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Abstract: Surface modification of nanoscale zero-valent iron (nZVI) using polymer stabilizers
(e.g., sodium carboxymethyl cellulose, CMC) is usually used to minimize aggregation, increase
stability, and enhance transport of nZVI. We investigated the stability and dynamic aggregation of bare
and CMC—nZVI as affected by variations in pH, ionic strength (IS), and nZVI particle concentration.
CMC coating of nZVI resulted in smaller hydrodynamic size and larger zeta potential. The largest
hydrodynamic size of nZVI was associated with bare nZVI at high IS (100 mM), pH close to the
point of zero charge (PZC, 7.3-7.6), and larger particle concentration (1.0 g L™!). The increase in
the zeta potential of CMC-nZVI reached one- to four-fold of that for bare nZVI, and was greater
at pH values close to PZC, high IS, and larger particle concentration. The stability of CMC—nZVI
was increased by 61.8, 93.1, and 57.5% as compared to that of bare nZVI at IS of 1, 50 and 100 mM,
respectively. Calculations of Derjaguin, Landau, Verwey and Overbeek (DLVO) interaction energy
were in agreement with stability results, and showed the formation of substantial energy barriers at
low IS indicating greater nZVI stability. Our results suggest that at IS above 50 mM and nZVI particle
concentration larger than 0.1 g 7!, the likelihood of nZVI aggregation is high. Nevertheless, CMC
polymer stabilizer would enhance the stability and transport of nZVI even under these unfavorable
solution chemistry conditions.

Keywords: nanoscale zero-valent iron (nZVI); carboxymethyl cellulose (CMC); dynamic aggregation;
pH; ionic strength (IS)

1. Introduction

Nanoscale zero-valent iron (nZVI) has been widely used for the remediation and detoxification
of groundwater and soil resources contaminated by a variety of environmental contaminants,
including chlorinated organic solvents, organochlorine pesticides, polychlorinated biphenyls (PCBs),
polycyclic aromatic hydrocarbons (PAHs), and metal ions [1-3]. Due to their nano-sized dimensions,
nZVI have significantly large surface area relative to their volume, and higher reactivity at the reactive
surface sites [4], which subsequently enhance its capabilities in contaminant degradation reactions [5].
Despite the higher activity of nZVI, several studies have shown that nZVI particles exhibit strong
tendency of agglomeration, rapid sedimentation, and limited mobility in the aquatic environment, which
represent a major challenge for environmental applications of nZVI1 [6,7]. For example, Phenrat et al. [8]
reported the formation of micro-sized aggregates of uncoated nZVI in aqueous solutions within
30 min. Therefore, research has focused on modifying the surfaces of nZVI by applying different
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coating materials to reduce aggregation and settling so that the nZVI nanoparticles remain dispersed
in aqueous suspensions for longer times [9].

Polymers and surfactants are among the main types of materials used as coatings for
nZV], including starch [6], xanthan gum [10], polyacrylic acid [11], polystyrene sulfonate [12],
and carboxymethyl cellulose (CMC) [13]. Among the different coating materials, CMC (a food grade,
biodegradable anionic polymer), has received greater attention, and showed great potential to stabilize
nZVI particles in many laboratory and field applications [14-16]. Stabilization of nZVI using coating
materials rely on combined electrosteric stabilization of nZVI. Electrostatic repulsion is achieved
by increasing the surface charge to increase the repulsive forces between particles, whereas steric
stabilization is attained by the adsorption of long-chain organic molecules, which hinders particle
attraction [12,13,17].

Prolonged nZVI nanoparticle stability in aqueous suspensions has led to greater mobility in
subsurface layers, and consequently enhanced remediation activities. The extent of the stability of
coated nZVI nanoparticles is dependent on polymer characteristics, thickness of the polymer layer,
and solution chemistry [12]. The amount of polyelectrolyte used in the coating process greatly affects
the total surface area of nZVl], directly impacting aggregation of nZVI and its stability in aqueous
suspensions [16]. Gordon et al. [18] reported that in the absence of any coating agent almost all of the
nZVI particles were settled out. In contrast, CMC-stabilized monometallic nZVI remained stable for a
long time and was able to decrease trichloroethane (TCE) concentrations in groundwater by more than
90% [19].

