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Abstract
Several implicit methods to infer horizontal gene transfer (HGT) focus on pairs of
genes that have diverged only after the divergence of the two species in which the
genes reside. This situation defines the edge set of a graph, the later-divergence-
time (LDT) graph, whose vertices correspond to genes colored by their species. We
investigate these graphs in the setting of relaxed scenarios, i.e., evolutionary scenarios
that encompass all commonly used variants of duplication-transfer-loss scenarios in
the literature. We characterize LDT graphs as a subclass of properly vertex-colored
cographs, and provide a polynomial-time recognition algorithm aswell as an algorithm
to construct a relaxed scenario that explains a given LDT. An edge in an LDT graph
implies that the two corresponding genes are separated by at least one HGT event. The
converse is not true, however.We show that the complete xenology relation is described
by an rs-Fitch graph, i.e., a complete multipartite graph satisfying constraints on the
vertex coloring. This class of vertex-colored graphs is also recognizable in polynomial
time. We finally address the question “how much information about all HGT events
is contained in LDT graphs” with the help of simulations of evolutionary scenarios
with a wide range of duplication, loss, and HGT events. In particular, we show that a
simple greedy graph editing scheme can be used to efficiently detect HGT events that
are implicitly contained in LDT graphs.
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1 Introduction

Horizontal gene transfer (HGT) laterally introduces foreign genetic material into a
genome. The phenomenon is particularly frequent in prokaryotes (Soucy et al. 2015;
Nelson-Sathi et al. 2015) but also contributed to shaping eukaryotic genomes (Keeling
and Palmer 2008; Husnik and McCutcheon 2018; Acuña et al. 2012; Li et al. 2014;
Moran and Jarvik 2010; Schönknecht et al. 2013). HGT may be additive, in which
case its effect is similar to gene duplications, or lead to the replacement of a vertically
inherited homolog. From a phylogenetic perspective, HGT leads to an incongruence
of gene trees and species trees, thus complicating the analysis of gene family histories.

A broad spectrum of computational methods have been developed to identify hor-
izontally transferred genes and/or HGT events, recently reviewed by Ravenhall et al.
(2015). Parametricmethods use genomic signatures, i.e., sequence features specific to a
(group of) species identify horizontally inserted material. Genomic signatures include
e.g. GC content, k-mer distributions, sequence autocorrelation, or DNA deformability
(Dufraigne et al. 2005; Becq et al. 2010). Direct (or “explicit”) phylogenetic methods
start from a given gene tree T and species tree S and compute a reconciliation, i.e., a
mapping of the gene tree into the species tree. This problem first arose in the context
of host/parasite assemblages (Page 1994; Charleston 1998) considering the equivalent
problem of mapping a parasite tree T to a host phylogeny S such that the number of
events such as host-switches, i.e., horizontal transfers, is minimized. For a review of
the early literature we refer to Charleston and Perkins (2006). A major difficulty is to
enforce time consistency in the presence of multiple horizontal transfer events, which
renders the problem of finding optimal reconciliations NP-hard (Hallett and Lagergren
2001; Ovadia et al. 2011; Tofigh et al. 2011; Hasić and Tannier 2019). Nevertheless
several practical approaches have become available, see e.g. Tofigh et al. (2011), Chen
et al. (2012) and Ma et al. (2018).

Indirect (or “implicit”) phylogenetic methods forego the reconstruction of trees and
start from sequence similarity or evolutionary distances and use unexpectedly small
or large distances between genes as indicators of HGT. While indirect methods have
been used successfully in the past, reviewed by Ravenhall et al. (2015), they have
received very little attention from a more formal point of view. In this contribution,
we focus on a particular type of implicit phylogenetic information, following the
ideas of Novichkov et al. (2004). The basic idea is that the evolutionary distance
between orthologous genes is approximately proportional to the distances between
their species. Xenologous gene pairs as well as duplicate genes thus appear as outliers
(Lawrence and Hartl 1992; Clarke et al. 2002; Novichkov et al. 2004; Dessimoz et al.
2008). More precisely, consider a family of homologous genes in a set of species
and plot the phylogenetic distance of pairs of most similar homologs as a function of
the phylogenetic distances between the species in which they reside. Since distances
between orthologous genes can be expected to be approximately proportional to the
distances between the species, orthologous pairs fall onto a regression line that defines
equal divergence time for the last common ancestor of corresponding gene and species
pairs. The gene pairs with “later divergence times”, i.e., those that are more closely
related than expected from their species, fall below the regression line (Novichkov
et al. 2004). Kanhere and Vingron (2009) complemented this idea with a statistical
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test based on the Cook distance to identify xenologous pairs in a statistically sound
manner. For the mathematical analysis we assume that we can perfectly identify all
pairs of genes a and b that aremore closely related than expected from the phylogenetic
distance of their respective genomes. Naturally, this defines a graph (G, σ ), whose
vertices x (the genes) are colored by the species σ(x) in which they appear. Here, we
are interested in two questions:

(1) What are the mathematical properties that characterize these “later-divergence-
time” (LDT ) graphs?

(2) What kind of information about HGT events, the gene and species tree, and the
reconciliation map between them is contained implicitly in an LDT graph?

In Sect. 6 we will briefly consider the situation that later-divergence-time information
is fraught with experimental errors.

These questions are motivated by a series of recent publications that characterized
themathematical structure of orthology (Hellmuth et al. 2013; Lafond andEl-Mabrouk
2014), the xenology relation sensu Fitch (Geiß et al. 2018; Hellmuth et al. 2018; Hell-
muth and Seemann 2019), and the (reciprocal) best match relation (Geiß et al. 2019,
2020b; Schaller et al. 2021a, b). Each of these relations satisfies stringent mathemati-
cal conditions that—at least in principle—can be used to correct empirical estimates
and thus serve as a potential means of noise reduction (Hellmuth et al. 2015; Stadler
et al. 2020). This approach has also lead to efficient algorithms to extract gene trees,
species trees, and reconciliations from the relation data. Although the resulting rep-
resentations of gene family histories are usually not fully resolved, they can provide
important constraints for subsequent refinements. The advantage of the relation-based
approach is primarily robustness. While the inference of phylogenetic trees relies on
detailed probability models or the additivity of distance metrics, our approach starts
from yes/no answers to simple, pairwise comparisons. These data can therefore be
represented as edges in a graph, possibly augmented by a measure of confidence.
Noise and inaccuracies in the initial estimates then translate into violations of the
required mathematical properties of the graphs in question. Graph editing approaches
can therefore be harnessed as a means of noise reduction (Hellmuth et al. 2015; Dondi
et al. 2017; Lafond and El-Mabrouk 2014; Lafond et al. 2016; Hellmuth et al. 2020b, a;
Schaller et al. 2021c).

Previous work following this paradigm has largely been confined to duplication-
loss (DL) scenarios, excluding horizontal transfer. As shown in Hellmuth (2017), it is
possible to partition a gene set into HGT-free classes separated by HGTs. Within each
class, the reconstruction problems then simplify to the much easier DL scenarios. It is
of utmost interest, therefore, to find robust methods to infer this partition directly from
(dis)similarity data. Here, we explore the usefulness and limitations of LDT graphs
for this purpose.

This contribution is organized as follows. After introducing the necessary notation,
we introduce relaxed scenarios, a very general framework to describe evolutionary
scenarios that emphasizes time consistency of reconciliation rather than particular
types of evolutionary events. In Sect. 4, LDT graphs are defined formally and char-
acterized as those properly colored cographs for which a set of accompanying rooted
triples is consistent (Theorem 3). The proof is constructive and provides a method
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(Algorithm 1) to compute a relaxed scenario for a given LDT graph. Section 5 defines
HGT events, shows that every edge in a LDT graph corresponds to an HGT event,
and characterizes those LDT graphs that already capture all HGT events. In addition,
we provide a characterization of “rs-Fitch graphs” (general vertex-colored graphs that
capture all HGT events) in terms of their coloring. These properties can be verified in
polynomial time. Since LDT graphs do not usually capture all HGT events, we dis-
cuss in “Appendix C” several ways to obtain a plausible set of HGT candidates from
LDT graphs. In Sect. 7, we address the question “how much information about all
HGT events is contained in LDT graphs” with the help of simulations of evolutionary
scenarios with a wide range of duplication, loss, and HGT events. We find that LDT
graphs cover roughly a third of xenologous pairs, while a simple greedy graph editing
scheme can more than double the recall at moderate false positive rates. This greedy
approach already yields amedian accuracy of 89%, and in 99.8%of the cases produces
biologically feasible solutions in the sense that the inferred graphs are rs-Fitch graphs.
We close with a discussion of several open problems and directions for future research
in Sect. 8.

Thematerial of this contribution is extensive and contains several lengthy, very tech-
nical proofs. We therefore divided the presentation into a Narrative Part that contains
only those mathematical results that contribute to our main conclusions, and a Tech-
nical Part providing additional results and all proofs. To facilitate cross-referencing
between the two parts, the same numbering of Definitions, Lemmas, Theorems, etc., is
used. Appendices A, B, and C contain the technical material corresponding to Sects. 4,
5, and 6, respectively.

2 Notation

Graphs We consider undirected graphs G = (V , E) with vertex set V (G) := V and
edge set E(G) := E , and denote edges connecting vertices x, y ∈ V by xy. The
graphs K1 and K2 denote the complete graphs on one and two vertices, respectively.
The graph K2 + K1 is the disjoint union of a K2 and a K1.

The join G � H of two graphs G = (V , E) and H = (W , F) is the graph with
vertex set V ∪· W and edge set E ∪· F ∪· {xy | x ∈ V , y ∈ W }. We write H ⊆ G if
V (H) ⊆ V (G) and E(H) ⊆ E(G), in which case H is called a subgraph of G. Given
a graph G = (V , E), we write G[W ] for the graph induced by W ⊆ V . A connected
component C of G is an inclusion-maximal vertex set such that G[C] is connected.
A (maximal) clique C in an undirected graph G is an (inclusion-maximal) vertex set
such that, for all vertices x, y ∈ C , it holds that xy ∈ E(G), i.e., G[C] is complete. A
subsetW ⊆ V is a (maximal) independent set if G[W ] is edgeless (andW is maximal
w.r.t. inclusion). A graph G = (V , E) is complete multipartite if V consists of k ≥ 1
pairwise disjoint independent sets I1, . . . , Ik and xy ∈ E if and only if x ∈ Ii and
y ∈ I j with i �= j .

A graphG together with a vertex coloring σ , denoted by (G, σ ), is properly colored
if uv ∈ E(G) implies σ(u) �= σ(v). For a coloring σ : V → M and a subset W ⊆ V ,
we write σ(W ) := {σ(w) | w ∈ W } for the set of colors that appear on the vertices in
W . Throughout, we will need restrictions of the coloring map σ .
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Definition 1 Let σ : L → M be a map, L ′ ⊆ L and σ(L ′) ⊆ M ′ ⊆ M . Then, the map
σ|L ′,M ′ : L ′ → M ′ is defined by putting σ|L ′,M ′(v) = σ(v) for all v ∈ L ′. If we only
restrict the domain of σ , we just write σ|L ′ instead of σ|L ′,M .

We do neither assume that σ nor that its restriction σ|L ′,M ′ is surjective.
Rooted treesAll trees appearing in this contribution are rooted in one of their vertices.
We write x 	T y if y lies on the unique path from the root to x , in which case y is
called an ancestor of x , and x is called a descendant of y. We may also write y 
T x
instead of x 	T y. We use x ≺T y for x 	T y and x �= y. In the latter case, y is
a strict ancestor of x . If x 	T y or y 	T x , the vertices x and y are comparable
and, otherwise, incomparable. We write L(T ) for the set of leaves of the tree T , i.e.,
the 	T -minimal vertices and say that T is a tree on L(T ). We write T (u) for the
subtree of T rooted in u. The last common ancestor of a vertex set W ⊆ V (T ) is the
	T -minimal vertex u := lcaT (W ) for which w 	T u for all w ∈ W . For brevity we
write lcaT (x, y) = lcaT ({x, y}).

We employ the convention that edges (x, y) in a tree are always written such that
y 	T x is satisfied. If (x, y) is an edge in T , then par(y) := x is the parent of y, and
y the child of x . We denote with childT (x) the set of all children of x in T . It will be
convenient for the discussion below to extend the ancestor relation 	T on V to the
union of the edge and vertex sets of T . More precisely, for a vertex x ∈ V (T ) and an
edge e = (u, v) ∈ E(T ) we put x ≺T e if and only if x 	T v; and e ≺T x if and only
if u 	T x . In addition, for edges e = (u, v) and f = (a, b) in T we put e 	T f if
and only if v 	T b.

A rooted tree is phylogenetic if all vertices that are adjacent to at least two vertices
have at least two children. A rooted tree T is planted if its root has degree 1. In this
case, we denote the “planted root” by 0T . In planted phylogenetic trees there is a
unique “planted edge” (0T , ρT ) where ρT := lcaT (L(T )). Note that by definition
0T /∈ L(T ).

Throughout, we will assume that all trees are rooted and phylogenetic unless explic-
itly stated otherwise. Whenever there is no danger of confusion, we will refer also to
planted phylogenetic trees simply as trees.

The set of inner vertices is given by V 0(T ) := V (T )\(L(T )∪{0T }). An edge (u, v)

is an inner edge if both vertices u and v are inner vertices and, otherwise, an outer
edge. The restriction of T to a subset L ′ ⊆ L(T ) of leaves, denoted by T|L ′ is obtained
by identifying the (unique) minimal subtree of T that connects all leaves in L ′, and
suppressing all vertices with degree two except possibly the root ρTL′ = lcaT (L ′). T
displays a tree T ′, in symbols T ′ ≤ T , if T ′ can be obtained from a restriction T|L ′
of T by a series of inner edge contractions (Bryant and Steel 1995). If, in addition,
L(T ) = L(T ′), then T is a refinement of T ′. Throughout this contribution, we will
consider leaf-colored trees (T , σ ) with σ being defined for L(T ) only.
Rooted triples A rooted triple is a tree T on three leaves and two internal vertices. We
write ab|c for the triple with lcaT (a, b) ≺ lcaT (a, c) = lcaT (b, c). For a set R of
triples we write L(R) := ⋃

t∈R L(t). The set R is compatible if there is a tree T with
L(R) ⊆ L(T ) that displays every triple t ∈ R. The construction of such a tree T from
a triple set R on L makes use of an auxiliary graph that will play a prominent role in
this contribution.
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Definition 2 (Aho et al. 1981) Let R be a set of rooted triples on the vertex set L . The
Aho graph [R, L] has vertex set L and edge set {xy | ∃z ∈ L : xy|z ∈ R}.
The algorithm BUILD (Aho et al. 1981) uses Aho graphs in a top-down recursion
starting from a given set of triples R and returns for compatible triple sets R on L
an unambiguously defined tree Aho(R, L) on L , which is known as the Aho tree.
BUILD runs in polynomial time. The key property of the Aho graph that ensures the
correctness of BUILD can be stated as follows:

Proposition 1 (Aho et al. 1981; Bryant and Steel 1995) A set of triplesR is compatible
if and only if for each subset L ⊆ L(R)with |L| > 1 the graph [R, L] is disconnected.
Cographs are recursively defined as undirected graphs that can be generated as joins
or disjoint unions of cographs, starting from single-vertex graphs K1. The recursive
construction defines a rooted tree (T , t), called cotree, whose leaves are the vertices
of the cograph G, i.e., the K1s, while each of its inner vertices u of T represent the
join or disjoint union operations, labeled as t(u) = 1 and t(u) = 0, respectively.
Hence, for a given cograph G and its cotree (T , t), we have xy ∈ E(G) if and only if
t(lcaT (x, y)) = 1.Contraction of all tree edges (u, v) ∈ E(T )with t(u) = t(v) results
in the discriminating cotree (TG, t̂) of G with cotree-labeling t̂ such that t̂(u) �= t̂(v)

for any two adjacent interior vertices of TG . The discriminating cotree (TG, t̂) is
uniquely determined by G (Corneil et al. 1981a). Cographs have a large number of
equivalent characterizations. In this contribution, we will need the following classical
results:

Proposition 2 (Corneil et al. 1981a)Given an undirected graph G, the following state-
ments are equivalent:

1. G is a cograph.
2. G does not contain a P4, i.e., a path on four vertices, as an induced subgraph.
3. diam(H) ≤ 2 for all connected induced subgraphs H of G.
4. Every induced subgraph H of G is a cograph.

