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Abstract: In the medical sector, three-dimensional (3D) images are commonly used like computed
tomography (CT) and magnetic resonance imaging (MRI). The 3D MRI is a non-invasive method of
studying the soft-tissue structures in a knee joint for osteoarthritis studies. It can greatly improve the
accuracy of segmenting structures such as cartilage, bone marrow lesion, and meniscus by identifying
the bone structure first. U-net is a convolutional neural network that was originally designed to
segment the biological images with limited training data. The input of the original U-net is a single
2D image and the output is a binary 2D image. In this study, we modified the U-net model to identify
the knee bone structures using 3D MRI, which is a sequence of 2D slices. A fully automatic model
has been proposed to detect and segment knee bones. The proposed model was trained, tested, and
validated using 99 knee MRI cases where each case consists of 160 2D slices for a single knee scan.
To evaluate the model’s performance, the similarity, dice coefficient (DICE), and area error metrics
were calculated. Separate models were trained using different knee bone components including tibia,
femur, patella, as well as a combined model for segmenting all the knee bones. Using the whole MRI
sequence (160 slices), the method was able to detect the beginning and ending bone slices first, and
then segment the bone structures for all the slices in between. On the testing set, the detection model
accomplished 98.79% accuracy and the segmentation model achieved DICE 96.94% and similarity
93.98%. The proposed method outperforms several state-of-the-art methods, i.e., it outperforms U-net
by 3.68%, SegNet by 14.45%, and FCN-8 by 2.34%, in terms of DICE score using the same dataset.

Keywords: knee osteoarthritis; fully automatic bone detection and bone segmentation; 3D MRI;
convolutional neural networks; U-net

1. Introduction

Knee osteoarthritis (OA) is a progressive chronic condition described by any changes
in the structure of the bone, cartilage, synovium, or other joint structures [1–3]. Among the
different types of arthritis, OA affects the elderly and is considered to be the most recurrent
type. This arthritis condition reduces the lifespan of elderly people as it poses restrictions in
carrying out their tasks, which results in not only a disability but also financial constraints
for the societies and their healthcare systems. Research conducted in 2000, showed that
the group of people aged 65 years and above makes up 13% of the total U.S. population
and half of this population suffered from OA in one of their joints [4]. Data analyzed in
2004, revealed that the U.S. spent approximately USD 336 billion, which is equivalent to 3%
of its gross domestic product (GDP), to take care of the people infected with arthritis [5].
Furthermore, the total lifetime care cost for anyone infected with knee OA was calculated
to be USD 140,300 [6]. In 2010, it was estimated that 9.9 million U.S. adults suffer from
symptomatic knee OA [7]. By 2030, an estimation of 20% of the U.S. population, around
70 million persons, will be 65 years old and may be inclined to knee OA [4], posing a great
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financial burden to society due to the excessive costs incurred in joint replacement. There
are also higher chances of one leaving the workforce early as well as increasing the rate of
absenteeism from work because of knee OA [8].

Over many years of research, there is improved knowledge about the knee OA like
the cause of pain and loss of joints mobility which is the result of degradation of the
articular cartilage [9], but the development mechanism and pathogenesis of the knee OA
are still unclear including the intervention or remedy that may slow the progress of the
ailment [10]. To effectively measure the knee joint, various medical imaging methods such
as X-ray, Computed Tomography (CT), and Magnetic Resonance Imaging (MRI) could
be used [11]. The MRI can generate high-resolution images to study and understand the
soft-tissue structures that include muscles, hyaline cartilage, bone marrow lesion, and
meniscus from different perspectives. It is considered the most effective modality for
noninvasive examination of the articular cartilage, and deterioration of the cartilage can be
easily assessed through MRI [12,13]. One of the challenges encountered in using MRI is that
it’s time-consuming to review and analyze MRI since every MRI scan generates 160 slices of
2D images and manual segmentation of cartilage for one 3D MRI knee could take up to six
hours. In order to precisely measure and analyze cartilage, comprehensive and vast training
is needed [14]. Since the high labor cost makes the diagnosis costly, less time-efficient, and
difficult to replicate, the technologies of computer-aided segmentation for the knee MRI are
desperately needed [15]. To automatically determine knee structures such as bone marrow
lesion, meniscus, cartilage, and muscle from a knee MRI, the segmentation of the bone is
an essential first step since the bone occupies the major part in knee MRI and integrates
with all other structures.