The stability of nZVI also depends on solution chemistry (i.e., pH and ionic strength). Variations
in the pH of nZVI suspensions affect the type and amount of charges on the surfaces of nZVI. The
electrostatic properties of nZVI in aqueous suspensions are controlled by the pH of the suspension,
with minimum nZVI stability occurring when pH approaches the point of zero charge (PZC) [20]. The
stability of nZVI is increased at larger zeta potential, whereas at lower zeta potential nZVI particles
tend to aggregate rapidly [21].

The influence of ionic strength (IS) on the stability and mobility of nZVI in water has been
extensively examined [22,23]. In general, increasing IS increases the efficiency of particle-collector
attachment and reduces the stability and mobility of nZVI [15]. In the case of hydrophilic polymers
or polyelectrolyte surface coatings, it was found that electrostatic stabilization by coating of charged
polymers or surfactants is sensitive only at low ionic strength. At high ionic strength, these coating
materials are unlikely to be effective [6,13,17]. Jeremy at al. [22] observed a clear trend of increasing
particle aggregation with increasing ionic strength. At low ionic strength (e.g., <0.1 M), a larger
energy barrier exists between smaller particles that prevents particles from coming closer to each
other and hence maintains particle stability. At high ionic strength (e.g., >0.1 M), the energy barrier is
eliminated for all particle sizes, which implies that colloidal aggregation is more severe at elevated
ionic strength [23].

The stability of nZVI is also affected by the volume fraction of nZVI particles. At larger nZVI
concentrations, the range of the interaction forces between particles is closer, and the interaction is
dominated by the van der Waals and magnetic attractive forces, which increase aggregation and
sedimentation of particles [12]. Research has shown that nZVI aggregation is directly proportional to
the concentration of nZVI, especially at larger particle concentration above 0.1 g L= [24].

The overall goal of this research was to assess best synthesizing conditions and solution chemistry
to ensure greater nZVI stability in aqueous environments. The specific objectives were to: (1) investigate
the effect of CMC surface coating and nZVI particle concentration on the dynamic aggregation of
nZVI; (2) evaluate the effect of pH (5-11) and IS (1-100 mM) on the hydrodynamic size, surface charge,
and stability of nZVI in aqueous suspensions; and (3) apply the classical Derjaguin, Landau, Verwey
and Overbeek (DLVO) theory to qualitatively assess nZVI particle interaction forces, and help to
interpret the behavior and fate of nZVI in aqueous suspensions.
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2. Materials and Methods

2.1. Preparation of nZVI

nZVI were synthesized by the reduction of ferric chloride by sodium borohydride [25].
All chemicals used in this study were of analytical grade. FeCl;.6H,O, NaHCO3;, NaBHy4, and
Carboxymethyl cellulose (CMC, MW = 90,000) were purchased from Sigma Aldrich. All solutions
were prepared in nanopure water, which was purged with N, for 1 h prior to usage. nZVI-CMC were
prepared freshly by adding 0.1 M NaBH,4 aqueous solution drop wise to a 0.1 M FeCl;.6H,0, and
adding 200 mL CMC with 2% concentration at ambient temperature and under atmospheric conditions.
The preparation of solutions was carried out as follows: 2.5406 g of FeCl3.6H,O was dissolved in 24 mL
ethanol + 6 mL nanopure water (0.1 M FeCl;.6H,0). The CMC solution was prepared by dissolving
0.4 g in 200 mL nanopure water; the solution was stirred with a mechanical stir at 750 rpm for 30 min.
The sodium borohydride (NaBHj, 0.3783 g) powder was dissolved in 100 mL nanopure water (0.1 M
NaBHy,), and was added to the mixture drop wise (1 drop per 2 s). Stirring was continued for another
30 min. The suspension was filtered (Whatman 42) under vacuum, washed with 25 mL ethanol three
times, and transported to storage bottle. The preparation of bare nZVI was carried out following the
same previous steps without the addition of CMC.