3 Relaxed reconciliationmaps and relaxed scenarios

Tofigh et al. (2011) andBansal et al. (2012) define “Duplication-Transfer-Loss” (DTL)
scenarios in terms of a vertex-only map γ : V (T ) → V (S). The H-trees introduced
by Górecki (2010) and Górecki and Tiuryn (2012) formalize the same concept in
a very different manner. A definition of a DTL-like class of scenarios in terms of a
reconciliation mapμ : V (T ) → V (S)∪E(S)was analyzed by Nøjgaard et al. (2018).
For binary trees, the two definitions are equivalent; for non-binary trees, however, the
DTL-scenarios are a proper subset, see Nøjgaard et al. (2018, Fig. 1) for an example.
Several other mathematical frameworks have been used in the literature to specify
evolutionary scenarios. Examples include theDLS-trees ofGórecki andTiuryn (2006),
which can be seen as event-labeled gene trees with leaves denoting both surviving
genes and loss-events, maps g : V (S′) → 2V (T ) from a suitable subdivision S′ of the
species tree S to the gene tree as used byHallett andLagergren (2001), and associations
of edges, i.e., subsets of E(T ) × E(S) (Wieseke et al. 2013).
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In the presence of HGT, the relationships of gene trees and species are not only
constrained by local conditions corresponding to the admissible local evolutionary
events (duplication, speciation, gene loss, and HGT) but also by the global condition
that the HGT events within each lineage admit a temporal order (Merkle and Midden-
dorf 2005; Gorbunov and Lyubetsky 2009; Tofigh et al. 2011). In order to capture time
consistency from the outset and to establish the mathematical framework, we consider
here trees with explicit timing information (Merkle and Middendorf 2005).

Definition 3 (Time Map) The map τT : V (T ) → R is a time map for a tree T if
x ≺T y implies τT (x) < τT (y) for all x, y ∈ V (T ).

It is important to note that only qualitative, relative timing information will be used in
practice, i.e., we will never need the actual value of time maps but only information
on whether an event pre-dates, post-dates, or is concurrent with another. Definition 3
ensures that the ancestor relation 	T and the timing of the vertices are not in conflict.
For later reference, we provide the following simple result.

Lemma 1 Given a tree T , a time map τT for T satisfying τT (x) = τ0(x)with arbitrary
choices of τ0(x) for all x ∈ L(T ) can be constructed in linear time.

Proof We traverse T in postorder. If x is a leaf, we set τT (x) = τ0(x), and otherwise
compute t := maxu∈child(x) τT (u) and set τT (x) = t ′ with an arbitrary value t ′ > t .
Clearly the total effort is O(|V (T )| + |E(T )|), and thus also linear in the number of
leaves L(T ). ��
Lemma 1 will be useful for the construction of time maps as it, in particular, allows
us to put τT (x) = τT (y) for all x, y ∈ L(T ).

Definition 4 (Time consistency) Let T and S be two trees. Amapμ : V (T ) → V (S)∪
E(S) is called time-consistent if there are time maps τT for T and τS for S satisfying
the following conditions for all u ∈ V (T ):

(C1) If μ(u) ∈ V (S), then τT (u) = τS(μ(u)).
(C2) Else, if μ(u) = (x, y) ∈ E(S), then τS(y) < τT (u) < τS(x).

Conditions (C1) and (C2) ensure that the reconciliation map μ preserves time in the
following sense: If vertex u of the gene tree is mapped to a vertex μ(u) = v in the
species tree, then u and v receive the same time stamp by Condition (C1). If u is
mapped to an edge μ(u) = (x, y), then the time stamp of u falls within the time range
[τS(x), τS(y)] of the edge xy in the species tree. The following definition of reconcil-
iation is designed (1) to be general enough to encompass the notions of reconciliation
that have been studied in the literature, and (2) to separate the mapping between gene
tree and species tree from specific types of events. Event types such as duplication or
horizontal transfer therefore are considered here as a matter of interpreting scenarios,
not as part of their definition.

Definition 5 (Relaxed reconciliation map) Let T and S be two planted trees with
leaf sets L(T ) and L(S), respectively and let σ : L(T ) → L(S) be a map. A map
μ : V (T ) → V (S)∪E(S) is a relaxed reconciliationmap for (T , S, σ ) if the following
conditions are satisfied:
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(G0) Root Constraint. μ(x) = 0S if and only if x = 0T
(G1) Leaf Constraint. μ(x) = σ(x) if and only if x ∈ L(T ).
(G2) Time Consistency Constraint. The map μ is time-consistent for some time maps

τT for T and τS for S.

Condition (G0) is used to map the respective planted roots. (G1) ensures that genes
are mapped to the species in which they reside. (G2) enforces time consistency. The
reconciliation maps most commonly used in the literature, see e.g. (Tofigh et al. 2011;
Bansal et al. 2012), usually not only satisfy (G0)–(G2) but also impose additional
conditions. We therefore call the map μ defined here “relaxed”.

Definition 6 (relaxed Scenario) The 6-tuple S = (T , S, σ, μ, τT , τS) is a relaxed
scenario if μ is a relaxed reconciliation map for (T , S, σ ) that satisfies (G2) w.r.t. the
time maps τT and τS .

By definition, relaxed reconciliation maps are time-consistent. Moreover, τT (x) =
τS(σ (x)) for all x ∈ L(T ) by Definitions 4(C1) and 5(G1,G2). In the following we
will refer to the map σ : L(T ) → L(S) as the coloring of S.

4 Later-divergence-time graphs

4.1 LDT graphs and�-free scenarios

In the absence of horizontal gene transfer, the last common ancestor of two species A
and B should mark the latest possible time point at which two genes a and b residing
in σ(a) = A and σ(b) = B, respectively, may have diverged. Situations in which
this constraint is violated are therefore indicative of HGT. To address this issue in
some more detail, we next define “μ-free scenarios” that eventually will lead us to the
class of “LDT graphs” that contain all information about genes that diverged after the
species in which they reside.

Definition 7 (μ-free scenario) Let T and S be planted trees, σ : L(T ) → L(S) be a
map, and τT and τS be timemaps of T and S, respectively, such that τT (x) = τS(σ (x))
for all x ∈ L(T ). Then, T = (T , S, σ, τT , τS) is called a μ-free scenario.

This definition of a scenario without a reconciliation map μ is mainly a tech-
nical convenience that simplifies the arguments in various proofs by avoiding the
construction of a reconciliation map. It is motivated by the observation that the “later-
divergence-time” of two genes in comparison with their species is independent from
any such μ. Every relaxed scenario S = (T , S, σ, μ, τT , τS) implies an underlying
μ-free scenario T = (T , S, σ, τT , τS). Statements proved for μ-free scenarios there-
fore also hold for relaxed scenarios. Note that, by Lemma 1, given the time map τS ,
one can easily construct a time map τT such that τT (x) = τS(σ (x)) for all x ∈ L(T ).
In particular, when constructing relaxed scenarios explicitly, we may simply choose
τT (u) = 0 and τS(x) = 0 as common time for all leaves u ∈ L(T ) and x ∈ L(S).
Although not all μ-free scenarios admit a reconciliation map and thus can be turned
into relaxed scenarios, Lemma 2 below implies that for every μ-free scenario T there
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is a relaxed scenario with possibly slightly distorted time maps that encodes the same
LDT graph as T.

Definition 8 (LDT graph) For a μ-free scenario T = (T , S, σ, τT , τS), we define
G<(T) = G<(T , S, σ, τT , τS) = (V , E) as the graph with vertex set V := L(T ) and
edge set

E := {ab | a, b ∈ L(T ), τT (lcaT (a, b)) < τS(lcaS(σ (a), σ (b))).}

A vertex-colored graph (G, σ ) is a later-divergence-time graph (LDT graph), if there
is a μ-free scenario T = (T , S, σ, τT , τS) such that G = G<(T). In this case, we say
that T explains (G, σ ).

It is easy to see that the edge set of G<(T) defines an undirected graph and that two
genes a and b form an edge if the divergence time of a and b is strictly less than the
divergence time of the underlying species σ(a) and σ(b). Moreover, there are no edges
of the form aa, since τT (lcaT (a, a)) = τT (a) = τS(σ (a)) = τS(lcaS(σ (a), σ (a))).
Hence G<(T) is a simple graph.

By definition, every relaxed scenario S = (T , S, σ, μ, τT , τS) satisfies τT (x) =
τS(σ (x)) all x ∈ L(T ). Therefore, removing μ from S yields a μ-free scenario T =
(T , S, σ, τT , τS). Thus, we will use the following simplified notation.

Definition 9 We put G<(S) := G<(T , S, σ, τT , τS) for a given relaxed scenario S =
(T , S, σ, μ, τT , τS) and the underlying μ-free scenario (T , S, σ, τT , τS) and say, by
slight abuse of notation, that S explains (G<(S), σ ).

The next two results show that the existence of a reconciliation mapμ does not impose
additional constraints on LDT graphs.

Lemma 2 For everyμ-free scenario T = (T , S, σ, τT , τS), there is a relaxed scenario
S = (T , S, σ, μ, τ̃T , τ̃S) for T , S and σ such that (G<(T), σ ) = (G<(S), σ ).

Theorem 1 (G, σ ) is an LDT graph if and only if there is a relaxed scenario S =
(T , S, σ, μ, τT , τS) such that (G, σ ) = (G<(S), σ ).

Remark 1 From here on, we omit the explicit reference to Lemma 2 and Theorem 1
and assume that the reader is aware of the fact that every LDT graph is explained
by some relaxed scenario S and that for every μ-free scenario T = (T , S, σ, τT , τS),
there is a relaxed scenario S for T , S and σ such that (G<(T), σ ) = (G<(S), σ ).

4.2 Properties of LDT graphs

We continue by deriving several interesting characteristics LDT graphs.

Proposition 3 Every LDT graph (G, σ ) is properly colored.

As we shall see below, LDT graphs (G, σ ) contain detailed information about both
the underlying gene trees T and species trees S for all μ-scenarios that explain (G, σ ),
and thus by Lemma 2 and Theorem 1 also about every relaxed scenario S satisfying
G = G<(S). This information is encoded in the form of certain rooted triples that can
be retrieved directly from local features in the colored graphs (G, σ ).
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Fig. 1 Top row: A relaxed scenario S = (T , S, σ, μ, τT , τS) (left) with its LDT graph (G<(S), σ ) (right).
The reconciliation map μ is shown implicitly by the embedding of the gene tree T into the species tree
S. The times τT and τS are indicated by the position on the vertical axis, i.e., if a vertex x is drawn
higher than a vertex y, this implies τT (y) < τT (x). In subsequent figures we will not show the time maps
explicitly. Bottom row: Another relaxed scenario S′ = (T ′, S′, σ ′, μ′, τ ′

T , τ ′
S)with a connected LDT graph

(G<(S′), σ ′). As we shall see, connectedness of an LDT graph depends on the relative timing of the roots
of the gene and species tree (cf. Lemma 11)

Definition 10 For a graph G = (L, E), we define the set of triples on L as

T(G) := {xy|z : x, y, z ∈ L are pairwise distinct, xy ∈ E, xz, yz /∈ E} .

If G is endowed with a coloring σ : L → M we also define a set of color triples

S(G, σ ) := {σ(x)σ (y)|σ(z) : x, y, z ∈ L, σ (x), σ (y), σ (z) are pairwise distinct,

xz, yz ∈ E, xy /∈ E}.

Lemma 6 If a graph (G, σ ) is an LDT graph, then S(G, σ ) is compatible and S
displaysS(G, σ ) for everyμ-free scenarioT = (T , S, σ, τT , τS) that explains (G, σ ).

The next lemma shows that induced K2 + K1 subgraphs in LDT graphs imply
triples that must be displayed by the gene tree T .

Lemma 7 If (G, σ ) is an LDT graph, then T(G) is compatible and T displays T(G)

for every μ-free scenario T = (T , S, σ, τT , τS) that explains (G, σ ).
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The next results shows that LDT graphs cannot contain induced P4s.

Lemma 8 Every LDT graph (G, σ ) is a properly colored cograph.

The converse of Lemma 8 is not true is in general. To see this, consider the
properly-colored cograph (G, σ ) with vertex V (G) = {a, a′, b, b′, c, c′}, edges
ab, bc, a′b′, a′c′ and coloring σ(a) = σ(a′) = A, σ(b) = σ(b′) = B, and
σ(c) = σ(c′) = C with A, B,C being pairwise distinct. In this case, S(G, σ ) con-
tains the triples AC |B and BC |A. By Lemma 6, the tree S in every μ-free scenario
T = (T , S, σ, τT , τS) or relaxed scenario S = (T , S, σ, μ, τT , τS) explaining (G, σ )

displays AC |B and BC |A. Since no such scenario can exist, (G, σ ) is not an LDT
graph.

4.3 Recognition and characterization of LDT graphs

In order to design an algorithm for the recognition of LDT graphs, we will consider
partitions of the vertex set of a given input graph (G = (L, E), σ ). To construct suitable
partitions, we start with the connected components of G. The coloring σ : L → M
imposes additional constraints. We capture these with the help of binary relations that
are defined in terms of partitions C of the color set M and employ them to further
refine the partition of G.

Definition 12 Let (G = (L, E), σ ) be a graph with coloring σ : L → M . Let C be
a partition of M , and C ′ be the set of connected components of G. We define the
following binary relation R(G, σ,C ) by setting

(x, y) ∈ R(G, σ,C ) ⇐⇒ x, y ∈ L, σ (x), σ (y) ∈ C for some C ∈ C , and

x, y ∈ C ′ for some C ′ ∈ C ′.

By construction, two vertices x, y ∈ L are in relation R(G, σ,C ) whenever they
are in the same connected component of G and their colors σ(x), σ (y) are contained
in the same set of the partition of M . As shown in Lemma 9 in the Technical Part,
the relation R := R(G, σ,C ) is an equivalence relation and every equivalence class
of R is contained in some connected component of G. In particular, each connected
component of G is the disjoint union of R-classes.

The following partition of the leaf sets of subtrees of a tree S rooted at some vertex
u ∈ V (S) will be useful:

If u is not a leaf, then CS(u) := {L(S(v)) | v ∈ childS(u)}
and, otherwise, CS(u) := {{u}}.

One easily verifies that, in both cases, CS(u) yields a valid partition of the leaf set
L(S(u)). Recall that σ|L ′,M ′ : L ′ → M ′ was defined as the “submap” of σ with L ′ ⊆ L
and σ(L ′) ⊆ M ′ ⊆ M .

Lemma 10 Let (G = (L, E), σ ) be a properly colored cograph. Suppose that the
triple set S(G, σ ) is compatible and let S be a tree on M that displays S(G, σ ).
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A

B C

D E

Fig. 2 Visualization of Algorithm 1.A The case uS is a leaf (cf. Line 8).B–E The case uS is an inner vertex
(cf. Line 12). B The subgraph of (G, σ ) induced by L ′. C The local topology of the species tree S yields
CS(uS) = {{A, B, . . . }, {C, D, . . . }}. Note that L(S(uS)) may contain colors that are not present in σ(L ′)
(not shown). D The equivalence classes of R := R(G[L ′], σ|L ′,L(S(u)),CS(uS)). E The vertex uT and
the vertices vT are created in this recursion step. The vertices wK corresponding to the R-classes K are
created in the next-deeper steps. Note that some vertices have only a single child, and thus get suppressed
in Line 25

Moreover, let L ′ ⊆ L and u ∈ V (S) such that σ(L ′) ⊆ L(S(u)). Finally, set
R := R(G[L ′], σ|L ′,L(S(u)),CS(u)).
Then, for all distinct R-classes K and K ′, either xy ∈ E for all x ∈ K and y ∈ K ′,
or xy /∈ E for all x ∈ K and y ∈ K ′. In particular, for x ∈ K and y ∈ K ′, it holds
that

xy ∈ E ⇐⇒ K , K ′ are contained in the same connected component of G[L ′].