Scientists have done several investigations using the MR images to get the most
appropriate and faster methods in order to measure the knee structures, which include
the segmentation of alternate MR slices as well as the limitation of the assessment to
partial areas of those structures [16–18]. To automatically segment MR images, computer-
aided algorithms have been involved based on the active-contour models [16,17,19–21].
However, these methods were not robust enough to be used in clinical research, especially
in detecting small changes in the structure [18]. Direct segmentation of cartilage without
bone recognition is more difficult due to the complexity of its structure. Thus, to make this
work easier, the inspiration of identifying the bone first can be served as the first step of
segmenting the other structures such as bone marrow and cartilage.

Deep learning (DL) methods have successfully addressed critical problems in the
vision and audio fields since they are known for their ability to extract high-level fea-
tures [22–24]. DL methods can produce excellent segmentation and classification results
because they have the power to learn directly from the raw high dimensional input and
extract its features layer by layer. Nowadays, the interest in DL applications using medical
images has been risen [25]. CNNs has demonstrated superior performance in solving
many medical image segmentation problems and achieved satisfactory results for different
segmentation tasks include mandible segmentation [26], sinonasal cavity and pharyngeal
airway segmentation [27], brain segmentation [28], optic disc segmentation [29], liver seg-
mentation [30], lung segmentation [31], etc. Among all different deep learning models,
U-net [32] was developed for the segmentation of neuron structure in microscopy images.
Its convolutional network has a distinguished “U” shaped architecture. The U-net won the
ISBI challenge since it generated fast and precise segmentation results. U-net was adopted
by many studies on medical image analysis because of its tolerance with small datasets and
the ability to generate robust and accurate segmentation results

Doctors and radiologists use semi-automatic segmentation methods to perform knee
MRI segmentation through human–computer interaction. Semi-automatic segmentation
might be achieved by the use of a number of algorithms, like live wire [33], active con-
tours [34–38], ray casting [39,40], region growing [39–41], and watershed [42]. In [43], both
3D and 2D deep-learning based segmentations were used with statistical shape models as
shape refinement post-processing for tibia and femur bone segmentation independently. In
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our earlier work [44], a segmentation model for knee femur bones was established using
a modified U-net structure. All the slices that had a femur bone were chosen to train
and test the model which means all the slices with no bone appearance were excluded.
Therefore, the study focused on the segmentation of the femur bone only. In [45], Liu et al.,
developed a fully automatic segmentation pipeline that combines a deep CNN and 3D
simplex deformable modeling. The method performed segmentation of knee tissues which
include tibia bone, femur bone, tibia cartilage, and femur cartilage. The 10-layers SegNet
was employed as the core of the segmentation pipeline to conduct pixel-by-pixel multi-
class classification, using 2D knee images with high resolution. In the testing phase, the
generated pixel-wise labels from the SegNet were sent into an iterative processing filter
that used a connected-component filter to fill gaps and eliminate tiny isolated items. Then
these labels were passed to the marching cube algorithm to build a 3D simplex mesh for
each individual segmentation object. The 3D simplex mesh was sent to the 3D simplex
deformable model for refining based on the source image. Finally, the method generated 3D
segmentation by combining all the deformed objects. The public SKI10 dataset was used to
test the proposed segmentation pipeline. In [46], Liu developed a knee joint segmentation
method to segment tibia bone, femur bone, tibia cartilage, and femur cartilage using adver-
sarial networks. Since the medical datasets are available in a variety of tissue contrasts, the
manual annotation for each sequence can be time-consuming. Thus, the author utilized the
cycle-consistent generative adversarial network (CycleGAN) for image translation across
MRI datasets with varying tissue contrasts in order to reduce the amount of human effort
required for manual segmentation. For segmentation purposes, a Segment Unannotated
image Structure using Adversarial Network (SUSAN) was proposed. Regarding the CNN
mapping functions, the author developed a method called R-Net which enables dual out-
puts by bifurcating after the last up-sampling layer in the decoder. To test the proposed
system, the public SKI10 dataset has been used with additional two clinical knee MR image
datasets acquired from the department of radiology at University of Wisconsin-Madison.
One of the clinical datasets consisted of T2-FSE sequence and the other one consisted of
PD-FSE sequence. Table 1 presents a summary of the recent knee segmentation methods.