After the completion of the nZVI preparatory phase, the concentration of the prepared nZVI was
determined (~3.0 g L™1), and stored as a stock suspension. Two final nZVI concentrations of 0.1 and
1.0 g L~! were prepared in NaHCO3 background electrolyte solution. nZVI suspensions were prepared
in different IS concentrations of 1, 50, and 100 mM, and the pH of the suspensions was adjusted at 5, 7,
9, and 11 using 0.01 M HCl or 0.01 M NaOH. All suspensions were sonicated for 10 min prior to use.

2.2. Characterization of the Prepared nZV1

X-ray diffraction (XRD) was used to analyze the crystalline structure of the prepared nZVI particles.
XRD analysis was carried out immediately after preparation and after an aging period of one month.
The XRD analysis was conducted with an Altima IV X-ray diffractometer (Rigaku, Austin, TX, USA).
Iron nanoparticles were placed in a glass holder and scanned from 20° to 90° at a scanning rate of 2.0°
min~!. Transmission electron microscopy (TEM-JEOL, JEM1011), (JEOL, Inc., Peabody, MA, USA) was
used to characterize the shape of the nZVI particles. The specific surface area of the nZVI particles was
determined by the Brunauer, Emmett and Teller (BET) method with nitrogen (N;) at 77 K using surface
area and microporosity analyzer (ASAP 2020, Micromeritics, Norcross, GA, USA).

The hydrodynamic size of nZVI particles in aqueous suspensions was measured using laser
Doppler velocimetery (Zetasizer Nano ZS, Malvern, UK). Zeta potential of nZVI nanoparticles was
determined by dynamic light scattering techniques by measuring the electrophoretic mobility for the
different particle suspensions using Zetasizer Nano ZS with MPT?2 titrator. The point of zero charge
(PZC) was determined over the pH range of 2-12. Averaged values for the hydrodynamic size and
zeta potential of nZVI were obtained from 10 measurements, and were presented along with standard
deviation (+1 SD).

2.3. Stability and Dynamic Aggregation of nZVI

Colloidal stability of iron nanoparticles has been defined as the tendency to disperse in solvent
against aggregation during specific time period [26]. Dynamic aggregation of both bare and CMC—nZVI
suspensions, prepared in NaHCOj electrolyte solution, was quantitatively determined by time-resolved
optical absorbance methodology. The change in optical absorbance of nZVI at a wavelength of 508
nm was monitored over time, in suspensions maintained under quiescent conditions, using a UV/VIS
Spectrophotometer (GENESYS 10S, Thermo, Madison, WI, USA). The optical absorbance was measured
every 3 min for 3 h; all measurements were made at room temperature. All measurements were
replicated three times and average values were recorded along with the associated standard deviation.
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2.4. DLVO Calculations

The classical DLVO theory was used to calculate the total interaction energy, determined as
the sum of van der Waals (VDW) attractive and electric double layer (EDL) repulsive forces that
exist between nZVI particles. The interaction between two nZVI particles was considered to be a
sphere—sphere interaction. Calculation of the EDL repulsion interaction was carried out according to
Bhattacharjee and Elimelech [27] as:

274,10, N0 KgT —ky

plip2Tico NB 1+e 5 5 ok
PepL(nzvi-nzvi) = —[Zlelll)pzln(—_ )—i— Y2+ oy )in(1—e 2 (1)
(apl +ap2)k2 1—e kv ( p p ) ( )

where ®rpy (,zvi—nzvr) is the EDL interaction energy (KgT) between two nZVI particles; a,, and ay,
are the radii of the first and second interaction nZVI particles (nm), respectively; #e, is the bulk
number density of ions (-); Kg, is the Bolzmann constant (J K1); T, is the absolute temperature (°K); k,
is the inverse Debye-Huckel length (m); ¢,1 and ¢, is the surface potential of the interacting nZVI
particles (mV); ¢, is the electron charge (Coulomb); and y, is the separation distance between two nZVI
particles (nm).

The VDW attraction interaction energies for nZVI-nZVI nanoparticles was calculated according
to Gregory [28] as:

2
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where ®ypw(,zvi-nzvy) is the VDW attraction interaction energy (KgT) between two nZVI particles;
A121, is the Hamaker constant (J); and A is the characteristics wavelength of the interaction (nm).