Lemma 10 suggests a recursive strategy to construct a relaxed scenario S =
(T , S, σ, μ, τT , τS) for a given properly-colored cograph (G, σ ), which is illustrated
in Fig. 2. The starting point is a species tree S displaying all the triples in S(G, σ )

that are required by Lemma 6. We show below that there are no further constraints on
S and thus we may choose S = Aho(S(G, σ ), L) and endow it with an arbitrary time
map τS . Given (S, τS), we construct (T , τT ) in top-down order. In order to reduce the
complexity of the presentation and to make the algorithmmore compact and readable,
we will not distinguish the cases in which (G, σ ) is connected or disconnected, nor
whether a connected component is a superset of one or more R-classes. The tree T
therefore will not be phylogenetic in general. We shall see, however, that this issue
can be alleviated by simply suppressing all inner vertices with a single child.
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The root uT is placed aboveρS to ensure that no twovertices fromdistinct connected
components ofG will be connected by an edge inG<(S). The vertices vT representing
the connected components C of G are each placed within an edge of S below ρS .
W.l.o.g., the edges (ρS, vS) are chosen such that the colors of the corresponding
connected component C and the colors in L(S(vS)) overlap. Next we compute the
relationR := R(G, σ,CS(ρS)) and determine, for each connected component C , the
R-classes K that are a subset of C . For each of them, a child wK is appended to the
tree vertex vT . The subtree T (wK ) will have leaf set L(T (wK )) = K . Since R is
defined on CS(ρS) in this first step, G(S) will have all edges between vertices that are
in the same connected component C but in distinct R-classes (cf. Lemma 10). The
definition of R also implies that we always find a vertex vS ∈ childS(ρS) such that
σ(K ) ⊆ L(S(vS)) (more detailed arguments for this are given in the proof of Claim 4
in the proof of Theorem 2 below). Thus we can place wK into this edge (ρS, vS),
and proceed recursively on theR-classes L ′ := K , the induced subgraphs G[L ′] and
their corresponding vertices vS ∈ V (S), which then serve as the root of the species
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trees. More precisely, we identify wK with the root u′
T created in the “next-deeper”

recursion step. Since we alternate between vertices uT for which no edges between
vertices of distinct subtrees exist, and vertices vT for which all such edges exist, we
can label the vertices uT with “0” and the vertices vT with “1” and obtain a cotree for
the cograph G.

This recursive procedure is described more formally in Algorithm 1 which also
describes the constructions of an appropriate time map τT for T and a reconciliation
map μ. We note that we find it convenient to use as trivial case in the recursion
the situation in which the current root uS of the species tree is a leaf rather than
the condition |L ′| = 1. In this manner we avoid the distinction between the cases
uS ∈ L(S) and uS /∈ L(S) in the else-condition starting in Line 12. This results in a
shorter presentation at the expense of more inner vertices that need to be suppressed
at the end in order to obtain the final tree T . We proceed by proving the correctness
of Algorithm 1.

Theorem 2 Let (G, σ ) be a properly colored cograph, and assume that the triple
set S(M,G) is compatible. Then Algorithm 1 returns a relaxed scenario S =
(T , S, σ, μ, τT , τS) such that G<(S) = G in polynomial time.

As a consequence of Lemma 6 and 8, and the fact that Algorithm 1 returns a relaxed
scenario S for a given properly colored cograph with compatible triple set S(G, σ ),
we obtain

Theorem 3 A graph (G, σ ) is an LDT graph if and only if it is a properly colored
cograph and S(G, σ ) is compatible.

Theorem 3 has two consequences that are of immediate interest:

Corollary 2 LDT graphs can be recognized in polynomial time.

Corollary 3 The property of being an LDT graph is hereditary, that is, if (G, σ ) is an
LDT graph then each of its vertex induced subgraphs is an LDT graph.

The relaxed scenarios S explaining an LDT graph (G, σ ) are far from being unique.
In fact, we can choose from a large set of trees (S, τS) that is determined only by the
triple set S(G, σ ):

Corollary 4 If (G = (L, E), σ ) is an LDT graph with coloring σ : L → M, then
for all planted trees S on M that display S(G, σ ) there is a relaxed scenario S =
(T , S, σ, μ, τT , τS) that contains σ and S and that explains (G, σ ).

As shown in the Technical Part, for every LDT graph (G, σ ) there is a relaxed
scenario S = (T , S, σ, μ, τT , τS) explaining (G, σ ) such that T displays the discrim-
inating cotree TG of G (cf. Corollary 5 in the Technical Part). However, this property
is not satisfied by all relaxed scenarios that explain an (G, σ ). Nevertheless, the latter
results enable us to relate connectedness of LDT graphs to properties of the relaxed
scenarios by which it can be explained (cf. Lemma 11 in Technical Part).
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Fig. 3 Examples of LDT graphs (G, σ )withmultiple least resolved trees. Top row:No unique least resolved
gene tree. For both trees, contraction of the single inner edge leads to a loss of the gene triple ab|c ∈ T(G)

(cf. Lemma 7). The species tree is also least resolved since contraction of its single inner edge leads to loss
of the species triples σ(a)σ (c)|σ(d), σ (b)σ (c)|σ(d) ∈ S(G, σ ) (cf. Lemma 6). Bottom row: No unique
least resolved species tree. Both trees display the two necessary triples AB|E,CD|E ∈ S(G, σ ), and are
again least resolved w.r.t. these triples. The gene trees are also least resolved since contraction of either of
its two inner edges leads e.g. to loss of one of the triples ae|c, ce′|a ∈ T(G)

4.4 Least resolved trees for LDT graphs

As we have seen e.g. in Corollary 4, there are in general many trees S and T forming
relaxed scenarios S that explain a given LDT graph (G, σ ). This begs the question to
what extent these trees are determined by “representatives”. For S, we have seen that S
always displays S(G, σ ), suggesting to consider the role of S = Aho(S(G, σ ), M),
where M is the codomain of σ . This tree is least resolved in the sense that there is
no relaxed scenario explaining the LDT graph (G, σ ) with a tree S′ that is obtained
from S by edge-contractions. The latter is due to the fact that any edge contraction in
Aho(S(G, σ ), M) yields a tree S′ that does not display S(G, σ ) any more (Jansson
et al. 2012). By Proposition 6, none of the relaxed scenarios containing S′ explain the
LDT graph (G, σ ).

Definition 13 Let S = (T , S, σ, μ, τT , τS) be a relaxed scenario explaining the LDT
graph (G, σ ). The planted tree T is least resolved for (G, σ ) if no relaxed scenario
(T ′, S′, σ ′, μ′, τ ′

T , τ ′
S) with T ′ < T explains (G, σ ).

In other words, T is least resolved for (G, σ ) if no relaxed scenario with a gene tree
T ′ obtained from T by a series of edge contractions explains (G, σ ).

The examples in Fig. 3 show that LDT graphs are in general not accompanied
by unique least resolved trees. In the top row, relaxed scenarios with different least
resolved gene trees T and the same least resolved species tree S explain the LDT
graph (G, σ ). In the example below, two distinct least resolved species trees exist for
a given least-resolved gene tree.

123



10 Page 16 of 73 D. Schaller et al.

A B C D

Fig. 4 Example of an LDT graph (G, σ ) in B that is explained by the relaxed scenario shown in A. Here,
(G, σ ) cannot be explained by a relaxed scenario S = (T , S, σ, μ, τT , τS) such that T is the unique
discriminating cotree (shown in C) for the cograph G, see D and the text for further explanations

The example in Fig. 4 shows, furthermore, that the unique discriminating cotree
TG of an LDT graph (G, σ ) is not always “sufficiently resolved”. To see this,
assume that the graph (G, σ ) in the example can be explained by a relaxed sce-
nario S = (T , S, σ, μ, τT , τS) such that T = TG . First consider the connected
component consisting of a, b, c, d. Since lcaT (a, b) �T lcaT (c, d), ab ∈ E(G) and
cd /∈ E(G), we have τS(lcaS(σ (a), σ (b))) > τT (lcaT (a, b)) > τT (lcaT (c, d)) ≥
τS(lcaS(σ (c), σ (d))). By similar arguments, the second connected component implies
τS(lcaS(σ (c), σ (d))) > τS(lcaS(σ (a), σ (b))); a contradiction. These examples
emphasize that LDT graphs constrain the relaxed scenarios, but are far from deter-
mining them.

5 Horizontal gene transfer and fitch graphs

5.1 HGT-labeled trees and rs-Fitch graphs

As alluded to in the introduction, the LDT graphs are intimately relatedwith horizontal
gene transfer. To formalize this connection we first define transfer edges. These will
then be used to encode Walter Fitch’s concept of xenologous gene pairs (Fitch 2000;
Darby et al. 2017) as a binary relation, and thus, the edge set of a graph.

Definition 14 Let S = (T , S, σ, μ, τT , τS) be a relaxed scenario. An edge (u, v) in T
is a transfer edge if μ(u) and μ(v) are incomparable in S. The HGT-labeling of T in
S is the edge labeling λS : E(T ) → {0, 1} with λ(e) = 1 if and only if e is a transfer
edge.

The vertex u in T thus corresponds to an HGT event, with v denoting the subsequent
event, which now takes place in the “recipient” branch of the species tree. Note that
λS is completely determined by S. In general, for a given a gene tree T , HGT events
correspond to a labeling or coloring of the edges of T .

Definition 15 (Fitch graph) Let (T , λ) be a tree T together with a map λ : E(T ) →
{0, 1}. The Fitch graph �(T , λ) = (V , E) has vertex set V := L(T ) and edge set

E := {xy | x, y ∈ L, the unique path connecting x and y in T

contains an edge e with λ(e) = 1.}
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A B C D

Fig. 5 A The relaxed scenario S = (T , S, σ, μ, τT , τS) as already shown in Fig. 1. B A 0/1-edge-labeled
tree (T , λ) satisfying λ = λS.C The corresponding Fitch graph �(T , λ) drawn in a layout that emphasizes
the property that �(T , λ) is a complete multipartite graph. Independent sets are circled. D An alternative
layout as in Fig. 1 (top row) that emphasizes the relationship G<(S) ⊆ �(S) = �(T , λ) (cf. Theorem 4
below). Edges that are not present in G<(S) are drawn as dashed lines

By definition, Fitch graphs of 0/1-edge-labeled trees are loopless and undirected. We
call edges e of (T , λ) with label λ(e) = 1 also 1-edges and, otherwise, 0-edges.

Remark 2 Fitch graphs as defined here have been termed undirected Fitch graphs
(Hellmuth et al. 2018), in contrast to the notion of the directed Fitch graphs of 0/1-
edge-labeled trees studied e.g. inGeiß et al. (2018) andHellmuth and Seemann (2019).

Proposition 5 (Hellmuth et al. 2018; Zverovich 1999) The following statements are
equivalent.

1. G is the Fitch graph of a 0/1-edge-labeled tree.
2. G is a complete multipartite graph.
3. G does not contain K2 + K1 as an induced subgraph.

Definition 16 (rs-Fitch graph) Let S = (T , S, σ, μ, τT , τS) be a relaxed scenario with
HGT-labeling λS. We call the vertex colored graph (�(S), σ ) := (�(T , λS), σ ) the
Fitch graph of the scenario S.
A vertex colored graph (G, σ ) is a relaxed scenario Fitch graph (rs-Fitch graph) if
there is a relaxed scenario S = (T , S, σ, μ, τT , τS) such that G = �(S).

Figure 5 shows that rs-Fitch graphs are not necessarily properly colored. A subtle
difficulty arises from the fact that Fitch graphs of 0/1-edge-labeled trees are defined
without a reference to the vertex coloring σ , while the rs-Fitch graph is vertex colored.
This together with Proposition 5 implies

Observation 1 If (G, σ ) is an rs-Fitch graph then G is a complete multipartite graph.

The “converse” of Observation 1 is not true in general, as we shall see in Theorem 6
below. If, however, the coloring σ can be chosen arbitrarily, then every complete mul-
tipartite graphG can be turned into an rs-Fitch graph (G, σ ) as shown in Proposition 6.

Proposition 6 If G is a complete multipartite graph, then there exists a relaxed sce-
nario S = (T , S, σ, μ, τT , τS) such that (G, σ ) is an rs-Fitch graph.

Although every complete multipartite graph can be colored in such a way that it
becomes an rs-Fitch graph (cf. Proposition 6), there are colored, complete multipartite
graphs (G, σ ) that are not rs-Fitch graphs, i.e., that do not derive from a relaxed
scenario (cf. Theorem 6). We summarize this discussion in the following
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Fig. 6 0/1-edge-labeled tree (T , λ) for which no relaxed scenario exists such that (T , λ) = (T , λS) (see
Example 1). Red edges indicates 1-labeled edges. Nevertheless for� := �(T , λ) there is an alternative tree
(T ′, λ′) for which a relaxed scenario S = (T ′, S, σ, μ, τT , τS) exists (right) such that � = �(T ′, λ′) =
�(S)

Observation 2 There are (planted) 0/1-edge labeled trees (T , λ) and colorings
σ : L(T ) → M such that there is no relaxed scenario S = (T , S, σ, μ, τT , τS) with
λ = λS.

A subtle—but important—observation is that trees (T , λ) with coloring σ for which
Observation 2 applies may still encode an rs-Fitch graph (�(T , λ), σ ), see Example 1
and Fig. 6. The latter is due to the fact that �(T , λ) = �(T ′, λ′) may be possible for a
different tree (T ′, λ′) for which there is a relaxed scenario S′ = (T ′, S, σ, μ, τT , τS)

with λ′ = λS. In this case, (�(T , λ), σ ) = (�(S′), σ ) is an rs-Fitch graph. We shall
briefly return to these issues in the discussion Sect. 8.

Example 1 Consider the planted edge-labeled tree (T , λ) shown in Fig. 6 with leaf
set L = {a, b, b′, c, d}, together with a coloring σ where σ(b) = σ(b′) and
σ(a), σ (b), σ (c), σ (d) are pairwise distinct.
Assume, for contradiction, that there is a relaxed scenario S = (T , S, σ, μ, τT , τS)

with (T , λ) = (T , λS). Hence, μ(v) and μ(b) = σ(b) as well as μ(u) and μ(b′) =
σ(b) must be comparable in S. Therefore, μ(u) and μ(v) must both be comparable to
σ(b) and thus, they are located on the path from ρS to σ(b). But this implies that μ(u)

andμ(v) are comparable in S; a contradiction, since thenλS(u, v) = 0 �= λ(u, v) = 1.

5.2 LDT graphs and rs-Fitch graphs

We proceed to investigate to what extent an LDT graph provides information about
an rs-Fitch graph. As we shall see in Theorem 5 there is indeed a close connection
between rs-Fitch graphs and LDT graphs. We start with a useful relation between the
edges of rs-Fitch graphs and the reconciliation maps μ of their scenarios.

Lemma 13 Let �(S) be an rs-Fitch graph for some relaxed scenario S. Then, ab /∈
E(�(S)) implies that lcaS(σ (a), σ (b)) 	S μ(lcaT (a, b)).

The next result shows that a subset of transfer edges can be inferred immediately
from LDT graphs:

Theorem 4 If (G, σ ) is an LDT graph, then G ⊆ �(S) for all relaxed scenarios S
that explain (G, σ ).
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Fig. 7 Two relaxed scenarios S1 and S2 with the same rs-Fitch graph � = �(S1) = �(S2) (right) and
different LDT graphs G<(S1) �= � and G<(S2) = �

Since we only have that xy is an edge in �(S) if the path connecting x and y in the
tree T of S contains a transfer edge, Theorem 4 immediately implies

Corollary 6 For every relaxed scenario S = (T , S, σ, μ, τT , τS) without transfer
edges, it holds that E(G<(S)) = ∅.

Theorem 4 provides the formal justification for indirect phylogenetic approaches
to HGT inference that are based on the work of Lawrence and Hartl (1992), Clarke
et al. (2002), and Novichkov et al. (2004) by showing that (x, y) ∈ E(G<(S)) can be
explained only byHGT, irrespective of how complex the true biological scenariomight
have been. However, it does not cover all HGT events. Figure 7 shows that there are
relaxed scenarios S for which G<(S) �= �(S) even though �(S) is properly colored.
Moreover, it is possible that an rs-Fitch graph (G, σ ) contains edges xy ∈ E(G) with
σ(x) = σ(y). In particular, therefore, an rs-Fitch graph is not always an LDT graph.