In this work, we extended our earlier study and developed a fully automatic method
that can detect MRI slices with knee bone first and then segment bone structures accurately.
In addition, the proposed method can handle all femur, tibia, and patella bones no matter
they are presented individually or combined. The main difference between this study
and previous work [43,44] is that our method does not require any human intervention;
the trained model takes the whole MRI sequence (160 slices) as input and outputs all the
segmented bone structures in every slice with bone, and slices without bone are discarded
automatically through the detection model. The second difference is that previous studies
focused on parts of the knee bone structures, either the femur bone only or femur and tibia
bones; in this work, our method can detect and segment entire knee bones, which include
all tibia, femur, and patella bones.

The rest of the paper is organized as follows. In Section 2, we described our dataset
and discussed the proposed method which included the modified structure of U-net,
the separation of the training and testing sets as well as the implementation. Section 3,
presented and analyzed the experiment results along with the evaluation metrics that have
been used while Section 4 discussed the overall aim of this study and its limitations. Finally,
in Section 5, we concluded.
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Table 1. Summary of knee image segmentation methods.

Paper Year Approach Dataset Region of
Interest Performance Advantages Drawbacks

Wu, et al. [47] 2014 MSL, SSM,
Graph cut 465 CT scans FB, TB, PB,

FiB

AvgD:
FB-0.82 mm,
TB-0.96 mm,
PB-0.68 mm,
FiB-0.96 mm

High accuracy
of overlap

removal for
bones

Boundary
leakage

Fabian et al. [48] 2015
Random

forest
classifier

20 MRI FB
DICE: 92.37%
Sens: 91.75%
Spec: 99.29%

Short training
time

Smaller dataset
used,

classification
accuracy relied
heavily on the

quality of labeled
data

Liu et al. [45] 2018
SegNet, 3D
deformable

model
100 MRI (SKI10) FB, FC, TB,

TC

AvgD:
FB-0.56 mm,
TB-0.50 mm,

VOE:
FC-28.4%,
TC-33.1%

Low
computation

cost, short
training time

Compared
SegNet with only

U-Net

Liu [46] 2018 R-Net
60 MRI (SKI10),
2 clinical MRI

datasets

FB, FC, TB,
TC

DICE:
FB-97.0%,
TB-95.0%,
FC-81.0%,
TC-75.0%

The first study
to translate one
MRI sequence

to another

No comparison
with other
techniques

Ambellan et al. [44] 2019 U-net, SSM
100 MRI (SKI10),

88 (OAI Imorphics),
507 (OAI-ZIB)

FB, FC, TB,
TC

DICE:
FB-98.6%,
TB-98.5%,
FC-89.9%,
TC-85.6%

Achieved good
segmentation

accuracy,
time-efficient

Compromise
between memory

and size for
choosing

subvolume to
train 3D CNN

2. Materials and Methods
2.1. Dataset

The database used in this study were acquired from the Imorphics dataset which is a
subset of the public Osteoarthritis Initiative (OAI) database [49]. OAI that sponsored by
the National Institutes of Health was initiated to maintain a natural history database for
osteoarthritis that contains clinical evaluation data, radiographic (X-ray and MRI) images,
and other information. It includes a multi-center that recruited 4796 men and women (ages
45–79 years) with or at risk for knee OA. The OAI’s overarching goal was to provide public
resources to promote a better understanding of OA initiation and progression, which is one
of the leading causes of disability in adults.

Our database contains 99 cases of 3D knee MRI dual-echo steady-state (DESS) se-
quences that turn up to be 15,840 total DICOM images. It covers all OA severity levels.
Each case consists of 160 2D slices with the original image size of 384 × 384 pixels. Each
slice with bone structures was manually segmented and served as the ground truth in
this study.

2.2. Deep Convolutional Networks

Convolutional neural networks (CNNs) [50] are a form of artificial neural networks
which are designed to identify patterns and have the ability to extract features through
backpropagation from image pixels directly. A typical CNN is composed of convolutional
layers, as well as other types of layers like pooling and fully connected layers. Each neuron
in the convolutional layer is linked to a small local region of the input image, similar to
the human visual system’s receptive field. Different neurons respond to different local
regions of the input image, which overlap to provide a more accurate visual representation
of the image. They have the ability to detect patterns that are undetectable by hand-crafted
features. The feature extraction is done by the convolutional and pooling layers, while
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the fully connected layer translates the extracted features into the final output. Recent
studies in pattern recognition and computer vision have revealed that CNNs are capable of
solving crucial tasks such as classification, object detection, and segmentation with state-
of-the-art results [51,52]. When given enough labeled data, CNNs can effectively create
an exceptional hierarchical representation of the raw input images and achieve excellent
results on computer vision tasks in the majority of cases. However, when CNNs are used
to solve problems in the medical field, the small number of available data is a stumbling
barrier to building a decent model.