3. Results

3.1. Characteristics of the Synthesized nZVI

The crystalline structure of the synthesized nZVI as determined by XRD patterns revealed that
Fe’ was the dominant form in the prepared iron powder. This was confirmed by the characteristic
diffraction peaks 26 = 45.05° and 65.93°; and 20 = 44.84° and 65.64° (JCPDS No. 06-0696) for the
bare and CMC-—nZV], respectively (Figure 1A,B) [29]. Peaks of iron oxide were also present in the
prepared iron powder (26 = 31.34° and 31.1° for the bare and CMC-nZV], respectively). XRD analysis
was repeated after one month of preparation to examine the effect of aging on the structure of nZVI
particles. Diffraction peaks at 20 around 45° and 65° of Fe” remained visible in the crystalline patterns
in both bare and CMC-nZVI (Figure 1C,D). However, the intensity of the Fe® peaks were significantly
decreased in bare nZVI after an aging period of 30 d. In contrast, the intensity of the Fe’ peaks of the
CMC—nZVI only slightly decreased as a result to the aging period. These results indicate that the CMC
polymer stabilizer reduced the degree of oxidation of Fe’ to iron oxides in the prepared nZVI after an
aging period of 30 d. Previous research also showed that the presence of CMC coating prevented the
oxidation of Fe? after 30 days of preparation [30].

In the presence of CMC polymer stabilizer, the total surface area was increased from
3.55 + 0.02 m? g~! for bare nZVI to 7.61 + 0.01 m? g~! for the CMC-nZVL. The increase in surface
area between coated CMC-nZVI and bare nZVI is caused by the polymer coating of the particles,
which prevents agglomeration [31]. CMC—nZVI also showed larger pore volume and smaller pore size.
Barrett-Joyner-Halenda (BJH) desorption average pore volume was increased from 0.017 to 0.034 cm?
g~1, and BJH desorption average pore size was reduced from 191.1 to 178.7 A, for bare and CMC-nZVI,
respectively. The calculated pore size indicated the presence of mesopores in both bare and CMC—nZVI
particles. The maximum quantity adsorbed of the N gas was increased from 10.6 to 23.5 cm® g~! STP
for the bare and CMC—nZVI nanoparticles, respectively. Adsorption/desorption isotherms of both bare
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and CMC—nZVI were type Il adsorption isotherms, and showed a very narrow hysteresis loop that
fully closed at relative pressure of 0.45 (Figure 2).
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Figure 1. X-ray diffraction (XRD) patterns of (A) bare nanoscale zero-valent iron (nZVI),

and (B) carboxymethyl cellulose (CMC)-nZVI at time of preparation; and of (C) bare nZVI and
(D) CMC—nZVI, aged for 30 days.

TEM images showed that CMC—nZVI particles were more spherical in shape with an average
diameter in the range of 20-50 nm. Bare nZVI particles showed larger average diameter in the range
of 30-70 nm, and more condensed chain-like structure due to increased magnetic interactions and

aggregation of particles (Figure 3) [32].
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Figure 2. Effect of CMC polymer stabilizer on the Brunauer, Emmett and Teller (BET) adsorption/

desorption isotherms of nZVI particles.
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Figure 3. Transmission electron microscope (TEM) images of bare and CMC-nZVI particles.

3.2. Hydrodynamic Size of nZVI

AsnZVI particles are suspended in an electrolyte solution, they tend to agglomerate, forming aggregates
of different size depending on particle concentration and chemical conditions in the suspension.
Dynamic Light Scattering (DLS) considers the size of any particle (or aggregate of particles) with
certain equivalent diameter to be similar in size. Therefore, size average diameters determined by
DLS cannot be directly compared to TEM diameters [33]. The hydrodynamic size of nZVI measured
by DLS was in general larger than the size range measured by TEM. At nZVI particle concentration
of 0.1 g L7}, the hydrodynamic size of nZVI ranged between 107.4-188.1 and 92.6-145.3 nm for bare
and CMC-nZV], respectively (Table 1). The hydrodynamic size of CMC-nZVI nanoparticles was
smaller than that of bare nZVI nanoparticles at all experimental pH and IS values. However, the effect
of the CMC coating on the average reduction in the hydrodynamic size of nZVI particles was more
pronounced at lower IS values, and reached 14.1, 12.1, and 7.8% of the hydrodynamic size of bare nZVI
nanoparticles at 1, 50, and 100 mM, respectively.