It is natural, therefore, to ask whether for every properly colored Fitch graph there
is a relaxed scenario S such that G<(S) = �(S). An affirmative answer is provided
by

Theorem 5 The following statements are equivalent.

1. (G, σ ) is a properly colored complete multipartite graph.
2. There is a relaxed scenario S = (T , S, σ, μ, τT , τS) with coloring σ such that

G = G<(S) = �(S).
3. (G, σ ) is complete multipartite and an LDT graph.
4. (G, σ ) is properly colored and an rs-Fitch graph.

In particular, for every properly colored complete multipartite graph (G, σ ) the triple
set S(G, σ ) is compatible.

relaxed scenarios forwhich (�(S), σ ) is properly coloreddonot admit twomembers
of the same gene family that are separated by a HGT event. While restrictive, such
models are not altogether unrealistic. Proper coloring of (�(S), σ ) is, in particular,
the case if every horizontal transfer is replacing, i.e., if the original copy is effectively
overwritten by homologous recombination (Thomas andNielsen 2005), see also (Choi
et al. 2012) for a detailed case study in Streptococcus. As a consequence of Theorem 5,
LDT graphs are sufficient to describe replacing HGT. However, the incidence rate of
replacing HGT decreases exponentially with phylogenetic distance between source
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and target (Williams et al. 2012), and additive HGT becomes the dominant mechanism
between phylogenetically distant organisms. Still, replacing HGTs may also be the
result of additive HGT followed by a loss of the (functionally redundant) vertically
inherited gene.

5.3 rs-Fitch graphs with general colorings

In scenarios with additive HGT, the rs-Fitch graph is no longer properly colored and
no-longer coincides with the LDT graph. Since not every vertex-colored complete
multipartite graph (G, σ ) is an rs-Fitch graph (cf. Theorem 6), we ask whether an LDT
(G, σ ) that is not itself already an rs-Fitch graph imposes constraints on the rs-Fitch
graphs (�(S), σ ) that derive from relaxed scenarios S that explain (G, σ ). As a first
step towards this goal, we aim to characterize rs-Fitch graphs, i.e., to understand the
conditions imposed by the existence of an underlying scenario S on the compatibility
of the collection of independent setsI ofG and the coloring σ . As we shall see, these
conditions can be explained in terms of an auxiliary graph that we introduce in a very
general setting:

Definition 17 Let L be a set, σ : L → M a map andI = {I1, . . . , Ik} a set of subsets
of L . Then the graph A�(σ,I ) has vertex set M and edges xy if and only if x �= y
and x, y ∈ σ(I ′) for some I ′ ∈ I .

By construction A�(σ,I ′) is a subgraph of A�(σ,I ) whenever I ′ ⊆ I . An
extended version of Definition 17 that contains also an edge-labeling of A�(σ,I )

can be found in the Technical Part—this technical detail is not needed here. As it turns
out, rs-Fitch graphs are characterized by the structure of their auxiliary graphs A� as
shown in the next

Theorem 6 Agraph (G, σ ) is an rs-Fitch graph if and only if (i) it is completemultipar-
tite with independent setsI = {I1, . . . , Ik}, and (ii) if k > 1, there is an independent
set I ′ ∈ I such that A�(σ,I \{I ′}) is disconnected.

As a consequence of Theorem 6, we obtain

Corollary 9 rs-Fitch graphs can be recognized in polynomial time.

As for LDT graphs, the property of being an rs-Fitch graph is hereditary.

Corollary 14 If (G = (L, E), σ ) is an rs-Fitch graph, then the colored vertex induced
subgaph (G[W ], σ|W ) is an rs-Fitch graph for all non-empty subsets W ⊆ L.

Note, however, that Corollary 14 is not satisfied if we restrict the codomain of σ

to the observable part of colors, i.e., if we consider σ|W ,σ (W ) : W → σ(W ) instead of
σ|W : W → M , even if σ is surjective. To see this consider the vertex colored graph
(G, σ )with V (G) = {a, a′, b}, E(G) = {aa′, ab, a′b} and σ : V (G) → M = {A, B}
where σ(a) = σ(a′) = A �= σ(b) = B. A possible relaxed scenario S for (G, σ )

is shown in Fig. 8A. The deletion of b yields W = V (G)\{b} = {a, a′} and the
graph (G[W ], σ|W ) for which S′ with HGT-labeling λS′ as in Fig. 8B is a relaxed
scenario that satisfies G[W ] = �(T , λS′). However, if we restrict the codomain of
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A B C

Fig. 8 Shown are three distinct relaxed scenarios S, S′ and S′′ with corresponding rs-Fitch graphs. Here
σ ′ = σ|{a,a′} and σ ′′ = σ|{a,a′},{A} (cf. Definition 1). Putting (G, σ ) = (�(S), σ ), one can observe that
(G[{a, a′}], σ ′) = (�(S′), σ ′) is an rs-Fitch graph. In contrast, σ ′′ is restricted to the “observable” part of
species (consisting of A alone), and (G[{a, a′}], σ ′′) is not an rs-Fitch graph, see text for further details

σ to obtain σ|W ,{A} : {a, a′} → σ(W ) = {A}, then there is no relaxed scenario S for
which G[W ] = �(T , λS), since there is only a single species tree S on L(S) = {A}
(Fig. 8C) that consists of the single edge (0T , A) and thus, μ(v) and μ(a) as well as
μ(v) and μ(a′) must be comparable in this scenario.

5.4 Least resolved trees for Fitch graphs

It is important to note that the characterization of rs-Fitch graphs in Theorem 6 does
not provide us with a characterization of rs-Fitch graphs that share a common relaxed
scenario with a given LDT graph. As a potential avenue to address this problem we
investigate the structure of least-resolved trees for Fitch graphs as possible source of
additional constraints.

Definition 18 The edge-labeled tree (T , λ) is Fitch-least-resolved w.r.t. �(T , λ), if
for all trees T ′ �= T that are displayed by T and every labeling λ′ of T ′ it holds that
�(T , λ) �= �(T ′, λ′).

As shown in the Technical Part (Theorem 7), Fitch-least-resolved trees can be char-
acterized in terms of their edge-labeling, a result that is very similar to the results for
“directed” Fitch graphs of 0/1-edge-labeled trees in Geiß et al. (2018). As a con-
sequence of this characterization, Fitch-least-resolved trees can be constructed in
polynomial time. However, Fitch-least-resolved trees are far from being unique. In
particular, Fitch-least-resolved trees are only of very limited use for the construction
of relaxed scenarios S = (T , S, σ, μ, τT , τS) from an underlying Fitch graph. In fact,
even though (G, σ ) is an rs-Fitch graph, Example 3 in the Technical Part shows that it is
possible that there is no relaxed scenario S = (T , S, σ, μ, τT , τS) with HGT-labeling
λS such that (T , λ) = (T , λS) for any of its Fitch-least-resolved trees (T , λ).
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6 Editing problems

6.1 Editing colored graphs to LDT graphs and Fitch graphs

Empirical estimates of LDT graphs from sequence data are expected to suffer from
noise and hence to violate the conditions of Theorem 3. It is of interest, therefore, to
consider the problem of correcting an empirical estimate (G, σ ) to the closest LDT
graph. We therefore briefly investigate the usual three edge modification problems for
graphs: completion only considers the insertion of edges, for deletion edges may only
be removed, while solutions to the editing problem allow both insertions and deletions,
see e.g. Burzyn et al. (2006).

Problem 1 (LDT- Graph- Modification (LDT- M))

Input: A colored graph (G = (V , E), σ ) and an integer k.
Question: Is there a subset F ⊆ E such that |F | ≤ k and (G ′ = (V , E�F), σ ) is an

LDT graph where � ∈ {\,∪,Δ}?
We write LDT- E, LDT- C, LDT- D for the editing, completion, and deletion ver-

sion of LDT- M. By virtue of Theorem 3, the LDT- M is closely related to the problem
of finding a compatible subset R ⊆ S(GR, σ ) with maximum cardinality. The cor-
responding decision problem,MaxRTC, is known to be NP-complete (Jansson 2001,
Thm. 1). In the technical part we prove

Theorem 9 LDT- M is NP-complete.

Even through at present it remains unclear whether rs-Fitch graphs can be estimated
directly, the corresponding graph modification problems are at least of theoretical
interest.

Problem 2 (rs- Fitch Graph- Modification (rsF- M))

Input: A colored graph (G = (V , E), σ ) and an integer k.
Question: Is there a subset F ⊆ E such that |F | ≤ k and (G ′ = (V , E�F), σ ) is an

rs-Fitch graph where � ∈ {\,∪,Δ}?
As above, wewrite rsF- E, rsF- C, rsF- D for the editing, completion, and deletion

version of rsF- M. Since rs-Fitch graphs are complete multipartite, their complements
are disjoint unions of complete graphs. The problems rsF- M are thus closely related
the cluster graph modification problems. Both Cluster Deletion and Cluster

Editing are NP-complete, while Cluster Completion is polynomial (by com-
pleting each connected component to a clique, i.e., computing the transitive closure)
(Shamir et al. 2004). We obtain

Theorem 10 rsF- C and rsF- E are NP-complete.

rsF- D remains open since the complement of the transitive closure of the complement
of a colored graph (G, σ ) is not necessarily an rs-Fitch graph. This is in particular the
case if (G, σ ) is complete multipartite but not an rs-Fitch graph.
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Fig. 9 Two relaxed scenarios with T displaying the triple a′b|a and explaining the same graph (G, σ )

6.2 Editing LDT graphs to Fitch graphs

Putative LDT graphs (G, σ ) can be estimated directly from sequence (dis)similarity
data. The most direct approach was introduced by Novichkov et al. (2004), where,
for (reciprocally) most similar genes x and y from two distinct species σ(x) = A
and σ(x) = B, dissimilarities δ(x, y) between genes and dissimilarities Δ(A, B)

of the underlying species are compared under the assumption of a (gene fam-
ily specific) clock-rate r , i.e., the expectation that orthologous gene pairs satisfy
δ(x, y) ≈ rΔ(A, B). In this setting, xy ∈ E(G) if δ(x, y) < rΔ(A, B) at some
level of statistical significance. The rate assumption can be relaxed to consider rank-
order statistics. For fixed x , differences in the orders of δ(x, y) and Δ(σ(x), σ (y))
assessed by rank-order correlation measures have been used to identify x as HGT can-
didate e.g. Lawrence and Hartl (1992); Clarke et al. (2002). An interesting variation
on the theme is described by Sevillya et al. (2020), who use relative synteny rather
than sequence similarity for the same purpose. A more detailed account on estimating
(G, σ ) will be given elsewhere.

In contrast, it seems much more difficult to infer a Fitch graph (�, σ ) directly from
data. To our knowledge, nomethod for this purpose has been proposed in the literature.
However, (�, σ ) is of much more direct practical interest because the independent
sets of � determine the maximal HGT-free subsets of genes, which could be analyzed
separately by better-understood techniques. In this section, we therefore focus on the
aspects of (�, σ ) that are not captured by LDT graphs (G, σ ). In the light of the
previous section, these are in particular non-replacing HGTs, i.e., HGTs that result
in genes x and y in the same species σ(x) = σ(y). In this case, (�, σ ) is no longer
properly colored and thus G �= �. To get a better intuition on this case consider three
genes a, a′, and b with σ(a) = σ(a′) �= σ(b) with ab /∈ E(G) and a′b ∈ E(G). By
Lemma 7, the gene tree T of any explaining relaxed scenario displays the triple a′b|a.
Fig. 9 shows two relaxed scenarios with a single HGT that explain this situation: In
the first, we have aa′ ∈ E(�), while the other implies aa′ /∈ E(�). Neither scenario
is a priori less plausible than the other. Although the frequency of true homologous
replacement via crossover decreases exponentially with the phylogenetic distance of
donor and acceptor species (Williams et al. 2012), additive HGT with subsequent loss
of one copy is an entirely plausible scenario.

A pragmatic approach to approximate (�, σ ) is therefore to consider the step from
an LDT graph (G, σ ) to (�, σ ) as a graph modification problem. First we note that
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Algorithm 1 explicitly produces a relaxed scenario S and thus implies a corresponding
gene tree TS with HGT-labeling λS, and thus an rs-Fitch graph (�(S), σ ). However,
Algorithm 1 was designed primarily as proof device. It produces neither a unique
relaxed scenario nor necessarily the most plausible or a most parsimonious one.
Furthermore, both the LDT graph (G, σ ) and the desired rs-Fitch graph (�, σ ) are
consistent with a potentially very large number of scenarios. It thus appears preferable
to altogether avoid the explicit construction of scenarios at this stage.

Since everyLDTgraph (G, σ ) is explained by someS, it is also a spanning subgraph
of the corresponding rs-Fitch graph (�(S), σ ). The step from an LDT graph (G, σ )

to an rs-Fitch graph (�, σ ) can therefore be viewed as an edge-completion problem.
The simplest variation of the problem is

Problem 3 (Fitch graph completion) Given an LDT graph (G, σ ), find a minimum
cardinality set Q of possible edges such that ((V (G), E(G) ∪ Q), σ ) is a complete
multipartite graph.

A close inspection of Problem 3 shows that the coloring is irrelevant in this version,
and the actual problem to be solved is the problem Complete Multipartite Graph

Completionwith a cograph as input. We next show that this task can be performed in
linear time. The key idea is to consider the complementary problem, i.e., the problem
of deleting a minimum set of edges from the complementary cograph G such that the
end result is a disjoint union of complete graphs. This is known asCluster Deletion

problem (Shamir et al. 2004), and is known to have a greedy solution for cographs
(Gao et al. 2013).

Lemma 18 There is a linear-time algorithm to solve Problem 3 for every cograph G.

All maximum clique partitions of a cograph G have the same sequence of cluster sizes
(Gao et al. 2013, Thm. 1). However, they are not unique as partitions of the vertex
set V (G). Thus the minimal editing set Q that needs to be inserted into a cograph to
reach a complete multipartite graphs will not be unique in general. In the Technical
Part, we briefly sketch a recursive algorithm operating on the cotree of G.

However, an optimal solution to Problem 3 with input (G, σ ) does not necessarily
yield an rs-Fitch graph or an rs-Fitch graph (�(S), σ ) such that G = G<(S), see
Fig. 10. In particular, there are LDT graphs (G, σ ) for which more edges need to be
added to obtain an rs-Fitch graph than the minimum required to obtain a complete
multipartite graph, see Fig. 11.

A more relevant problems for our purposes, therefore is

Problem 4 (rs-Fitch graph completion) Given an LDT graph (G, σ ) find a minimum
cardinality set Q of possible edges such that ((V (G), E(G) ∪ Q), σ ) is an rs-Fitch
graph.

