.18 99.48
R. (39) 0 39 0 0 0 100.00 100.00
S. (39) 0 0 39 0 0 100.00 100.00

MR. (57) 1 0 0 56 0 98.25 97.13
MS. (57) 0 0 0 0 57 100.00 100.00

1 Parameter, the parameter of the partial least squares (PLS) model is the optimal number of latent variables,
the parameter of the support vector machine (SVM) model is the penalty coefficient C and radial basis function
(RBF) kernel parameter g, the parameter of the extreme learning machine (ELM)model is number of the hidden layer
neurons; 2 Prediction set; 3 M., R., S., MR. and MS. are assigned respectively as milk powder, rice flour, soybean
flour, milk powder adulterated with different contents of rice flour and milk powder adulterated with different
contents of soybean flour; 4 Calibration set.
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Table 3. Optimal wavenumbers selected by PCA loadings.

Methods Number Wavenumbers (cm−1)

PCA loadings 42

784, 786, 815, 859, 877, 877, 926, 928, 997, 997, 1051,1052,
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3.3.3. Classification Models Using Optimal Wavenumbers

PLS, SVM and ELM models were also built using the selected optimal wavenumbers. The results
of the classification models are presented in Table 4. Good classification results were obtained with
most of the sensitivity and sensitivity indices over 90% for three models. As the same as the results of
models using full spectra, the prediction results of the first category (milk) were easily confused with
the fourth category (milk adulterated with rice flour) for PLS and SVM models. ELM model using
optimal wavenumbers still achieved better performance, with sensitivity and specificity of calibration
set all reaching over 99%, and the same indicators of prediction set reaching 92%, 98%, respectively.
The good results of three models using selected wavenumbers indicated that it was feasible to identify
different powder samples with the selected optimal wavenumbers instead of full spectra.

The performances of models using full spectra and optimal wavenumbers were close. The number
of input variables of these models reduced 99.16% by using the optimal wavenumbers. With the
significant reduction of the number of wavenumber, the close results indicated the effectiveness of
optimal wavenumbers selection. Moreover, different adulteration types with different adulteration
content were accurately identified in all models. For models using full spectra and the selected optimal
wavenumbers, ELM models outperformed the other two models, which indicated that in this study,
ELM was more preferable. These results showed the feasibility of using mid-infrared spectroscopy to
firstly screen milk, adulterations and milk with adulterations.
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Table 4. Confusion matrix of models using optimal wavenumbers.

Model Par. 1 Sample Number
Pre. 2

Sensitivity (%) Specificity (%)
M.3 R. S. MR. MS.

PLS 12

Cal. 4

M. (80) 78 0 0 2 0 97.50 100.00
R. (80) 0 80 0 0 0 100.00 100.00
S. (80) 0 0 80 0 0 100.00 100.00

MR. (120) 0 0 0 117 3 97.50 98.89
MS. (120) 0 0 0 2 118 98.33 99.16

Pre.

M. (39) 21 0 0 18 0 53.85 100.00
R. (39) 0 38 0 1 0 97.44 100.00
S. (39) 0 0 37 0 2 94.87 100.00

MR. (57) 0 0 0 55 2 96.49 88.95
MS. (57) 0 0 0 0 57 100.00 97.42

SVM 256,
0.5743

Cal.

M. (80) 80 0 0 0 0 100.00 100.00
R. (80) 0 80 0 0 0 100.00 100.00
S. (80) 0 0 80 0 0 100.00 100.00

MR. (120) 0 0 0 120 0 100.00 99.72
MS. (120) 0 0 0 1 119 99.17 100.00

Pre.

M. (39) 24 0 0 15 0 61.54 97.92
R. (39) 0 39 0 0 0 100.00 100.00
S. (39) 0 0 39 0 0 100.00 100.00

MR. (57) 0 0 0 57 0 100.00 91.18
MS. (57) 4 0 0 0 53 92.98 100.00

ELM 218

Cal.