AtnZVI particle concentrationof 1.0 g L~! much larger hydrodynamic sizes for nZVI nanoparticles
were observed at all pH and IS values. The hydrodynamic size of the nZVI nanoparticle ranged
between 160.2-1939.1 and 132.7-267.3 nm for the bare and CMC-nZVI nanoparticles, respectively
(Table 1). Increasing particle concentration likely increased aggregation and resulted in greater settling
profile. This is mainly attributed to the higher probability that two particles will collide to form an
aggregate as the number of particles increase due to higher concentration [15]. In contrast to previous
results with the lower 0.1 g L™ particle concentration, the effect of the CMC coating on the average
reduction of the hydrodynamic size of the nZVI nanoparticles at particle concentration of 1.0 g L~}
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was more pronounced at larger IS values, and reached 21.7, 67.2, and 63.5% of the hydrodynamic size
of bare nZVI nanoparticles at 1, 50, and 100 mM, respectively (Table 1).

Table 1. Effect of nZVI particle concentration, CMC polymer stabilizer, ionic strength (IS) and pH on
the hydrodynamic size of nZVI.

IS * pH nZVI Particle Concentration
01gL 1.0gL-1
Bare nZVI CMC-nZVI Bare nZVI CMC-nZVI
1mM 5 1152 £ 3.9 100.7 £ 3.2 172.1 £53.2 164.1 £2.8
7 132.1+5.9 116.2£5.3 2872 +25.8 1749 £19.2
9 1224 +£9.7 101 +4.2 186.3 + 18.4 159.6 + 7.4
11 107.4 £5.1 92.6 + 6.6 160.2 £7.1 132.7 £12.2
50 mM 5 1302 £ 6.4 126.1+7.6 2441 +19.2 166.4 £ 1.7
7 188.1 +12.6 145.3 £ 20.9 1462.8 £79.2 1933 £5.4
9 128.5+ 6.9 117.7 £ 6.1 263.5 + 38.7 166.4 +£2.9
11 1362 +2.3 123.4 +12.2 239.4 +13.2 197.6 £4.3
100 mM 5 1483 +7.9 1374 +£3.8 298.8 +32.4 2612 +25
7 1724 +£9.0 150.3 £2.9 1939.1 + 234.2 267.3 +21.2
9 149.2 £ 4.8 140.8 £5.7 278.1 +24.3 2413 +15.7
11 151.7 + 18.4 1447 £7.2 286.2 +32.1 2524 + 14.2

* IS, ionic strength (NaHCO3 was used as the background electrolyte solution), numbers are presented followed by
the standard deviation (+1 SD).

3.3. Zeta Potential of nZVI

Zeta potential of the synthesized nZVI was greatly affected by the chemical conditions of nZVI
suspensions. For bare nZV], zeta potential was always positive at low pH (<7.2-7.9) and negative
at high pH (>7.2-7.9). The average PZC of bare nZVI was at pH 7.6 and 7.3 for the 0.1 and 1.0 g L™
nZVI particle concentration, respectively (Figure 4). Increasing the IS from 1 to 100 mM resulted in
a decrease in zeta potential of nZVI. This is mainly attributed to the shrinkage of the extent of the
electrical double layer at high IS, and the subsequent decrease in the electrostatic repulsion forces [34].
For example, at pH 11, zeta potential of bare nZVI was -32.4, -26.1, and -15.1 mV (at nZVI particle
concentration 0.1 g L_l), and —26.4, -15.3 and -9.3 mV (at nZVI particle concentration 1.0 g L‘l) for IS
1, 50, and 100 mM, respectively (Table 2).