The following, stronger version is what we ideally would like to solve:

Problem 5 (strong rs-Fitch graph completion) Given an LDT graph (G, σ ) find a
minimum cardinality set Q of possible edges such that � = ((V (G), E(G) ∪ Q), σ )

is an rs-Fitch graph and there is a common relaxed scenario S, that is, S satisfies
G = G<(S) and � = �(S).
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Fig. 10 Upper panel: A relaxed scenario Swith LDT graph (G<(S), σ ) and rs-Fitch graph (�(S), σ ). There
are two minimum edge completion sets that yield the complete multipartite graphs (�1, σ ) and (�2, σ )

(lower part). By Theorem 6, (�2, σ ) is not an rs-Fitch graph. The graph (�1, σ ) is an rs-Fitch graph for
the relaxed scenario S′. However, G<(S) �= G<(S′) for all scenarios S′ with (�(S′), σ ) = (�1, σ ). To see
this, note that the gene tree T = ((a, b), (a′, b′)) in S is uniquely determined by application of Lemma 5
and 7. Assume that there is any edge-labeling λ such that �(T , λ) = �1. The none-edges in �1 imply that
along the two paths from a to a′ and b to b′ there is no transfer edge, that is, there cannot be any transfer
edge in T ; a contradiction

Fig. 11 The LDT graph (G<(S), σ ) for the relaxed scenario S has a unique minimum edge completion
set (as determined by full enumeration), resulting in the complete multipartite graph (�1, σ ). However,
Theorem 6 implies that (�1, σ ) is not rs-Fitch graph. An edge completion set with more edges must be
used to obtain an rs-Fitch graph, for instance (�2, σ ), which is explained by the scenario S′

The computational complexity of Problems 4 and 5 is unknown. We conjecture,
however, that both are NP-hard. In contrast to the application of graph modification
problems to correct possible errors in the originally estimated data, the minimization
of inserted edges into an LDT graph lacks a direct biological interpretation. Instead,
most-parsimonious solutions in terms of evolutionary events are usually of interest in
biology. In our framework, this translates to

Problem 6 (Min transfer completion) Let (G, σ ) be an LDT graph and S be the set
of all relaxed scenarios S with G = G<(S). Find a relaxed scenario S′ ∈ S that has
a minimal number of transfer edges among all elements in S and the corresponding
rs-Fitch graph �(S′).
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One way to address this problem might be as follows: Find edge-completion sets
for the given LDT graph (G, σ ) that minimize the number of independent sets in
the resulting rs-Fitch graph � = ((V (G), E(G) ∪ Q), σ ). The intuition behind this
idea is that, in this case, the number of pairs within the individual independent sets
is maximized and thus, we get a maximized set of gene pairs without transfer along
their connecting path in the gene tree. It remains an open question whether this idea
always yields a solution for Problem 6.

7 Simulation results

Evolutionary scenarios covering a wide range of HGT frequencies were generated
with the simulation library AsymmeTree (Stadler et al. 2020). The tool generates
a planted species tree S with time map τS . A constant-rate birth-death process then
generates a gene tree (T̃ , τ̃T ) with additional branching events producing copies at
inner vertex u of S propagating to each descendant lineage of u. Tomodel HGT events,
a recipient branch of S is selected at random. The simulation is event-based in the sense
that each node of the “true” gene tree other than the planted root is one of speciation,
gene duplication, horizontal gene transfer, gene loss, or a surviving gene. Here, the
lost as well as the surviving genes form the leaf set of T̃ .

We used the following parameter settings for AsymmeTree: Planted species trees
with a number of leaves between 10 and 50 (randomly drawn in each scenario)
were generated using the Innovation Model (Keller-Schmidt and Klemm 2012) and
equipped with a time map as described in Stadler et al. (2020). Multifurcations were
introduced into the species tree by contraction of inner edges with a common proba-
bility p = 0.2 per edge to simulate. Gene trees therefore are also not binary in general.
We usedmultifurcations tomodel the effects of limited phylogenetic resolution. Dupli-
cation and HGT events, however, always result in bifurcations in the gene tree T̃ . We
considered different combinations of duplication, loss, and HGT event rates (indicated
on the horizontal axis in Figs. 12, 13 and 14). For each combination of event rates,
we simulated 1000 scenarios per event rate combination. Figure 12 summarizes basic
statistics of the simulated data sets.

The simulation also determines the set of surviving genes L ⊆ L(T̃ ), the reconcil-
iation map μ̃ : V (T̃ ) → V (S) ∪ E(S) and the coloring σ : L → L(S) representing
the species in which each surviving gene resides. From the true tree T̃ , the observable
gene tree T = T̃|L is obtained by recursively removing leaves that correspond to loss
events, i.e. L(T̃ )\L , and suppressing inner vertices with a single child and setting
τT (x) = τ̃T (x) and μ(x) = μ̃(x) for all x ∈ V (T ). This defines a relaxed scenario
S = (T , S, σ, μ, τT , τS). From the scenario S, we can immediately determine the
associated HGT map λS, the Fitch graph �(S), and the LDT graph G<(S). We also
consider S̃ = (T̃ , S, σ, μ̃, τ̃T , τS) which, from a formal point of view, is not a relaxed
scenario, see Fig. 13. In this example, the gene-species association σ : L → L(S)

is not a map for the entire leaf set L(T̃ ). Still, we can define the true LDT graph
G< (̃S) and the true Fitch graph �(̃S) of S̃ in the same way as LDT graphs using
Definitions 8, 9, and 16, respectively. Note that this does not guarantee that every true
Fitch graph is also an rs-Fitch graph. The example in Fig. 13 shows, furthermore,
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Fig. 12 Top panel: Distribution of the numbers of species (i.e. species tree leaves), species thereof that
contain at least one surviving genes, surviving genes in total (non-loss leaves in the gene trees), loss events
(loss leaves), and horizontal transfer events (inner vertices that are HGT events). Bottom panel: Mean and
standard deviation of these quantities. The numbers in the legend indicate the mean and standard deviation
taken over all event rate combinations. The tuples on the horizontal axis give the rates for duplication, loss,
and horizontal transfer

Fig. 13 Left: Fraction of “visible” transfer edges among the “true” transfer edges in T in the simulated
scenarios, i.e., the edges that correspond to a path in T̃ containing at least one transfer edge w.r.t. S̃ (see
also the explanation in the text). The tuples on the horizontal axis give the rates for duplication, loss, and
horizontal transfer. Since E := E(�(S)) ⊆ Ẽ := E(�(̃S)[L(T )]), we also show the ratio |E |/|Ẽ |. Right:
A relaxed scenario S = (T , S, σ, μ, τT , τS) with an “invisible” transfer edge (u, a′) (as determined by the
knowledge of S̃ = (T̃ , S, σ, μ̃, τ̃T , τS)). In this example we have �(̃S)[L(T ) = {a, a′}] �= �(S)

that �(̃S)[L] �= �(S) is possible. For the LDT graphs, on the other hand, we have
G<(S) = G< (̃S) because S̃ and S are based on the same time maps.

The distinction between the true graph �(̃S)[L] and the rs-Fitch graph �(S) is
closely related to the definition of transfer edges. So far, we only took into account
transfer edges (u, v) in the (observable) gene trees T , for which u and v are mapped
to incomparable vertices or edges of the species trees S (cf. Definition 14). Thus,
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given the knowledge of the relaxed scenario S = (T , S, σ, μ, τT , τS), these transfer
edges are in that sense “visible”. However, given S̃ = (T̃ , S, σ, μ̃, τ̃T , τS), which still
contains all loss branches, it is possible that a non-transfer edge in T corresponds to a
path in T̃ which contains a transfer edge w.r.t. S̃, i.e., some edge (u, v) ∈ E(T̃ ) such
that μ̃(u) and μ̃(v) are incomparable in S. In particular, this is the casewhenever a gene
is transferred into some recipient branch followed by a back-transfer into the original
branch and a loss in the recipient branch (see Fig. 13, right). Figure 13 shows that,
in the majority of the simulated scenarios, the HGT information is preserved in the
observable data. In fact, �(S) = �(̃S) in 86.7% of simulated scenarios. Occasionally,
however, we also encounter scenarios in which large fractions of the xenologous pairs
are hidden from inference by the LDT-based approach.

In the following, we will only be concerned with estimating a Fitch graph �(S),
i.e., the graph resulting from the “visible” transfer edges. These were edgeless in about
17.7% of the observable scenarios S (all parameter combinations taken into account).
In these cases the LDT and thus also the inferred Fitch graphs are edgeless. These
scenarios were excluded from further analysis.

We first ask how well the LDT graph G<(S) approximates the Fitch graph �(S).
As shown in Fig. 14, the recall is limited. Over a broad range of parameters, the LDT
graph contains about a third of the xenologous pairs. This begs the question whether
the solution of the editing Problem 3, obtained using the exact recursive algorithm
detailed in Sect. C in the Technical Part, leads to a substantial improvement. We find
that recall indeed increases substantially, at verymoderate levels of false positives. The
editing approach achieves a median precision of well above 90% in most cases and a
median recall of at least 60%, it provides results that are at the very least encouraging.
We find that minimal edge completion (Problem 3) already yields an rs-Fitch graph
in the vast majority of cases (99.8%, scenarios of all parameter combinations taken
into account), even if we restrict the color set to M ′ := σ(L) (instead of L(S)) and
thus force surjectivity of the coloring σ . We note that the original LDT graph and the
minimal edge completion may not always be explained by a common scenario. This
suggests that it will be worthwhile to consider the more difficult editing problems for
rs-Fitch graphs with a relaxed scenario S that at the same time explains the LDT graph.

Algorithm 1 provides a means to obtain an rs-Fitch graph satisfying the latter con-
straint but without giving any guarantees for optimality in terms of a minimal edge
completion.An implementation is available in the current release of theAsymmeTree
package. For the rs-Fitch graphs �(S′) of the scenarios S′ constructed by Algorithm 1
with (G<(S), σ ) as input, we observe another moderate increase of recall when com-
pared with the minimal edge completion results. This comes, however, at the expense
of a loss in precision. This is not surprising, since �(S′) by construction contains at
least as many edges as any minimal edge completion ofG<(S). Therefore, the number
of both true positive and false positive edges in �(S′) can be expected to be higher,
resulting in a higher recall and lower precision, respectively.

The recall is given by T P/(T P + FN ), and |E(�(S))| = T P + FN in terms of
true positives T P and false negatives FN . Moreover,G<(S) is a subgraph of the Fitch
graphs �m.e.c. and �(S′) inferred with editing or with Algorithm 1, respectively. The
ratio |E(�(S))∩E(�∗)|/|E(�(S)∩E(G<(S)))|with�

∗ ∈ {�m.e.c., �(S′)} therefore
directly measures the increase in the number of correctly predicted xenologous pairs
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Fig. 14 Xenologs inferred from LDT graphs. Only observable scenarios S whose LDT graph (G<(S), σ )

contains at least one edge are included (82.3% of all scenarios). The tuples on the horizontal axis give the
rates for duplication, loss, and horizontal transfer. Top panel: Recall. Fraction of edges in �(S) represented
in G<(S) (light blue). As an alternative, the fraction of edges in a “minimum edge completion” (m.e.c.) to
the “closest” complete multipartite graph is shown in dark blue. We observe a substantial increase in the
fraction of inferred edges. The Fitch graph �(S′) obtained from the scenario S′ produced by Algorithm 1
with input (G<(S), σ ) yields an even better recall (light green). Second panel: Increase in the number of
correctly inferred edges relative to the LDT graphG<(S). Third panel: Precision. In contrast to LDT graphs,
which by Theorem 4 cannot contain false positive edges, this is not the case for the estimated Fitch graphs
obtained as m.e.c. and by Algorithm 1. While false positive edges are typically rare, occasionally very poor
estimates are observed. Bottom panel: Accuracy

relative to theLDT. It is equivalent to the ratio of the respective recalls. By construction,
the ratio is always ≥ 1. This is summarized as the second panel in Fig. 14.

8 Discussion and future directions

In this contribution, we have introduced later-divergence-time (LDT) graphs as a
model capturing the subset of horizontal transfer detectable through the pairs of genes
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that have diverged later than their respective species. Within the setting of relaxed sce-
narios, LDT graphs (G, σ ) are exactly the properly colored cographs with a consistent
triple set S(G, σ ). We further showed that LDT graphs describe a sufficient set of
HGT events if and only if they are complete multipartite graphs. This corresponds to
scenarios in which all HGT events are replacing. Otherwise, additional HGT events
exist that separate genes from the same species. To better understand these, we inves-
tigated scenario-derived rs-Fitch graphs and characterized them as those complete
multipartite graphs that satisfy an additional constraint on the coloring (expressed in
terms of an auxiliary graph). Although the information contained in LDT graphs is
not sufficient to unambiguously determine the missing HGT edges, we arrive at an
efficiently solvable graph editing problem from which a “best guess” can be obtained.
To our knowledge, this is the first detailed mathematical investigation into the power
and limitation of an implicit phylogenetic method for HGT inference.

From a data analysis point of view, LDT graphs appear to be an attractive avenue to
infer HGT in practice. While existing methods to estimate them from (dis)similarity
data certainly can be improved, it is possible to use their cograph structure to correct
the initial estimate in the same way as orthology data (Hellmuth et al. 2015). Although
the LDT modification problems are NP-complete (Theorem 9), it does not appear too
difficult to modify efficient cograph editing heuristics (Crespelle 2019; Hellmuth et al.
2020a) to accommodate the additional coloring constraints.

LDT graphs by themselves clearly do no contain sufficient information to com-
pletely determine a relaxed scenario. Additional information, e.g. a best match graph
(Geiß et al. 2019, 2020a) will certainly be required. The most direct practical use of
LDT information is to infer the Fitch graph, whose independent sets correspond to
maximal HGT-free subsets of genes. These subsets can be analyzed separately (Hell-
muth 2017) using recent results to infer gene family histories, including orthology
relations from best match data (Geiß et al. 2020a; Schaller et al. 2021b). The main
remaining unresolved question is whether the resultingHGT-free subtrees can be com-
bined into a complete scenario using only relational information such as best match
data. One way to attack this is to employ the techniques used by Lafond and Hellmuth
(2020) to characterize the conditions under which a fully event-labled gene tree can be
reconciled with unknown species trees. These not only resulted in an polynomial-time
algorithm but also establishes additional constraints on the HGT-free subtrees. An
alternative, albeit mathematically less appealing approach is to adapt classical phy-
logenetic methods to accommodate the HGT-free subtrees as constraints. We suspect
that best match data can supply further, stringent constraints for this task. We will
pursue this avenue elsewhere.

Several alternative routes can be followed to obtain Fitch graphs from LDT graphs.
The most straightforward approach is to elaborate on the editing problems briefly
discussed in Sect. 6. A natural question arising in this context is whether there are
non-LDT edges that are shared by all minimal completion sets Q, and whether these
“obligatory Fitch-edges” can be determined efficiently. A natural alternative is tomod-
ify Algorithm 1 to incorporate some form of cost function to favor the construction of
biologically plausible scenarios. In a very different approach, one might also consider
to use LDT graphs as constraints in probabilistic models to reconstruct scenarios, see
e.g. Sjöstrand et al. (2014) and Khan et al. (2016).
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Although we have obtained characterizations of both LDT graphs and rs-Fitch
graphs, many open questions and avenues for future research remain.
Reconciliation maps The notion of relaxed reconciliation maps used here appears
to be at least as general as alternatives that have been explored in the literature. It
avoids the concurrent definition of event types and thus allows situations that may be
excluded in a more restrictive setting. For example, relaxed scenarios may have two
or more vertically inherited genes x and y in the same species with u := lcaT (x, y)
mapping to a vertex of the species trees. In the usual interpretation, u correspond to a
speciation event (by virtue ofμ(u) ∈ V 0(S)); on the other hand, the descendants x and
y constitute paralogs in most interpretations. Such scenarios are explicitly excluded
e.g. in Stadler et al. (2020). Lemma 3 suggests that relaxed scenarios are sufficiently
flexible to make it possible to replace a scenario S that is “forbidden” in response
to such inconsistent interpretations of events by an “allowed” scenario S′ with the
same σ such that G<(S) = G<(S′). Whether this is indeed true, or whether a more
restrictive definition of reconciliation imposes additional constraints of LDT graphs
will of course need to be checked in each case.