2.3. U-Net

U-net [32] is a convolutional neural network architecture with a unique ‘U’ shape that
was designed originally for the segmentation of biomedical images. As illustrated in [32],
the architecture of the U-net is normally made up of an expansion path on the right side and
a contraction path on the left side. The contraction path on the left side follows the structure
of a common convolutional network. It comprises two convolution layers with a 3 × 3
filter size. A 2 × 2 max pooling operation with stride 2 is utilized for down-sampling of
each layer. Moreover, every layer is followed by a rectified linear unit (ReLU). This path is
responsible to reduce feature maps size and extract high-level features, while the expansion
path on the right side comprises up-sampling layers which increase the feature maps size,
feature map concatenation, and two 3 × 3 convolutional layers which refine the feature
maps prepare them for the output. Finally, in order to generate the segmented output, a
1 × 1 convolution layer is utilized to map the 64D feature vectors into a determined number
of classes as a final output.

In this study, we utilized two modified U-net models for different sub-tasks to achieve
a fully automatic segmentation method for 3D knee MRI. The first model was to detect the
starting and ending bone slices of the 3D MRI sequence, while the second model was to
segment the bone structures from the slices between starting and ending slices. The method
takes the whole MRI sequence as input, discards the slices without bone by the detection
model, and then segments bone structures by the segmentation model. The flowchart of
the proposed method is depicted in Figure 1, which includes the two U-net models as the
core. Each knee MRI is a continuous scan sequence that consists of 160 slices. The starting
and the ending of the different compartments of the bone appearance in each case occur at
different slice numbers (e.g., for the same case, the femur bone starts at slice #22 and ends
at slice #134, the tibia bone starts at slice #30 and ends at slice #136, and the patella bone
starts at slice #50 and ends at slice #115) and those numbers very for different cases. We
found that training the segmentation model with the slices that have bone appearance only
can improve the segmentation results. Thus, bone detection is a necessary step to automate
the whole method. In our experiments, we trained the first model (detection model) with
the whole MRI sequence (slices with and without bone) to identify the slices with bone
appearance and trained the second model (segmentation model) with bone slices only to
obtain the accurate segmentation of bone structures. As shown in the flowchart, the output
of the detection model is fed into the segmentation model.

Several improvements have been made to the original U-net in order to solve our
problem. First, padding was used in our models to regulate the image size shrinkage after
each convolution which keeps the output image size the same as the input image size. In
the original U-net [32], no padding was used in any of the convolution layers, thus pixels
near the boundaries were lost after each convolution. Second, the original study utilized
the stochastic gradient descent optimizer, and here we used the Adam optimizer, a more
effective optimization approach that has been used in many contemporary models [53].
Finally, we changed the activation function from softmax to sigmoid and loss function
from cross-entropy to the binary cross-entropy in our detection model; and changed the
loss function to soft DICE (negative DICE) in our segmentation model, which is a more
effective loss measurement that improves the segmentation performance. Besides the
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above difference, the structures of the two models are the same; each of them requires
31,030,593 parameters to be equipped and consists of a total of 23 convolutional layers.

Figure 1. Flowchart of the proposed method.

2.4. Generation of Training and Testing Sets

To prepare the data for our model, we randomly divided the 99 cases into three groups
which are training, validation, and test sets. The training set includes 70% of total knee
cases, i.e., 69 cases, while each of the testing and validation sets contains 15% of total knee
cases, i.e., 15 cases. The testing set has not been used until the end of the study. All the
slice images from the same MRI knee scan were placed in the same set since the sets were
separated at the case level. A total of 11,040 slices (2D images) from 69 knees have been
used as the training set for all the models while each of the testing and validation sets
contains 2400 slices. Figure 2a shows an example of the raw DICOM images in our database.
The femur, tibia, and patella bones were manually segmented for all slices, as shown in
Figure 2b–d, respectively, while Figure 2e shows the manual segmentation of the whole
knee bones together. After the manual segmentation of all DICOM slices, the binary mask
images have been generated using a MATLAB script, as appeared in Figure 2f–i, using as
the ground truth. All original raw DICOM images have been paired with their respective
mask images. As clearly can be seen in Figure 2b–e that the manual labeling could not reach
the very top and bottom of the images, thus to make sure that training data was accurate, a
cropping operation has been added to the data preparation process. All images (raw and
mask) were cropped 16 pixels from all sides (top, bottom, left, and right) as illustrated in
Figure 2j–m to guarantee the bone begins at the image’s very top and bottom edge. After
performing the cropping operation, both the original raw images and masks were adjusted
from 384 × 384 pixels to 352 × 352 pixels.