For CMC—nZV], zeta potential was always negative at all measured pH values (measurement
range was 2 to 12). The average PZC for the CMC-nZVI was at pH 1-2 (Figure 4). Zeta potential of
CMC-—nZVI was reduced by the increase of IS and nZVI particle concentration. For example, at pH
11, the zeta potential of CMC-nZVI nanoparticles was -38.1, —27.8 and —22.1 mV (at nZVI particle
concentration 0.1 g L~1), and -30.1, -18.6 and —14.3 mV (at nZVI particle concentration 1.0 g L) for IS
increased 1, 50, and 100 mM, respectively (Table 2). At pH value greater than 5, stabilizing nZVI by
CMC coating resulted in an increase in the zeta potential of the CMC-nZVI as compared to that of the
bare nZVI at all IS and particle concentrations. The extent of the increase in the zeta potential ranged
between one- to four-fold, and was greater at pH values close to PZC (7.3-7.6), high IS, and larger
particle concentration (i.e., conditions favoring aggregation) (Table 2). Atlarger zeta potential, the extent
of the electrostatic interactions between nZVI particles increased leading to more stable nZVI [33].
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Figure 4. Effect of CMC polymer stabilizer, pH, and IS on the zeta potential of nZVI particles.

Table 2. Effect of nZVI particle concentration, CMC polymer stabilizer, IS and pH on zeta potential
(mV) of nZVI.

IS * pH nZVI Particle Concentration
01gL 1.0gL-1
Bare nZVI CMC-nZVI Bare nZVI CMC-nZVI

1 mM 5 20.3 -249 19.3 -18.4
7 6.9 -30.3 5.2 -20.6

9 -20.4 -34.7 -18.1 -27.1

11 -32.4 -38.1 -26.4 -30.1

50 mM 5 18.6 -16.7 15.3 -10.2
7 10.7 -20.1 42 -13.3

9 -9.5 -23.4 -8.6 -15.5

11 -26.1 -27.8 -15.1 -18.6

100 mM 5 19.4 -18.2 13.7 -8.9
7 4.2 -18.9 2.3 -11.2

9 -9.2 -20.8 -5.1 -12.8

11 -15.1 -22.1 -9.3 -14.3

* IS, ionic strength (NaHCOj3; was used as the background electrolyte solution).
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3.4. Effect of pH on the Stability of nZVI

Sedimentation tests showed the occurrence of a decrease in absorbance over time. This was
mainly attributed to the reduction in the number of particles in the suspension due to aggregation,
as well as the settlement of heavier aggregates out of solution over time. The stability of nZVI was
highly determined by the hydrodynamic size and zeta potential of the particles. Factors favoring
smaller particle size and larger zeta potential enhanced nZVI stability. Relative absorbance of bare
nZVI after 3 h was 0.69, 0.61, 0.54, and 0.36 at pH values of 11, 9, 5, and 7, respectively (Figure 5),
which is consistent with the decrease in the values of zeta potential.
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Figure 5. Effect of pH on the stability bare nZVI, (A); and CMC-nZVI, (B), of 0.1 g L~ nZVI suspensions
in 1 mM NaHCOs3.

The same trend was also observed for CMC-nZVI, where relative absorbance after 3 h was 0.83,
0.62, 0.57, and 0.55 at pH values of 11, 9, 7, and 5, respectively (Figure 5). Under our experimental
conditions, CMC polymer stabilizer greatly increased the stability of nZVI particles. For example,
at low IS (1 mM) and pH 7, dynamic stability was lowest with bare nZVI (pH of the PZC was 7.4)
and relative absorbance was reduced to 0.36 after 3 h. Under the same chemical conditions but in
the presence of CMC coating, relative absorbance of CMC-nZVI was reduced to only 0.57 after 3 h
(Figure 5). These results indicate an enhancement in the stability of CMC-nZVI nanoparticles by
58.3% as compared to that of bare nZVI nanoparticles under the aforementioned solution chemistry
conditions. Similar findings were reported by Cirtiu et al. [31] who evaluated the stability of nZVI
nanoparticles in aqueous NaHCO3, and reported similar enhancement in the stability of nZVI with
several polymer-coating materials.