The restriction of aμ-free scenario to a subset L ′ of leaves of T and to a subsetM ′ of
leaves of S is well defined as long as σ(L ′) ⊆ M ′. One can also define a corresponding
restriction of the reconciliation map μ. Most importantly, the deletion of some leaves
of T may leave inner vertices in T with only a single child, which are then suppressed
to recover a phylogenetic tree. This replaces paths in T by single edges and thus
affects the definition of the HGT map λS since a path in T that contains two adjacent
vertices u1, u2 with incomparable images μ(u1) and μ(u2) may be replaced by an
edge with comparable end points in the restricted scenario S′. This means that HGT
events may become invisible, and thus �(S′) is not necessarily an induced subgraph
of �(S), but a subgraph that may lack additional edges. Note that this is in contrast to
the assumptions made in the analysis of (directed) Fitch graphs of 0/1-edge-labeled
graphs (Geiß et al. 2018; Hellmuth and Seemann 2019), where the information on
horizontal transfers is inherited upon restriction of (T , λ).
Observability The latter issue is a special case of the more general problem with
observability of events. Conceptually, we assume that evolution followed a true sce-
nario comprising discrete events (speciations, duplications, horizontal transfer, gene
losses, and possibly other events such as hybridization which are not considered here).
In computer simulations, of course we know this true scenario, as well as all event
types. Gene loss not only renders some leaves invisible but also erases the evidence
of all subtrees without surviving leaves. Removal of these vertices in general results
in a non-phylogenetic gene tree that contains inner vertices with a single child. In the
absence of horizontal transfer, this causes little problems and the unobservable vertices
can be be removed as described in the previous paragraph, see e.g. Hernández-Rosales
et al. (2012). The situation ismore complicatedwithHGT. InNøjgaard et al. (2018), an
HGT-vertex is deemed observable if it has both a horizontally and a vertically inher-
ited descendant. In our present setting, the scenario retains an HGT-edge by virtue
of consecutive vertices in T with incomparable μ-images, irrespective of whether an
HGT-vertex is retained. This type of “vertex-centered” notion of xenology is explored
further in Hellmuth et al. (2017). We suspect that these different points of view can
be unified only when gene losses are represented explicitly or when gene and species

123



10 Page 32 of 73 D. Schaller et al.

tree trees are not required to be phylogenetic (with single-child vertices implicating
losses). Either extension of the theory, however, requires a more systematic under-
standing of which losses need to be represented and what evidence can be acquired to
“observe” them.
Impact of orthology Pragmatically, onewould define two genes x and y to be orthologs
ifμ(lcaT (x, y)) ∈ V 0(S), i.e., if x and y are the product of a speciation event. Lemma3
implies that there is always a scenario without any orthologs that explains a given LDT
graph (G, σ ). In particular, therefore, (G, σ ) makes no implications on orthology.
Conversely, however, orthology information is available and additional information
on HGT might become available. In a situation akin to Fig. 9 (with the ancestral
duplication moved down to the speciation), knowing that a and b are orthologs in
the more restrictive sense that μ(lcaT (a, b)) = lcaS(σ (a), σ (b)) excludes the r.h.s.
scenario and implies that a′ is the horizontally inherited child, and therefore also that
a and a′ are xenologs. This connection of orthology and xenology will be explored
elsewhere.
Other types of implicit phylogenetic information LDT graphs are not the only conceiv-
able type of accessible xenology information. A large class of methods is designed to
assess whether a single gene is a xenolog, i.e., whether there is evidence that it has been
horizontally inserted into the genome of the recipient species. The main subclasses
evaluate nucleotide composition patterns, the phyletic distribution of best-matching
genes, or combination thereof. A recent overview can be found e.g. in Sánchez-Soto
et al. (2020). It remains an open question how this information can be utilized in
conjunction with other types of HGT information, such as LDT graphs. It seems rea-
sonable to expect that it can provide not only additional constraints to infer rs-Fitch
graphs but also provides directional information that may help to infer the directed
Fitch graphs studied by Geiß et al. (2018) and Hellmuth and Seemann (2019)). Com-
plementarily, we may ask whether it is possible to gain direct information on HGT
edges between pairs of genes in the same genome, and if so, what needs to bemeasured
to extract this information efficiently.

We also have to leave open several mathematical questions. Regarding 0/1-edge
labeled trees (T , λ), it would be of interest to know whether there is always a relaxed
scenario S = (T , S, σ, μ, τT , τS) such that (T , λ) = (T , λS) for a suitable choice of
σ . Elaborating on Theorem 5, it would be interesting to characterize the leaf colorings
σ for (T , λ) such that there is a relaxed scenario S with �(T , λ) = �(S).
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Technical part

A Later-divergence-time graphs

A.1 LDT graphs and evolutionary scenarios

In the absence of horizontal gene transfer, the last common ancestor of two species A
and B should mark the latest possible time point at which two genes a and b residing
in σ(a) = A and σ(b) = B, respectively, may have diverged. Situations in which this
constraint is violated are therefore indicative of HGT.

Definition 7 (μ-free scenario) Let T and S be planted trees, σ : L(T ) → L(S) be a
map and τT and τS be time maps of T and S, respectively, such that τT (x) = τS(σ (x))
for all x ∈ L(T ). Then, T = (T , S, σ, τT , τS) is called a μ-free scenario.

The condition that τT (x) = τS(σ (x)) for all x ∈ L(T ) is mostly a technical conve-
nience thatmakesμ-free scenarios easier to interpret.Nevertheless, byLemma1, given
the time map τS , one can easily construct a time map τT such that τT (x) = τS(σ (x))
for all x ∈ L(T ). In particular, when constructing relaxed scenarios explicitly, wemay
simply choose τT (u) = 0 and τS(x) = 0 as common time for all leaves u ∈ L(T ) and
x ∈ L(S).

Definition 8 (LDT graph) For a μ-free scenario T = (T , S, σ, τT , τS), we define
G<(T) = G<(T , S, σ, τT , τS) = (V , E) as the graph with vertex set V := L(T ) and
edge set

E := {ab | a, b ∈ L(T ), τT (lcaT (a, b)) < τS(lcaS(σ (a), σ (b))).}

A vertex-colored graph (G, σ ) is a later-divergence-time graph (LDT graph), if there
is a μ-free scenario T = (T , S, σ, τT , τS) such that G = G<(T). In this case, we say
that T explains (G, σ ).

It is easy to see that the edge set of G<(T) defines an undirected graph and that
there are no edges of the form aa, since τT (lcaT (a, a)) = τT (a) = τS(σ (a)) =
τS(lcaS(σ (a), σ (a))). Hence G<(T) is a simple graph.

By definition, every relaxed scenario S = (T , S, σ, μ, τT , τS) satisfies τT (x) =
τS(σ (x)) all x ∈ L(T ). Therefore, removing μ from S yields a μ-free scenario T =
(T , S, σ, τT , τS). Thus, we will use the following simplified notation.

Definition 9 We put G<(S) := G<(T , S, σ, τT , τS) for a given relaxed scenario S =
(T , S, σ, μ, τT , τS) and the underlying μ-free scenario (T , S, σ, τT , τS) and say, by
slight abuse of notation, that S explains (G<(S), σ ).

Lemma 2 For everyμ-free scenario T = (T , S, σ, τT , τS), there is a relaxed scenario
S = (T , S, σ, μ, τ̃T , τ̃S) for T , S and σ such that (G<(T), σ ) = (G<(S), σ ).
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Proof Let T = (T , S, σ, τT , τS) be a μ-free scenario. In order to construct a relaxed
scenario S = (T , S, σ, μ, τ̃T , τ̃S) that satisfies G<(S) = G<(T), we start with a time
map τ̃T for T satisfying τ̃T (0T ) = max(τT (0T ), τS(0S)) and τ̃T (v) = τT (v) for all
v ∈ V (T )\{0T }. Correspondingly,we introduce a timemap τ̃S for S such that τ̃S(0S) =
max(τT (0T ), τS(0S)) and τ̃S(v) = τS(v) for all v ∈ V (S)\{0S}. By construction, we
have tmax,T := max{τT (v) | v ∈ V (T )} = τT (0T ) = τS(0S). Moreover, we have
tmin,S := min{τS(v) | v ∈ V (S)} ≤ min{τT (v) | v ∈ V (T )} =: tmin,T . To see this,
we can choose x ∈ V (T ) such that τT (v) = tmin,T . By the definition of time maps and
minimality of τT (v), the vertex x must be a leaf. Hence, since T is a μ-free scenario,
we have τT (x) = τS(σ (x)) with X := σ(x) ∈ L(S) ⊂ V (S). Therefore, it must
hold that tmin,S ≤ tmin,T . We now define P := {p ∈ V (S) ∪ E(S) | X 	S p}, i.e.,
the set of all vertices and edges on the unique path in S from 0S to the leaf X . Since
τS(X) = tmin,T < tmax,T = τS(0S), we find, for each v ∈ V (T ), either a vertex u ∈ P
such that τT (v) = τS(u) or an edge (u, w) ∈ P such that τS(w) < τT (v) < τS(u).
Hence, we can specify the reconciliation map μ by defining, for every v ∈ V (T ),

μ(v) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0S if v = 0T ,

σ (v) if v ∈ L(T ),

u if there is some vertex u ∈ P with τT (v) = τS(u),

(u, w) if there is some edge (u, w) ∈ P with τS(w) < τT (v) < τS(u).

For each v ∈ V 0(T ), exactly one of the two alternatives for P applies, hence μ is
well-defined. It is now an easy task to verify that all conditions in Definitions 4 and 5
are satisfied for S = (T , S, σ, μ, τ̃T , τ̃S) by construction. Hence, by Definition 6, S is
a relaxed scenario.

It remains to show that G<(T) = G<(S). Let a, b ∈ L(T ) be arbitrary. Clearly,
neither lcaT (a, b) nor lcaS(σ (a), σ (b)) equals the planted root 0T or 0S , respec-
tively. Since we have only changed the timing of the roots 0T or 0S , we obtain ab ∈
E(G<(S)) if and only if τ̃T (lcaT (a, b)) = τT (lcaT (a, b)) < τ̃S(lcaS(σ (a), σ (b))) =
τS(lcaS(σ (a), σ (b))) if and only if ab ∈ E(G<(T)), which completes the proof. ��

Theorem 1 (G, σ ) is an LDT graph if and only if there is a relaxed scenario S =
(T , S, σ, μ, τT , τS) such that (G, σ ) = (G<(S), σ ).

Proof By definition, (G, σ ) is an LDT graph for every relaxed scenario S with col-
oring σ that satisfies (G, σ ) = (G<(S), σ ). Now suppose that (G, σ ) is an LDT
graph. By definition, there is a μ-free scenario T = (T , S, σ, τT , τS) with color-
ing σ such that (G, σ ) = (G<(T), σ ). By Lemma 2, there is a relaxed scenario
S = (T , S, σ, μ, τ̃T , τ̃S) for T , S and σ such that (G, σ ) = (G<(S), σ ). ��

Remark 3 From here on, we omit the explicit reference to Lemma 2 and Thm 1 and
assume that the reader is aware of the fact that every LDT graph is explained by some
relaxed scenario S and that for every μ-free scenario T = (T , S, σ, τT , τS), there is a
relaxed scenario S for T , S and σ such that (G<(T), σ ) = (G<(S), σ ).
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We now derive some simple properties of μ-free and relaxed scenarios. It may be
surprising at first glance that “the speciation nodes”, i.e., vertices u ∈ V 0(T ) with
μ(u) ∈ V (S) do not play a special role in determining LDT graphs.

Lemma 3 For every relaxed scenario S = (T , S, σ, μ, τT , τS) there exists a relaxed
scenario S̃ = (T , S, σ, μ̃, τ̃T , τS) such that G< (̃S) = G<(S) and for all distinct
x, y ∈ L(T ) with xy /∈ E(G<(S)) holds τ̃T (lcaT (x, y)) > τS(lcaS(σ (x), σ (y))).

Proof For the relaxed scenario S = (T , S, σ, μ, τT , τS) we write V 0(S) :=
V (S)\(L(S) ∪ {0S}) and define

DS := {|τS(y) − τS(x)| : x, y ∈ V (S), τS(x) �= τS(y)},
DT := {|τT (y) − τT (x)| : x, y ∈ V (T ), τT (x) �= τT (y)}, and
DT S := {|τT (x) − τS(y)| : x ∈ V (T ), y ∈ V (S), τT (x) �= τS(y)}.

We have DS �= ∅ and DT �= ∅ since we do not consider empty trees, and thus, at least
the “planted” edges 0SρS and 0T ρT always exist. By construction, all values in DT ,
DS , and DT S are strictly positive. Now define

ε := 1

2
min(DST ∪ DS ∪ DT ).

Since DS and DT are not empty, ε is well-defined and, by construction, ε > 0. Next
we set, for all v ∈ V (T ),

τ̃T (v) :=
{

τT (v) + ε, if v ∈ V 0(T )

τT (v), otherwise,

μ̃(v) :=
{

(par(x), x), if μ(v) = x ∈ V 0(S)

μ(v), otherwise.

Claim 1 S̃ := (T , S, σ, μ̃, τ̃T , τS) is a relaxed scenario.

Proof By construction, if μ(v) ∈ (L(S) ∪ {0S}) and thus, μ(v) /∈ V 0(S), μ(v) and
μ̃(v) coincide. Therefore, (G0) and (G1) are trivially satisfied for μ̃. In order to show
(G2), we first note that τ̃T (v) = τT (v) = τS(σ (v)) holds for all v ∈ L(T ) by
Definition 4.

We next argue that τ̃T is a time map. To this end, let x, y ∈ V (T ) with x ≺T y.
Hence, τT (x) < τT (y) and, in particular, τT (y)− τT (x) ≥ 2ε. Assume for contradic-
tion that τ̃T (x) ≥ τ̃T (y). This implies τ̃T (x) = τT (x) + ε and τ̃T (y) = τT (y),
since τT (x) < τT (y) and ε > 0 always implies τT (x) + ε < τT (y) + ε and
τT (x) < τT (y) + ε. Therefore, τ̃T (y) − τ̃T (x) = τT (y) − (τT (x) + ε) ≥ ε > 0
and thus, τ̃T (y) > τ̃T (x); a contradiction.

Wecontinuewith showing that the two timemaps τ̃T and τS are time-consistentw.r.t.
S̃. To see that Condition (C1) is satisfied, observe that, by construction, μ̃(v) ∈ V (S)

does hold only in case μ(v) /∈ E(S) ∪ V 0(S) and thus, μ(v) ∈ L(S) ∪ {0S}. In this
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case, μ̃(v) = μ(v) and since μ(v) satisfies (G1) we have v ∈ L(T ) ∪ {0T }. Thus,
v /∈ V 0(T ) and, therefore, τ̃T (v) = τT (v) = τS(μ(v)). Therefore, Condition (C1) is
satisfied.

Now consider Condition (C2). As argued above, μ̃(v) ∈ E(S) holds for all v ∈
V 0(T ) = V (T )\(L(T ) ∪ {0T }). By construction, τ̃T (v) = τT (v) + ε. There are two
cases: μ(v) = x ∈ V 0(S), or μ(v) = (y, x) ∈ E(S) with y = par(x). The following
arguments hold for both cases: We have μ̃(v) = (y, x) ∈ E(S). Moreover, τS(x) ≤
τT (v) < τ̃T (v) since τT and τS satisfy (C1) and (C2). Furthermore, τT (v) < τS(y)
and, by construction, τS(y) − τT (v) ≥ 2ε. This immediately implies that τS(y) ≥
τT (v) + 2ε = τ̃T (v) + ε > τ̃T (v). In summary, τS(x) < τ̃T (v) < τS(y) whenever
μ̃(v) = (y, x) ∈ E(S). Therefore, Condition (C2) is satisfied for S̃. �
Claim 2 E(G<(S)) ⊆ E(G< (̃S)).

Proof Let xy be an edge in G<(S) and thus x �= y, and set vT := lcaT (x, y) and
vS := lcaS(σ (x), σ (y)). By definition, we have τT (vT ) < τS(vS). Therefore, we
have τS(vS) − τT (vT ) ∈ DT S and, hence, τS(vS) − τT (vT ) ≥ 2ε. Since x �= y, vT =
lcaT (x, y) is an inner vertex of T . By construction, therefore, τ̃T (vT ) = τT (vT ) + ε.
The latter arguments together with the fact that τS remains unchanged imply that
τS(vS) − τ̃T (vT ) ≥ ε > 0, and thus, τ̃T (vT ) < τS(vS). Therefore, we conclude that
xy is an edge in G< (̃S). �
It remains to show

Claim 3 For all distinct x, y ∈ L(T ) with xy /∈ E(G<(S)), we have τ̃T (lcaT (x, y)) >

τS(lcaS(σ (x), σ (y))).