M. (80) 80 0 0 0 0 100.00 100.00
R. (80) 0 80 0 0 0 100.00 100.00
S. (80) 0 0 80 0 0 100.00 100.00

MR. (120) 0 0 0 120 0 100.00 99.72
MS. (120) 0 0 0 1 119 99.17 100.00

Pre.

M. (39) 36 0 0 3 0 92.31 100.00
R. (39) 0 39 0 0 0 100.00 100.00
S. (39) 0 0 39 0 0 100.00 100.00

MR. (57) 0 0 0 57 0 100.00 98.28
MS. (57) 0 0 0 0 57 100.00 100.00

1. Parameter, the parameter of the partial least squares (PLS) model is the optimal number of latent variables,
the parameter of the support vector machine (SVM) model is the penalty coefficient C and radial basis function
(RBF) kernel parameter g, the parameter of the extreme learning machine (ELM) model is number of the hidden
layer neurons; 2 Prediction set; 3 M., R., S., MR. and MS. are assigned respectively as milk powder, rice flour, soybean
flour, milk powder adulterated with different contents of rice flour and milk powder adulterated with different
contents of soybean flour; 4 Calibration set.

3.4. Determination of Adulterations Content in the Adulterated Milk

3.4.1. Calibration Models Using Full Spectra

It was noted that the number of samples with each adulteration degree was 29 or 30. To build
calibration models for determination of adulterations content in milk, 30 samples of pure milk powder,
30 samples of pure rice flour and 30 samples of pure soybean flour were randomly selected. The samples
were randomly divided into the calibration set and the prediction set at the ratio of 2:1, and there
were 140 samples in the calibration set and 67 samples in the prediction set. Performances of PLS,
SVM and ELM models using full spectra for rice flour adulteration and soybean flour adulteration are
presented in Table 5. The procedure to determine model parameters for regression was the same as
that for classification.

The calibration models all obtained good performances, with R2
c and R2

p over 0.9 and RPD
over 3. Detection results of soybean flour adulteration were slightly better than those of rice flour
adulteration. ELM models obtained the best performances for both kinds of adulteration. PLS models
outperformed the SVM models. ELM model for soybean flour adulteration content detection showed
the best performances with RPD over 8. The good prediction results of all the three models indicated
that mid-infrared spectroscopy was an efficient technique to determine adulteration (rice flour and
soybean flour) content in milk powder.



Sensors 2019, 19, 2934 11 of 14

Table 5. Results of determination of adulterations content in milk using full spectra.

Adulterations Model Par. 1 R2
c

2 RMSEC 3 R2
p

4 RMSEP 5 RPD 6

Rice Flour

PLS 7 0.969 1.772 0.945 2.719 3.690

SVM 64,
0.0055 0.997 0.592 0.915 3.060 3.279

ELM 37 0.986 1.156 0.949 2.424 4.139

Soybean Flour

PLS 3 0.945 2.335 0.953 2.350 4.269

SVM 16,
0.0039 0.999 0.394 0.939 2.523 3.977

ELM 79 0.998 0.440 0.988 1.129 8.887
ELM 79 0.998 0.440 0.988 1.129 8.887

1 Parameter; 2 Coefficient of determination of calibration set; 3 Root mean square error of the calibration set;
4 Coefficient of determination of prediction set; 5 Root mean square error of the prediction set; 6 Residual predictive
deviation, the value of the standard deviation of prediction for calculation of RPD was 10.033.

3.4.2. Optimal Wavenumbers Selection

To simplify the models, SPA was used to select optimal wavenumbers. The number of wavenumbers
to be selected was limited to 10–50. The selected wavenumbers are shown in Table 6. Different numbers
of optimal wavenumbers were selected, and the selected wavenumbers were merely the same.
The differences of selected wavenumbers indicated the chemical composition differences between milk
powder adulterated with rice flour and milk powder adulterated with soybean flour.

Table 6. Optimal wavenumbers selected by PCA loadings.