Calculations of the DLVO total interaction energy between nZVI particles were in agreement with
stability results. At low IS (1 mM), substantial energy barriers between nZVI particles were formed
indicating unfavorable attachment conditions (i.e., domination of electrostatic repulsion forces). The
same behavior was observed for both the 0.1 g L™! (Figure 6A,B) and 1.0 g L™! (Figure 6C,D) nZVI
particle concentration. The energy barrier was slightly larger in the presence of CMC and at the
lower nZVI particle concentration. The only exception was with bare nZVI at pH 7 where the total
interaction was dominated by van der Waals attraction forces. It is worth mentioning that, for bare
nZVI at IS of 1 mM and pH 7, zeta potential was at its minimum (6.9 and 5.2 mV) (Table 2), and the
hydrodynamic size of bare nZVI was at its maximum (132.1 and 287.2 nm) (Table 1) for the nZVI
particle concentrations of 0.1 and 1.0 g L™}, respectively. In other words, conditions were totally in
favor of particle aggregation and therefore no energy barrier was observed at pH 7 as compared to all
other pH values, and nZVI particles were irreversibly aggregated in the primary energy minimum as a
result to the domination of attraction forces.
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Figure 6. Effect of pH and CMC polymer stabilizer on the total interaction energy of 0.1 g L~! (A,B) and
10g L™ (C,D) nZVI particle suspensions in 1 mM NaHCO3.

The maximum energy barrier occurred at pH 11 and reached 29.7 and 37.4 KgT for the 0.1 g
L~! bare and CMC-nZV], respectively. For the 1.0 g L™! bare and CMC-nZVI, the maximum energy
barrier was slightly less and reached 27.1 and 30.9 KpT, respectively (Figure 6). In general, the energy
barrier decreased with decreasing pH for the 0.1 g L~! CMC-nZVI nanoparticles and reached 32.8,
27.5,and 14.7 KgT at pH 9, 7, and 5, respectively. For the 0.1 g L~! bare nZVI nanoparticles, the energy
barrier decreased with decreasing pH and reached 10.7 and 9.9 KgT at pH 9 and 5, respectively. The
decrease in the energy barrier with decreasing pH was slightly larger for the 1.0 g L~! CMC-nZVI
nanoparticles and reached 28.8, 15.7, and 10.8 KzT at pH 9, 7, and 5, respectively. For the 1.0 g L™
bare nZVI nanoparticles, the energy barrier decreased at pH 9 and 5 to 11.7 and 12.9 KgT, respectively
(Figure 6).

3.5. Effect of IS on the Stability of nZVI

Increasing IS of the background electrolyte solution resulted in a decrease in the stability of nZVI
nanoparticles regardless of the concentration of the nZVI particles. Figure 7 shows the effect of increasing
IS on dynamic stability of 0.1 g L~! bare and CMC-nZVI at pH 9. Within 1 h, relative absorbance of
bare nZVI was reduced to 0.82, 0.71, and 0.65 at IS values of 1, 50, and 100 mM, respectively. In contrast,
CMC polymer stabilizer enhanced the stability of nZVI, and relative absorbance of CMC-nZVI after 1
h remained above 0.95 at all IS values. Substantial decrease in the relative absorbance of bare nZVI
occurred after 3 h, and relative absorbance reached 0.55, 0.43, and 0.4 at IS values of 1, 50, and 100 mM,
respectively. Even after 3 h of sedimentation, most of the CMC-nZVI remained stable, and relative
absorbance was 0.89, 0.83, and 0.63 at IS values of 1, 50, and 100 mM, respectively (Figure 7). These
findings indicate that CMC polymer coating increased the dynamic stability of nZVI by 61.8, 93.1,
and 57.5% as compared to that of bare nZVI at IS values of 1, 50, and 100 mM, respectively. It is
interesting to mention that the largest increase in the dynamic stability of nZVI due to the presence of
CMC polymer coating was observed at IS between 1-50 mM (93.1%). At low IS (<1 mM), electrostatic
repulsive forces will dominate and most nZVI suspensions will have greater stability, therefore, the
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impact of CMC will be limited at this IS. On the other hand, at high IS (>50-100 mM) attractive forces
will dominate and most nZVI particles will settle down even in the presence of stabilizing materials.