Proof Suppose xy /∈ E(G<(S)) for twodistinct x, y ∈ L(T ), and set vT := lcaT (x, y)
and vS := lcaS(σ (x), σ (y)). By definition, this implies τT (vT ) ≥ τS(vS). Since
x �= y, we clearly have that vT = lcaT (x, y) is an inner vertex of T , and hence,
τ̃T (vT ) = τT (vT ) + ε. The latter two argument together with ε > 0 and the fact that
τS remains unchanged imply that τ̃T (vT ) > τS(vS). �
In particular, therefore, xy /∈ E(G<(S)) implies that xy /∈ E(G< (̃S)) and therefore,
E(G< (̃S)) ⊆ E(G<(S)). Together with Claim 2 and the fact that both G<(S) and
G< (̃S) have vertex set L(T ), we conclude that G<(S) = G< (̃S), which completes the
proof. ��

Since the relaxed scenario S̃ = (T , S, σ, μ̃, τ̃T , τS) as constructed in the proof of
Lemma 3 satisfies μ̃(v) /∈ V 0(S) we obtain

Corollary 1 For every relaxed scenario S = (T , S, σ, μ, τT , τS) there exists a relaxed
scenario S̃ = (T , S, σ, μ̃, τ̃T , τS) such that G< (̃S) = G<(S) and μ̃(v) /∈ V 0(S) for
all v ∈ V (T ).

Lemma 3, however, does not imply that one can always find a relaxed scenario
with a reconciliation map μ̃ for given trees T and S satisfying μ̃(lcaT (x, y)) �S

lcaS(σ (x), σ (y)) for all distinct x, y ∈ L(T ) with xy /∈ E(G<(S)), as shown in
Example 2.
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Fig. 15 Left a relaxed scenario S = (T , S, σ, μ, τT , τS) with corresponding graph (G<(S), σ ) (right). For
(G<(S), σ ) there is no relaxed scenario S̃ = (T , S, σ, μ̃, τ̃T , τS) such that G< (̃S) = G<(S) and for all
distinct x, y ∈ L(T )with xy /∈ E(G<(S)) it holds that μ̃(lcaT (x, y)) �S lcaS(σ (x), σ (y)), see Example 2

Example 2 Consider the LDT graph (G<(S), σ ) with corresponding relaxed scenario
S as shown in Fig. 15. Note first that v = lcaT (a, b) = lcaT (c, d) and ab, cd /∈
E(G<). To satisfy both μ̃(v) �S lcaS(σ (a), σ (b)) and μ̃(v) �S lcaS(σ (c), σ (d)),
we clearly need that μ̃(v) 
S ρS , and thus τ̃T (v) ≥ τ̃S(ρS). However, ad ′ ∈ E(G<)

and lcaT (a, d ′) = u imply that τ̃T (u) < τS(σ (a), σ (d)) = τS(ρS). Hence, we obtain
τ̃T (u) < τS(ρS) ≤ τ̃T (v); a contradiction to (u, v) ∈ E(T ) and τ̃T being a time
map for T . Therefore, there is no relaxed scenario S̃ = (T , S, σ, μ̃, τ̃T , τS) such that
G< (̃S) = G<(S) and such that μ̃(lcaT (x, y)) �S lcaS(σ (x), σ (y)) for all distinct
x, y ∈ L(T ) with xy /∈ E(G<(S)).

For the special case that the graph under consideration has no edges we have

Lemma 4 For an edgeless graph G and for any choice of T and S with L(T ) = V (G)

andσ(L(T )) = L(S) there is a relaxed scenarioS = (T , S, σ, μ, τT , τS) that satisfies
G = G<(S).

Proof Given T and S we construct a relaxed scenario as follows. Let τS be an arbitrary
time map on S. Then we can choose τT such that τS(ρS) < τT (u) < τS(0S) for all
u ∈ V 0(T ). Each leaf u ∈ L(T ) then has a parent in T located above the last common
ancestor ρS of all species in which case G<(S) is edgeless. ��
Lemma 4 is reminiscent of the fact that for DL-only scenarios any given gene tree T
can be reconciled with an arbitrary species tree as long as σ(L(T )) = L(S) (Guigó
et al. 1996; Geiß et al. 2020a).

A.2 Properties of LDT graphs

Proposition 3 Every LDT graph (G, σ ) is properly colored.

Proof Let T = (T , S, σ, τT , τS) be a μ-free scenario such that (G, σ ) = (G<(T), σ )

and recall that every μ-free scenario satisfies τT (x) = τS(σ (x)) for all x ∈ L(T )

with σ(x) ∈ L(S). Let a, b ∈ L(T ) be distinct and suppose that σ(a) = σ(b) = A.
Since a and b are distinct we have a, b ≺T lcaT (a, b) and hence, by Definition 3,
τT (a) < τT (lcaT (a, b)). This implies that τT (a) = τS(A) = τS(lcaS(A, A)) <
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τT (lcaT (a, b)). Therefore, ab /∈ E(G). Consequently, ab ∈ E(G) implies σ(a) �=
σ(b), which completes the proof. ��

Extending earlier work of Dekker (1986) and Bryant and Steel (1995) derived
conditions under which two triples r1, r2 imply a third triple r3 that must be displayed
by any tree that displays r1, r2. In particular, we make frequent use of the following

Lemma 5 If a tree T displays xy|z and zw|y then T displays xy|w and zw|x. In
particular T|{x,y,z,w} = ((x, y), (z, w)) (in Newick format).

Definition 10 For every graph G = (L, E), we define the set of triples on L

T(G) := {xy|z : x, y, z ∈ L are pairwise distinct, xy ∈ E, xz, yz /∈ E} .

If G is endowed with a coloring σ : L → M we also define a set of color triples

S(G, σ ) := {σ(x)σ (y)|σ(z) : x, y, z ∈ L, σ (x), σ (y), σ (z) are pairwise distinct,

xz, yz ∈ E, xy /∈ E}.

Lemma 6 If a graph (G, σ ) is an LDT graph then S(G, σ ) is compatible and S
displaysS(G, σ ) for everyμ-free scenarioT = (T , S, σ, τT , τS) that explains (G, σ ).

Proof Suppose that (G = (L, E), σ ) is an LDT graph and let T = (T , S, σ, τT , τS)

be aμ-free scenario that explains (G, σ ). In order to show thatS(G, σ ) is compatible
it suffices to show that S displays every triple in S(G, σ ).

Let AB|C ∈ S(G, σ ). By definition, A, B,C are pairwise distinct and there
must be vertices a, b, c ∈ L with σ(a) = A, σ(b) = B, and σ(c) =
C such that ab /∈ E and bc, ac ∈ E . First, ab /∈ E and bc, ac ∈ E
imply τT (lcaT (a, b)) ≥ τS(lcaS(A, B)), τT (lcaT (b, c)) < τS(lcaS(B,C)), and
τT (lcaT (a, c)) < τS(lcaS(A,C)). Moreover, for any three vertices a, b, c in T it
holds that 1 ≤ |{lcaT (a, b), lcaT (a, c), lcaT (b, c)}| ≤ 2.

Therefore we have to consider the following four cases: (1) u := lcaT (a, b) =
lcaT (b, c) = lcaT (a, c), (2) u := lcaT (a, b) = lcaT (a, c) �= lcaT (b, c) and (3)
u := lcaT (a, b) = lcaT (b, c) �= lcaT (a, c), (4) lcaT (a, b) �= u := lcaT (b, c) =
lcaT (a, c). Note, for any three vertices x, y, z in T , lcaT (x, y) �= lcaT (x, z) =
lcaT (y, z) implies that lcaT (x, y) ≺T lcaT (x, z) = lcaT (y, z). In Cases (1) and
(2), we find τS(lcaS(A,C)) > τT (u) ≥ τS(lcaS(A, B)). Together with the fact that
lcaS(A,C) and lcaS(A, B) are comparable in S, this implies that AB|C is displayed
by S. In Case (3), we obtain τS(lcaS(B,C)) > τT (u) ≥ τS(lcaS(A, B)) and, by anal-
ogous arguments, AB|C is displayed by S. Finally, in Case (4), the tree T displays
the triple ab|c. Thus, τS(lcaS(A, B)) ≤ τT (lcaT (a, b)) < τT (u) < τS(lcaS(A,C)).
Again, AB|C is displayed by S. ��

The next lemma shows that induced K2 + K1 subgraphs in LDT graphs implies
triples that must be displayed by T .

Lemma 7 If (G, σ ) is an LDT graph, then T(G) is compatible and T displays T(G)

for every μ-free scenario T = (T , S, σ, τT , τS) that explains (G, σ ).
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Proof Suppose that (G = (L, E), σ ) is an LDT graph and let T = (T , S, σ, τT , τS)

be a μ-free scenario that explains (G, σ ). In order to show that T(G) is compatible it
suffices to show that T displays every triple in T(G, σ ).

Let ab|c ∈ T(G). By definition, a, b, c ∈ L(T ) are distinct, and ab ∈ E and
ac, bc /∈ E . Since ab ∈ E , we have A := σ(a) �= σ(b) =: B by Proposition 3.

There are two cases, either σ(c) ∈ {A, B} or not. Suppose first that w.l.o.g.
σ(c) = A. In this case, ab ∈ E and bc /∈ E together imply τT (lcaT (a, b)) <

τS(lcaS(A, B)) ≤ τT (lcaT (b, c)). This and the fact that lcaT (a, b) and lcaT (b, c) are
comparable in T implies that T displays ab|c.

Suppose now that σ(c) = C /∈ {A, B}. We now consider the four possible topolo-
gies of S′ = S|ABC : (1) S′ is a star, (2) S′ = AB|C , (3) S′ = AC |B, and (4)
S′ = BC |A.

In Cases (1), (2) and (4), we have τS(lcaS(A, B)) ≤ τS(lcaS(A,C)), where equal-
ity holds only in Cases (1) and (4). This together with ab ∈ E and ac /∈ E implies
τT (lcaT (a, b)) < τS(lcaS(A, B)) ≤ τS(lcaS(A,C)) ≤ τT (lcaT (a, c)). This and
the fact that lcaT (a, b) and lcaT (a, c) are comparable in T implies that T displays
ab|c. In Case (3), ab ∈ E and bc /∈ E imply τT (lcaT (a, b)) < τS(lcaS(A, B)) =
τS(lcaS(B,C)) ≤ τT (lcaT (b, c)). By analogous arguments as before, T displays ab|c.

��
Wenote, finally, that theAhographof the triple set [T(G), L] in a sense recapitulates

G. More precisely, we have:

Proposition 4 Let (G = (L, E), σ ) be a vertex-colored graph. If for all edges xy ∈ E
there is a vertex z such that xz, yz /∈ E (and thus, in particular, in case that G is
disconnected), then [T(G), L] = G.

Proof Clearly, the vertex sets of [T(G), L] and G are the same, that is, L . Let xy ∈ E
and thus, we have x �= y. There is a vertex z �= x, y in G with xz, yz /∈ E if and only
if xy|z ∈ T(G) and thus, if and only if xy is an edge in [T(G), L] = G. ��
Definition 11 For a vertex-colored graph (G, σ ), we will use the shorter notation
x1− x2 −· · ·− xn and X1− X2 −· · ·− Xn for a path Pn that is induced by the vertices
{xi | 1 ≤ i ≤ n} with colors σ(xi ) = Xi , 1 ≤ i ≤ n and edges xi xi+1, 1 ≤ i ≤ n− 1.

Lemma 8 Every LDT graph (G, σ ) is a properly colored cograph.

Proof Let T = (T , S, σ, τT , τS) be a μ-free scenario that explains (G, σ ). By Propo-
sition 3, (G, σ ) is properly colored. To show that G = (L, E) is a cograph it suffices
to show that G does not contain an induced path on four vertices (cf. Proposition 2).
Hence, assume for contradiction that G contains an induced P4.

First we observe that for each edge ab in this P4 it holds that σ(a) �= σ(b) since,
otherwise, by Proposition 3, ab /∈ E . Based on possible colorings of the P4 w.r.t. σ and
up to symmetry, we have to consider four cases: (1) A−B−C−D, (2) A−B−C−A,
(3) A − B − A − C and (4) A − B − A − B.

In Case (1) the P4 is of the form a − b − c − d with σ(a) = A, σ(b) = B,
σ(c) = C , σ(d) = D. By Lemma 6, the species tree S must display both AC |B
and BD|C . Hence, by Lemma 5, S|ABCD = ((A,C), (B, D)) in Newick format. Let
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x := lcaS(A, B,C, D) = ρS|ABCD . Note, x “separates” A and C from B and D. Now,
ab ∈ E and ad /∈ E implies that τT (lcaT (a, b)) < τS(x) ≤ τT (lcaT (a, d)). This and
the fact that lcaT (a, b) and lcaT (a, d) are comparable in T implies that T displays
ab|d. Similarly, cd ∈ E and ad /∈ E implies that T displays cd|a is displayed by T . By
Lemma 5, T|abcd = ((a, b), (c, d)). Let y := lcaT (a, b, c, d) = ρT|abcd . Now, bc ∈ E ,
lcaT (b, c) = y, and lcaS(B,C) = x implies τT (y) < τS(x). This and lcaT (a, d) = y
and lcaS(A, D) = x imply that ad ∈ E , and thus a, b, c, d do not induce a P4 in G;
a contradiction.

Case (2) can be directly excluded, since Lemma 6 implies that, in this case, S must
display AC |B and AB|C ; a contradiction.

Now consider Case (3), that is, the P4 is of the form a − b − a′ − c with σ(a) =
σ(a′) = A, σ(b) = B and σ(c) = C . By Lemma 6, the species tree S must display
BC |A and thus x := lcaS(A, B) = lcaS(A,C). Since ab ∈ E and ac /∈ E we observe
τT (lcaT (a, b)) < τS(x) ≤ lcaT (a, c) and, as in Case (1) we infer that T displays ab|c.
By similar arguments,a′c ∈ E andac /∈ E implies that T displaysa′c|a. ByLemma 5,
T|abcd = ((a, b), (a′, c)) and thus, y := lcaT (a′, b) = lcaT (a, c) and a′b ∈ E implies
that τT (y) < τS(x). Since y = lcaT (a, c) and τT (y) < τS(x) = τS(lcaS(A,C)), we
can conclude that ac ∈ E . Hence, a, b, c, d do not induce a P4 in G; a contradiction.

In Case (4) the P4 is of the form a − b − a′ − b′ with σ(a) = σ(a′) =
A and σ(b) = σ(b′) = B. Now, ab, a′b′ ∈ E and ab′ /∈ E imply that
τT (lcaT (a, b)), τT (lcaT (a′, b′)) < τS(lcaS(A, B)) ≤ τT (lcaT (a, b′)). Hence, by
similar arguments as above, T must display ab|b′ and a′b′|a. By Lemma 5, Tabcd =
((a, b), (a′, b′)) and thus, y := lcaT (a′b) = lcaT (a, b′). However, a′b /∈ E implies
that τT (y) < τS(lcaS(A, B)); a contradiction to τS(lcaS(A, B)) ≤ τT (lcaT (a, b′)). ��

The converse of Lemma 8 is not true in general. To see this, consider the
properly-colored cograph (G, σ ) with vertex V (G) = {a, a′, b, b′, c, c′}, edges
ab, bc, a′b′, a′c′ and coloring σ(a) = σ(a′) = A σ(b) = σ(b′) = B, σ(c) =
σ(c′) = C with A, B,C being pairwise distinct. In this case, S(G, σ ) contains
the triples AC |B and BC |A. By Lemma 6, the tree S in every μ-free scenario
T = (T , S, σ, τT , τS) or relaxed scenario S = (T , S, σ, μ, τT , τS) explaining (G, σ )

displays AC |B and BC |A. Since no such scenario can exist, (G, σ ) is not an LDT
graph.

A.3 Recognition and characterization of LDT graphs

Definition 12 Let (G = (L, E), σ ) be a graph with coloring σ : L → M . Let C be
a partition of M , and C ′ be the set of connected components of G. We define the
following binary relation R(G, σ,C ) by setting

(x, y) ∈ R(G, σ,C ) ⇐⇒ x, y ∈ L, σ (x), σ (y) ∈ C for some C ∈ C , and

x, y ∈ C ′ for some C ′ ∈ C ′.

In words, two vertices x, y ∈ L are in relation R(G, σ,C ) whenever they are in
the same connected component of G and their colors σ(x), σ (y) are contained in the
same set of the partition of M .