Adulterations Methods Number Wavenumbers (cm−1)

Rice Flour SPA 22 743, 767, 759, 821, 845, 879, 895, 922, 964, 1022, 1068, 1145,
1176, 1217, 1462, 1507, 1653, 1622, 1748, 2846, 2966, 3147

Soybean Flour SPA 33
744, 752, 761, 768, 794, 802, 809, 836, 852, 860, 867, 888, 903,

929, 933, 995, 1030, 1068, 1137, 1190, 1465, 1507, 1538,
1560,1615, 1644, 1704, 1734, 1739, 1748, 2839, 3010, 3147

3.4.3. Calibration Models Using Optimal Wavenumbers

PLS, SVM and ELM models were established using the selected optimal wavenumbers. The results
are shown in Table 7. All models obtained good performances, with R2

c and R2
p over 0.9 and RPD

over 3, indicating excellent performances. Detection results of soybean flour adulteration were slightly
better than those of rice flour adulteration. The results obtained by ELM models were slightly better
than PLS and SVM models. ELM models performed the best for soybean flour adulteration content
detection, with R2

c, R2
p and RPD being 0.998, 0.994 and 11.453, respectively. The plots of the prediction

value versus the reference value of ELM models using the selected optimal wavenumbers for the two
adulterations are presented in Figure 4. It could be seen that the performances of soybean adulteration
content detection were better than those of rice adulteration content detection.

A comparison was made between the models using full spectra and those using the selected
optimal wavenumbers. In general, models using the selected optimal wavelengths performed slightly
better than those using the full spectra. Furthermore, the number of input variables of the three models
reduced 99.56% for rice flour adulteration content determination and 99.34% for soybean adulteration
determination. The good results of all models indicated that the selected optimal wavenumbers could
be used for milk adulteration content determination. In general, for models using full spectra and the
selected optimal wavenumber, ELM model obtained slightly better results than the other two models.
These results showed that ELM might be preferable for milk adulteration content determination.
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Table 7. Results of determination of adulterations content in milk using optimal wavenumbers.

Adulterations Model Par. 1 R2
c

2 RMSEC 3 R2
p

4 RMSEP5 RPD 6

Rice Flour

PLS 7 0.972 1.683 0.945 2.514 3.991

SVM 256,
0.2500 0.984 1.252 0.939 2.577 3.893

ELM 28 0.990 1.009 0.953 2.525 3.973

Soybean Flour

PLS 3 0.945 2.337 0.951 2.366 4.240

SVM 32,
0.1768 0.996 0.633 0.958 2.117 4.739

ELM 60 0.998 0.376 0.994 0.876 11.453
1 Parameter; 2 Coefficient of determination of calibration set; 3 Root mean square error of the calibration set;
4 Coefficient of determination of prediction set; 5 Root mean square error of the prediction set; 6 Residual predictive
deviation, the value of the standard deviation of prediction for calculation of RPD was 10.033.
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4. Conclusions

Mid-infrared spectroscopy was successfully used to identify milk powder, rice flour, soybean
flour, milk powder adulterated with rice flour and milk powder adulterated with soybean flour
(classification), then mid-infrared spectroscopy was used to determine adulteration (rice flour and
soybean flour) content in milk (regression). PLS, SVM and ELM models were used as classification
and regression methods. ELM models using full spectra and optimal wavenumbers obtained decent
performances of classification. The sensitivity and specificity of both calibration set and the prediction
set for identifying milk powder, rice flour, soybean flour, milk powder adulterated with rice flour
and milk powder adulterated with soybean flour were over 87%. The R2

c and R2
p of all models’

adulteration content determination was over 0.9, and the corresponding RPD was all over 3. These good
performances indicated that it was feasible to detect milk adulterations and the adulterations content
for rice flour adulteration and soybean flour adulteration by mid-infrared spectroscopy. In future
works, more adulterations content, including the lower content of adulterations, will be explored for
better and more robust models. Moreover, the results will help to conduct real-world detection for
milk-like adulterations (rice flour, soybean flour, etc.) in milk powder.
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