2.5. Implementation

For implementation, Keras [54] and TensorFlow as a backend engine [55] in Python
3.7 were utilized. A computer outfitted with a NVIDIA GeForce GTX1080 Ti graphics pro-
cessing unit (3584 GPU cores) has been used to carry out all experiments. All segmentation
and detection models were trained using the Adam optimizer method. The dice coefficient
(DICE) [56] has been used to measure the accuracy of the segmentation process, while the
true positive rate of the corrected bone detection has been used to measure the accuracy of
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the detection process. Furthermore, the soft DICE has been used as a loss function for all
segmentation models while the binary cross-entropy has been used as a loss function for all
detection models in order to backpropagate through the CNN. The batch size has been set
to be 16 and the learning rate was set to be 10−5 for all models. Keras’s callback function
called EarlyStopping has been used to save the training time and to avoid model overfitting.
It was responsible to stop the training process if there is no improvement of the accuracy
function that used after a specified number of epochs, i.e., 30∼40. All of the experiment
models were initially programmed to run for 300 epochs. For efficiency of network training
time, all images and their corresponding masks were resized to 128 × 128 pixels for all
the detection models but kept the original resolution 352 × 352 for segmentation models
for accuracy.
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Figure 2. Ground truth labeling and pre-processing. (a) Raw image. (b–e) Manual segmentation of
femur, tibia, and patella bones, respectively, and the combined. (f–i) Mask images generated from
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3. Results
3.1. Evaluation Metrics

Different metrics were employed for each task. In terms of the detection task, we
used precision, recall (also known as sensitivity), and the overall accuracy which can be
calculated as follows:

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

Accuracy(%) =
TP + TN

TP + TN + FP + FN
(3)

where TP (true positive) is defined as bone exists in the ground truth and is detected by the
model, TN (true negative) means that there is no bone in the ground truth and no bone is
detected by the model as well – both ground truth mask and model’s output are pure black
images. On the other hand, FP (false positive) is defined as bone is detected by the model

Figure 2. Ground truth labeling and pre-processing. (a) Raw image. (b–e) Manual segmentation of
femur, tibia, and patella bones, respectively, and the combined. (f–i) Mask images generated from
manual segmentation. (j–m) Mask images after cropping.

3. Results
3.1. Evaluation Metrics

Different metrics were employed for each task. In terms of the detection task, we
used precision, recall (also known as sensitivity), and the overall accuracy which can be
calculated as follows:

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

Accuracy (%) =
TP + TN

TP + TN + FP + FN
(3)

where TP (true positive) is defined as bone exists in the ground truth and is detected by the
model, TN (true negative) means that there is no bone in the ground truth and no bone is
detected by the model as well—both ground truth mask and model’s output are pure black
images. On the other hand, FP (false positive) is defined as bone is detected by the model
but there is no bone appearance in the ground truth while FN (false negative) means there
is bone in the ground truth, but the model does not detect that.
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In the medical image segmentation tasks, a metric known as the overlap index, also
known as dice coefficient (DICE) [56] is the most common metric used. DICE is computed
by directly comparing the binary mask of the ground truth with that of the automated
segmentation. The DICE is also used as a validation measurement of repeatability for
manual segmentation in MRI, i.e., when the exact MRI image is segmented several times by
the same person or different persons, the pair-wise overlap of segmentations is computed
to validate the repeatability. As shown in Equation (4), the value of DICE is between 0 and
1; a perfect match is represented by 1, whereas no overlap is represented by 0. For each
MRI case, we calculated the DICE score at the case level, not slice level, considering each
bone compartment as a 3D object represented by the whole MRI sequence.