o
:

3 BarenzVl 10meantye CMC-nzVI
@ 0.9 § 0.9 B e >
7 g \\/\‘ﬁ\ vatns .
< 08 2 os - i
5 07 g o7 N
o (1] v\
S 061 g i
o [
2 05 S
2 04 5 M
2 044 w50 mM
03 100 mM
K T T T T T T T T 1 0.3 . : . - - T T T 1
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
Time (min) Time (min)

Figure 7. Effect of CMC polymer stabilizer and IS on the stability of 0.1 g | I VAY particle suspensions
atpHO.

The effect of IS on the dynamic stability of nZVI was also supported by the results of the DLVO
calculations. Figures 8 and 9 show the total interaction energy of 50 and 100 mM NaHCOj3; suspensions
of both bare and CMC-nZVI at variable pH (5-11) and particle concentration (0.1 and 1.0 g L71). At
IS 50 and 100 mM, interaction energy at almost all pH and particle concentrations was dominated
by attractive forces, favoring irreversible aggregation of the nZVI particles in the primary energy
minimum. Only two exceptions were observed. The first was with bare nZVI at IS 50 mM, 0.1 g L~
particle concentration, and pH 11, where a small energy barrier was formed around 6 KgT. The second
exception was with the CMC-nZVI at IS 50 mM, 0.1 g L™! particle concentration, and pH 9 and 11,
where small energy barriers were formed around 2 and 7 KgT, respectively (Figure 8A,B). According to
the DLVO theory, energy barriers >20 KgT are required for particles to remain stable in suspensions for
long times. Therefore, the small energy barriers that were formed with these exceptions will easily
vanish as the separation distance between two nZVI particles decreases, and the extent of the van der
Waals attractive forces will increase, leading to aggregation of nZVI particles.
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Figure 8. Effect of pH and CMC polymer stabilizer on the total interaction energy of 0.1 g L™! (A,B) and
1.0 g L7! (C,D) nZVI particle suspensions in 50 mM NaHCOs3.
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Figure 9. Effect of pH and CMC polymer stabilizer on the total interaction energy of 0.1 g L1 (A,B)and
1.0 g L7 (C,D) nZVI particle suspensions in 100 mM NaHCO3.

Our results suggest that at IS above 50 mM and nZVI particle concentration larger than 0.1 g L
the likelihood of nZVI aggregation is high. Nevertheless, polymer stabilizer would enhance the
stability of nZVI even under these unfavorable solution chemistry. This is clearly visible in Figures 8
and 9 where we can see that even for nZVI suspensions dominated by attractive forces, the extent of
the attractive forces is less when nZVI particles are coated with CMC.

4. Conclusions

In this research, we investigated the effect of pH, IS, nZVI particle concentration, and CMC
polymer stabilizer on the stability and dynamic aggregation of nZVI suspensions. Increased surface
area and smaller pore size were observed in the presence of CMC polymer stabilizer. XRD patterns
revealed a decrease in Fe® peaks over time with bare nZVI, whereas Fe’ in CMC-nZVI remained
without significant change for 30 d. The hydrodynamic size of nZVI was always smaller in the presence
of CMC, particularly at larger IS and nZVI particle concentrations. The average PZC for bare and
CMC-nZVI was at pH 7.3-7.6, and 1-2, respectively. The increase in the zeta potential of CMC-nZVI
reached one- to four-fold of that for bare nZVI, and was greater at pH values close to PZC, high IS,
and larger particle concentration. CMC increased nZVI stability and relative absorbance remained
above 0.95 after 1 h of sedimentation, while it was reduced to 0.65 with bare nZVI. Our results suggest
that at IS above 50 mM and nZVI particle concentration larger than 0.1 g L7}, the likelihood of nZVI
aggregation is high. Under these conditions, maximum particle aggregation is expected, therefore, it is
extremely important to use polymer stabilizer to enhance the stability and transport of nZVI particles,
and subsequently increase their efficiency in environmental applications.
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