Several area error metrics have been calculated in addition to DICE in order to com-
prehensively assess the proposed segmentation approach. The similarity (SI) is determined
in Equation (5) which is a general measure of how similar the automated segmentation and
ground truth are. True positive ratio (TPR), false positive ratio (FPR), and false negative
ratio (FNR) are described in Equations (6)–(8), respectively.

Dice =
2×

∣∣Sg ∩ Sm
∣∣∣∣Sg

∣∣+ |Sm|
(4)

SI =

∣∣Sg ∩ Sm
∣∣∣∣Sg ∪ Sm
∣∣ (5)

TPR =

∣∣Sg ∩ Sm
∣∣∣∣Sg

∣∣ (6)

FPR =

∣∣Sg ∪ Sm − Sg
∣∣∣∣Sg

∣∣ (7)

FNR = 1− TPR (8)

In the above formulas, the set of bone pixels from the ground truth is denoted by Sg
whereas the set of bone pixels from the automated segmentation is denoted by Sm. Both Sg
and Sm are the pixel sets for the whole sequence. Operator |A| means the size of set A.
The TP, FN, and FP regions have been illustrated in Figure 3.

Figure 3. Illustration of true positive, false positive, and false negative regions.

3.2. Experiments

In this section, we first evaluated the accuracy of the bone slice detection models, and
then used the detection output to evaluate the segmentation models. Individual models
were trained for each bone compartment, i.e., tibia model, femur model, patella model,
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plus the model for all three bones. Four detection models and four segmentation models
were trained in total. The performance of these models on the testing set is reported in
this section.

3.2.1. Bone Slice Detection Performance

Table 2 summarized the performance of our detection models on the testing set. The
testing set contains 15 cases with 2400 slices in total. The definitions of FP, FN, TP, and TN
can be found in the previous section. As Table 1 shows, the overall detection accuracies
of all four models are above 98%. In terms of tibia bone, our model correctly detected
1679 out of 1687 slices that contain tibia bone and missed only 9 slices as false negatives.
692 out of 712 slices that do not contain tibia bone appearance were detected while the
model mis-detected bone in 20 slices that actually do not contain tibia bone.

Similar performance was obtained from the femur model while the patella model
has less FP but more FN than the other two models because of the distribution of training
samples. For tibia model and femur model, the majority of slices contain bone and are
positive samples, therefore, the models are good at recognizing positive samples; for patella
model, because the patella bone is smaller and there are fewer positive slices, the model
is prone to make a negative prediction. However, the accuracies of all three models are
consistent and the highest is from the model for femur bone.

The whole knee model, which is trained to detect all three knee bone compartments,
achieved an overall accuracy of 98.79% and had similar FP and FN numbers as the tibia and
femur models. This shows we can achieve comparable detection performance by training a
single model other than three separate models for knee bone detection task.

Table 2. The performance of the detection models on the testing set.

FP FN TP TN Recall Precision Accuracy (%)

Tibia 20 9 1679 692 0.995 0.988 98.79
Femur 20 8 1786 586 0.996 0.988 98.83
Patella 9 28 950 1413 0.971 0.992 98.46

Whole Knee 20 9 1831 540 0.995 0.989 98.79

3.2.2. Segmentation Performance

Table 3 summarized the performance of the four segmentation models on the testing
set using the results from the detection models. The output of each of the detection models
was fed into the corresponding segmentation model. The output of the segmentation
models was evaluated using the manually labeled ground truth of bone regions. Here
we calculated DICE as well as several other metrics for a comprehensive evaluation. As
Table 3 shows, the average DICE reached 96.83% for tibia segmentation and 97.92% for
femur segmentation. The patella model showed a lower performance with DICE 92.83%.
The reason is the patella bone has a smaller size than the tibia and femur bones; therefore,
the model is more sensitive to mistakes. Finally, the whole knee model that segmented
the three bones at the same time reached DICE 96.94%. Figure 4 plots the bone volumes
(obtained by adding up all the bone pixels from all slices in a case multiply the voxel size) of
the manual segmentation versus that of our fully automatic method for the 15 testing cases.
The correlation between the volume measured from manual segmentation and the proposed
automatic method using Pearson’s R2 is 0.998 and the slope is 0.98 which indicates that the
proposed segmentation method can systematically estimate the volume. Figure 5 depicts
the models’ output for one example case at different positions. The output of the tibia model,
femur model, patella model, and the whole knee model are listed in different columns.
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Table 3. The performance of the segmentation models based on the detection results on testing set.

TPR (%) FPR (%) FNR (%) SI (%) DICE (%)

Tibia 96.93 3.27 3.07 93.87 96.83
Femur 98.26 2.46 1.74 95.91 97.92
Patella 96.45 11.50 3.55 86.61 92.83

Whole Knee 98.51 4.83 1.49 93.98 96.94

Figure 4. Plot comparing the manual segmentation and the proposed model’s segmentation.

Figure 5. The output of the four segmentation models at different positions form an example case.

3.2.3. Ablation Study

Since the proposed method is composed of two steps in sequence, bone slice detection
and segmentation, we want to study how the detection step affects the segmentation
result. In this experiment, we replaced the automatic bone detection model with manual
detection, i.e., we fed the segmentation models with the manually selected slices with bone.
Table 4 elaborates the performance of the segmentation models on the testing set using
the manually selected slices with bones only. Comparing Tables 3 and 4, we can see that
the segmentation results are slightly higher when using the manual detection as input
than using the automatic bone detection results as input, however, there is no statistically
significant difference between the two groups of results (see Table 5).
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Table 4. The performance of the segmentation models using the manually selected bone slices.

TPR (%) FPR (%) FNR (%) SI (%) DICE (%)

Tibia 97.78 3.99 2.23 94.03 96.96
Femur 97.69 2.09 2.31 95.25 98.06
Patella 95.37 6.36 4.63 89.71 94.52

Whole Knee 98.60 4.74 1.40 94.14 97.02

To determine if there is a significant difference between the results, the student’s t-test
has been carried out in terms of DICE and similarity. Table 5 illustrated the p-value for
all the experiments. The t-test results indicate that there is no significant difference at the
p = 0.05 significance level for all models in terms of DICE and similarity which proves the
effectiveness of the automatic detection models. Figure 6 demonstrates a visual comparison
between the two groups of segmentation models in terms of DICE and similarity scores.

Table 5. The comparison of the fully automatic segmentation results and the segmentation results
using manually selected bone slices.

With Manual Detection With Automatic Detection p-Value p-Value

SI (%) DICE (%) SI (%) DICE (%) (DICE) (SI)

Tibia 94.03 96.96 93.87 96.83 0.400 0.729
Femur 95.25 98.06 95.91 97.92 0.399 0.330
Patella 89.71 94.52 86.61 92.83 0.304 0.239

Whole Knee 94.14 97.02 93.98 96.94 0.489 0.499

Figure 6. The comparison of the performance of the fully automatic models and the segmentation
models using manually selected bone slices in terms of DICE (a) and similarity (b) scores.

3.2.4. Whole Knee Model versus Individual Models

In the previous experiments, we trained separate models for each bone compartment
as well as the whole knee model that can segment all three bone compartments at the same
time. We want to study the difference between the result from the whole knee model and
that from the combination of three individual models through post-processing. Table 5
shows the comparison between the two methods. As Table 6 shows, there is a slight
improvement by training three individual models than training a single model, which
reached 97.20% of average DICE and 94.55% of average similarity. The result corresponds
to common sense that training a tailored model for each sub-task separately can achieve
better overall accuracy, while the cost is the hassle of training multiple models and putting
the results together through post-processing. Considering the slight improvement, the
single whole knee model struck a good balance between efficiency and accuracy.
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Table 6. The comparison of one vs. three segmentation models for whole knee segmentation.

TPR (%) FPR (%) FNR (%) SI (%) DICE (%)

Whole knee model 98.60 4.74 1.40 94.14 97.02
Combination of three models 97.66 03.29 02.34 94.55 97.20

3.2.5. The Proposed Model versus Other State-of-the-Art Models

To further validate the performance of the proposed model, a comparison has been
done with other existing state-of-the-art deep learning methods including U-net [32],
SegNet [57], and FCN-8 [58]. Table 7 summarized the performance of all models on the
same testing set in terms of whole knee bone segmentation. As the results showed, the
proposed model outperformed the other three models. All models were trained using the
original image size and without any pre-processing or post-processing involved. The FCN-
8 model achieved a better result than the original U-net and SegNet models in terms of the
average DICE = 94.60% and an average similarity = 89.77%. On the other hand, the original
U-net had a good performance on detecting the true positive regions with TPR = 99.67%.
However, the false positive rate is high at the same time (FPR = 14.08%) which indicates the
model included many non-bone regions as bone. The lowest performance was achieved by
the SegNet model, which reached 82.49% of average DICE and 70.96% of average similarity.
Comprehensively, the proposed method achieved the best segmentation accuracy in both
metrics SI and DICE.

Table 7. The performance of testing set of the proposed model and other state-of-the-art models for
whole knee segmentation.

TPR (%) FPR (%) FNR (%) SI (%) DICE (%)

U-net 99.67 14.08 0.33 87.38 93.26
SegNet 83.17 20.16 16.83 70.96 82.49
FCN-8 92.66 3.20 7.34 89.77 94.60

Proposed Method 98.51 4.83 1.49 93.98 96.94

Moreover, in order to determine if there is a significant difference between the results
of the proposed model and the other models, the Student’s t-test has been conducted in
terms of DICE and similarity. Among the three referenced methods, FCN-8 has better
performance than U-net and SegNet, so here we conducted Student’s t-test for FCN-8 and
the proposed method. The t-test results indicate that there is a significant difference at the
p = 0.05 significance level. In other words, the proposed method significantly outperformed
the FCN-8 method. Table 8 illustrated the p-values for the Student’s t-tests. In addition,
Figure 7a provides a visual comparison between the proposed model and the other models
in terms of DICE score while Figure 7b provides the same visual comparison in terms of
similarity score.

Table 8. The comparison of the proposed model vs. FCN-8 models for whole knee segmentation.

Proposed Method FCN-8 p-Value p-Value

SI (%) DICE (%) SI (%) DICE (%) (DICE) (SI)

93.98 96.94 89.77 94.60 0.0000077 0.0000069
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Figure 7. The comparison of the performance of the proposed models with the other state-of-the-art
models in terms of DICE (a) and similarity (b) scores.

4. Discussion

The overall aim of this study is to develop a fully automatic method that can take the
whole MRI sequence (160 slices) as input and output all the segmented bone structures.
The bone segmentation can serve as the critical step for segmenting other knee structures
such as cartilage which may need the extraction of the bone boundary from MR imaging
sequences to facilitate the detection and segmentation of cartilage.

This study has several limitations. First is the small data set. Data labeling is time-
consuming for segmentation tasks, especially the manual delineation of different bone
compartments for 3D MRI image sequences. This prevented us from including more data
in this study. In the future, we plan to utilize unsupervised learning or semi-supervised
learning to facilitate the handling of large datasets. Second, the proposed method was
evaluated using the MRI DESS sequences and has not been evaluated using other MRI
sequences, such as the IWFS sequence. The generalizability of the proposed method needs
further validation. Third, we have a failure case. We noticed that the testing set included
one case that had many false positive regions in multiple slices of the sequence. This case
was included in the evaluation and dragged down the overall performance. We need to
examine and study this failure case in detail to improve the design of the proposed method
and its performance.

5. Conclusions

This study proposed a fully automatic method to detect and segment the bones in
the sequence of 3D knee MRI using modified U-net models. All bones in a knee joint
including tibia, femur, and patella, are segmented. From the public OAI database, 99 cases
(15,840 total DICOM images) of 3D knee MRI sequences have been used in this study.
Without any human intervention, the trained system takes the whole 3D MRI sequence
with 160 slices as input, detects the slices with bone, and outputs the segmentation results
for these slices. The bone slice detection model accomplished an accuracy of 98.79% on
the testing set which prepared the segmentation model well to delineate the whole knee
bones. The segmentation model achieved DICE 96.94% and similarity 93.98% on the testing
dataset for whole knee segmentation. We further conducted an ablation study which
proved the effectiveness of the detection model, and a comparison study which showed
that the single whole knee segmentation model struck a good balance between efficiency
and accuracy. In addition, we compared the proposed method with several other state-of-
the-art segmentation methods including U-net, SegNet, and FCN-8. The proposed model
outperforms the other three methods in both DICE and similarity score.

One of future work is to improve the segmentation accuracy of patella bone which
had lower accuracy than other bones. Besides, the bone segmentation result can be used
as an initial step to detect and segment other knee structures and biomarkers, including
cartilage, effusion, bone marrow lesion, and meniscus. Direct segmentation of these
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structures without bone identification is a more challenging task due to the small and
complex structures.
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