123



Indirect identification of horizontal gene transfer Page 41 of 73 10

Lemma 9 Let (G = (L, E), σ ) be a graph with coloring σ : L → M and C be a
partition of M. Then,R := R(G, σ,C ) is an equivalence relation and every equiva-
lence class of R, or short R-class, is contained in some connected component of G.
In particular, each connected component of G is the disjoint union of R-classes.

Proof It is easy to see thatR is reflexive and symmetric.Moreover, xy, yz ∈ R implies
that σ(x), σ (y), σ (z) must be contained in the same set of the partition C , and x, y, z
must be contained in the same connected component of G. Therefore, xy ∈ R and
thus, R is transitive. In summary, R is an equivalence relation.

We continue with showing that every R-class K is entirely contained in some
connected component of G. Clearly, there is a connected component C of G such that
C ∩ K �= ∅. Assume, for contradiction, that K � C . Hence, G must be disconnected
and, in particular, there is a second connected componentC ′ ofG such thatC ′∩K �= ∅.
Hence, there is a pair xy ∈ K such that x ∈ C∩K and y ∈ C ′∩K . But then x and y are
in different connected components of G violating the definition ofR; a contradiction.
Hence, every R-class is entirely contained in some connected component of G. This
and the fact theR-classes are disjoint implies that each connected component of G is
the disjoint union of R-classes. ��

The following partition of the leaf sets of subtrees of a tree S rooted at some vertex
u ∈ V (S) will be useful:

If u is not a leaf, then CS(u) := {L(S(v)) | v ∈ childS(u)}
and, otherwise, CS(u) := {{u}}.

One easily verifies that, in both cases, CS(u) yields a valid partition of the leaf set
L(S(u)). Recall that σ|L ′,M ′ : L ′ → M ′ was defined as the “submap” of σ with L ′ ⊆ L
and σ(L ′) ⊆ M ′ ⊆ M .

Lemma 10 Let (G = (L, E), σ ) be a properly colored cograph. Suppose that the
triple set S(G, σ ) is compatible and let S be a tree on M that displays S(G, σ ).
Moreover, let L ′ ⊆ L and u ∈ V (S) such that σ(L ′) ⊆ L(S(u)). Finally, set
R := R(G[L ′], σ|L ′,L(S(u)),CS(u)).

Then, for all distinctR-classes K and K ′, either xy ∈ E for all x ∈ K and y ∈ K ′,
or xy /∈ E for all x ∈ K and y ∈ K ′. In particular, for x ∈ K and y ∈ K ′, it holds
that

xy ∈ E ⇐⇒ K , K ′ are contained in the same connected component of G[L ′].

Proof Let σ : L → M and putS = S(G, σ ). SinceS is a compatible triple set on M ,
there is a tree S onM that displaysS. Moreover, the condition σ(L ′) ⊆ L(S(u)) ⊆ M
togetherwith the fact thatCS(u) is a partition of L(S(u)) ensures thatR iswell-defined.

Now suppose that K and K ′ are distinctR-classes. As a consequence of Lemma 9,
we have exactly the two cases: either (i) K and K ′ are contained in the same connected
component C of G[L ′] or (ii) K ⊆ C and K ′ ⊆ C ′ for distinct components C and C ′
of G[L ′].
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Case (i). Assume, for contradiction, that there are two vertices x ∈ K and y ∈ K ′
with xy /∈ E . Note that C ⊆ L ′ and thus, G[C] is an induced subgraph of G[L ′]. By
Proposition 2, both induced subgraphs G[L ′] and G[C] are cographs. Now we can
again apply Proposition 2 to conclude that diam(G[C]) ≤ 2. Hence, there is a vertex
z ∈ C such that xz, zy ∈ E . Since x and y are in distinct classes ofR but in the same
connected component C of G[L ′], σ(x) and σ(y) must lie in distinct sets of CS(u).
In particular, it must hold that σ(x) �= σ(y). The fact that G[L ′] is properly colored
together with xz, yz ∈ E implies that σ(z) �= σ(x), σ (y). By definition and since
G[L ′] is an induced subgraph of G, we obtain that σ(x)σ (y)|σ(z) ∈ S. In particular,
σ(x)σ (y)|σ(z) is displayed by S. Since σ(x) and σ(y) lie in distinct sets of CS(u), u
must be an inner vertex, andwe have σ(x) ∈ L(S(v)) and σ(y) ∈ L(S(v′)) for distinct
v, v′ ∈ childS(u). In particular, it must hold that lcaS(σ (x), σ (y)) = u. Moreover,
z ∈ C ⊆ L ′ and σ(L ′) ⊆ L(S(u)) imply that σ(z) ∈ L(S(u)). Taken together,
the latter two arguments imply that S cannot display the triple σ(x)σ (y)|σ(z); a
contradiction.

Case (ii). By assumption, the R-classes K and K ′ are in distinct connected com-
ponents of G[L ′], which immediately implies xy /∈ E for all x ∈ K , y ∈ K ′.

In summary, either xy ∈ E for all x ∈ K and y ∈ K ′, or xy /∈ E for all x ∈ K and
y ∈ K ′. Moreover, Case (i) establishes the if -direction and Case (ii) establishes, by
means of contraposition, the only-if -direction of the final statement. ��

Lemma 10 suggests a recursive strategy to construct a relaxed scenario S =
(T , S, σ, μ, τT , τS) for a given properly-colored cograph (G, σ ), which is outlined
in the main part of this paper and described more formally in Algorithm 1. We pro-
ceed by proving the correctness of Algorithm 1.

Theorem 2 Let (G, σ ) be a properly colored cograph, and assume that the triple
set S(M,G) is compatible. Then Algorithm 1 returns a relaxed scenario S =
(T , S, σ, μ, τT , τS) such that G<(S) = G in polynomial time.

Proof Let σ : L → M and put S := S(G, σ ). By a slight abuse of notation, we will
simply write μ and τT also for restrictions to subsets of V (T ). Observe first that due
to Line 1, the algorithm continues only if (G, σ ) is a properly colored cograph andS
is compatible, and returns a tuple S = (T , S, σ, μ, τT , τS) in this case. In particular, a
tree S on M that displaysS exists, and can e.g. be constructed using BUILD (Line 1).
By Lemma 1, we can always construct a time map τS for S satisfying τS(x) = 0
for all x ∈ L(S) (Line 2). By definition, τS(y) > τS(x) must hold for every edge
(y, x) ∈ E(S), and thus, we obtain ε > 0 in Line 3. Moreover, the recursive function
BuildGeneTree maintains the following invariant:

Claim 4 In every recursion step of the function BuildGeneTree, we have σ(L ′) ⊆
L(S(uS)).

Proof Since S (with root ρS) is a tree on M by construction and thus L(S(ρS)) = M ,
the statement holds for the top-level recursion step on L and ρS . Now assume that
the statement holds for an arbitrary step on L ′ and uS . If uS is a leaf, there are no
deeper recursion steps. Thus assume that uS is an inner vertex. Recall that CS(uS) is a
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partition of L(S(uS)) (by construction), and thatR = R(G[L ′], σ|L ′,L(S(u)),CS(uS))
is an equivalence relation (by Lemma 9). This together with the definition of R and
σ(L ′) ⊆ L(S(uS)), implies that there is a child vS ∈ childS(uS) such that σ(K ) ⊆
L(S(vS)) for all R-classes K . In particular, therefore, the statement is true for all
recursive calls on K and vS in Line 21. Repeating this argument top-down along the
recursion hierarchy proves the claim. �

Note, that we are in the else-condition in Line 13 only if uS is not a leaf. Therefore
and as a consequence of Claim 4 and by similar arguments as in its proof, there is a
vertexv∗

S ∈ childS(uS) such thatσ(C)∩L(S(v∗
S)) �= ∅ for every connected component

C of G[L ′] in Line 17, and a vertex vS ∈ childS(uS) such that σ(K ) ⊆ L(S(vS))

for every R-class K in Line 20. Moreover, parS(uS) is always defined since we have
uS = ρS and thus parS(uS) = 0S in the top-level recursion step, and recursively call
the function BuildGeneTree on vertices vS such that vS ≺S uS .

In summary, all assignments are well-defined in every recursion step. It is easy to
verify that the algorithm terminates since, in each recursion step, we either have that
uS is a leaf, or we recurse on vertices vS that lie strictly below uS . We argue that the
resulting tree T ′ is a not necessarily phylogenetic tree on L by observing that, in each
step, each x ∈ L ′ is either attached to the tree as a leaf if uS is a leaf, or, since R
forms a partition of L ′ by Lemma 9, passed down to a recursion step on K for some
R-class K . Nevertheless, T ′ is turned into a phylogenetic tree T by suppression of
degree-two vertices in Line 25. Finally, μ(x) and τT (x) are assigned for all vertices
x ∈ L(T ′) = L in Line 11, and for all newly created inner vertices in Lines 7 and 18.

Recall that τS is a valid time map satisfying τS(x) = 0 for all x ∈ L(S) by
construction. Beforewe continue to show that S is a relaxed scenario, we first show that
the conditions for time maps and time consistency are satisfied for (T ′, τT , S, τS, μ):

Claim 5 For all x, y ∈ V (T ′) with x ≺T ′ y, we have τT (x) < τT (y). Moreover, for
all x ∈ V (T ′), the following statements are true:

(i) if μ(x) ∈ V (S), then τT (x) = τS(μ(x)), and
(ii) if μ(x) = (a, b) ∈ E(S), then τS(b) < τT (x) < τS(a).

Proof Recall that we always write an edge (u, v) of a tree T such that v ≺T u. For
the first part of the statement, it suffices to show that τT (x) < τT (y) holds for every
edge (y, x) ∈ E(T ′), and thus to consider all vertices x �= ρT ′ in T ′ and their unique
parent, which will be denoted by y in the following. Likewise, we have to consider
all vertices x ∈ V (T ′) including the root to show the second statement. The root
ρT ′ of T ′ corresponds to the vertex uT created in Line 6 in the top-level recursion
step on L and ρS . Hence, we have μ(ρT ′) = (parS(ρS) = 0S, ρS) ∈ E(S) and
τT (ρT ′) = τS(ρS) + ε (cf. Line 7). Therefore, we have to show (ii). Since ε > 0, it
holds that τS(ρS) < τT (ρT ′). Moreover, τS(0S)− τS(ρS) ≥ 3ε holds by construction,
and thus τS(0S) − (τT (ρT ′) − ε) ≥ 3ε and τS(0S) − τT (ρT ′) ≥ 2ε, which together
with ε > 0 implies τT (ρT ′) < τS(0S).

We now consider the remaining vertices x ∈ V (T ′)\{ρT ′ }. Every such vertex x is
introduced into T ′ in some recursion step on L ′ and uS in one of the Lines 6, 10, 15
or 21. There are exactly the following three cases: (a) x ∈ L(T ′) is a leaf attached to
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some inner vertex uT in Line 10, (b) x = vT as created in Line 15, and (c) x = wT as
assigned in Line 21. Note that if x = uT as created in Line 6, then uT is either the root
of T ′, or equals a vertex wT as assigned in Line 21 in the “parental” recursion step.

In Case (a), we have that x ∈ L(T ′) is a leaf and attached to some inner vertex
y = uT . Since uS must be a leaf in this case, and thus τS(uS) = 0, we have τT (y) =
0+ε = ε and τT (x) = 0 (cf. Lines 7 and 11). Since ε > 0, this implies τT (x) < τT (y).
Moreover, we haveμ(x) = σ(x) ∈ L(S) ⊂ V (S) (cf. Line 11), and thus have to show
Subcase (i). Since uS is a leaf and σ(L ′) ⊆ L(S(uS)), we conclude σ(x) = uS . Thus
we obtain τT (x) = 0 = τS(uS) = τS(μ(x)).

In Case (b), we have x = vT as created in Line 15, and x is attached as a child
to some vertex y = uT created in the same recursion step. Thus, we have τT (y) =
τS(uS) + ε and τT (x) = τS(uS) − ε (cf. Lines 7 and 18). Therefore and since ε > 0,
it holds τT (x) < τT (y). Moreover, we have μ(x) = (uS, v∗

S) ∈ E(S) for some
v∗
S ∈ childS(uS). Hence, we have to show Subcase (ii). By a similar calculation as

before, ε > 0, τS(uS) − τS(v
∗
S) ≥ 3ε and τT (x) = τS(uS) − ε imply τS(v

∗
S) <

τT (x) < τS(uS).
InCase (c), x = wT as assigned inLine 21 is equal to uT as created inLine 6 in some

next-deeper recursion step with u′
S ∈ childS(uS). Thus, we have τT (x) = τS(u′

S) + ε

and μ(x) = (uS, u′
S) ∈ E(S) (cf. Line 7). Moreover, x is attached as a child of

some vertex y = vT as created in Line 15. Thus, we have τT (y) = τS(uS) − ε. By
construction and since (uS, u′

S) ∈ E(S), we have τS(uS) − τS(u′
S) ≥ 3ε. Therefore,

(τT (y)+ε)−(τT (x)−ε) ≥ 3ε and thus τT (y)−τT (x) ≥ ε. This together with ε > 0
implies τT (x) < τT (y). Moreover, since μ(x) = (uS, u′

S) ∈ E(S) for some u′
S ∈

childS(uS), we have to show Subcase (ii). By a similar calculation as before, ε > 0,
τS(uS) − τS(u′

S) ≥ 3ε and τT (x) = τS(u′
S) + ε imply τS(u′

S) < τT (x) < τS(uS). �

Claim 6 S = (T , S, σ, μ, τT , τS) is a relaxed scenario.

Proof The tree T is obtained from T ′ by first adding a planted root 0T (and connecting
it to the original root) and then suppressing all inner vertices except 0T that have only a
single child in Line 25. In particular, T is a planted phylogenetic tree by construction.
The root constraint (G0) μ(x) = 0S if and only if x = 0T also holds by construction
(cf. Line 26). Since we clearly have not contracted any outer edges (y, x), i.e. with
x ∈ L(T ′), we conclude that L(T ′) = L(T ) = L . As argued before, we have
τT (x) = 0 and μ(x) = σ(x) whenever x ∈ L(T ′) = L(T ) (cf. Line 11). Since all
other vertices are either 0T or mapped byμ to some edge of S (cf. Lines 26, 7 and 18),
the leaf constraint (G1) μ(x) = σ(x) is satisfied if and only if x ∈ L(T ).

By construction, we have V (T )\{0T } ⊆ V (T ′). Moreover, suppression of vertices
clearly preserves the	-relation between all vertices x, y ∈ V (T )\{0T }. Together with
Claim 5, this implies τT (x) < τT (y) for all vertices x, y ∈ V (T )\{0T } with x ≺T y.
For the single child ρT of 0T in T , we have τT (ρT ) ≤ τS(ρS) + ε where equality
holds if the root of T ′ was not suppressed and thus is equal to ρT . Moreover, τT (0T ) =
τS(0S) and τS(0S) − τS(ρS) ≥ 3ε hold by construction. Taken together the latter two
arguments imply that τT (ρT ) < τT (0T ). In particular, we obtain τT (x) < τT (y) for all
vertices x, y ∈ V (T ) with x ≺T y. Hence, τT is a time map for T , which, moreover,
satisfies τT (x) = 0 for all x ∈ L(T ).
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To show that S = (T , S, σ, μ, τT , τS) is a relaxed scenario, it remains to show that
μ is time-consistent with the time maps τT and τS . In case x ∈ L(T ) ⊂ V (T ), we
have μ(x) = σ(x) ∈ L(S) ⊂ V (S) and thus τT (x) = 0 = τS(σ (x)) = τS(μ(x)).
For 0T , we have τT (0T ) = τS(0S) = τS(μ(0T )). The latter two arguments imply
that all vertices x ∈ L(T ) ∪ {0T } satisfy (C1) in the Definition 4. The remaining
vertices of T are all vertices of T ′ as well. In particular, they are all inner vertices
that are mapped to some edge of S (cf. Lines 7 and 18). The latter two arguments
together with Claim 5 imply that, for all vertices x ∈ V (T )\(L(T ) ∪ {0T }), we have
μ(x) = (a, b) ∈ E(S) and τS(b) < τT (x) < τS(a). Therefore, every such vertex
satisfies (C2) in Definition 4. It follows that the time consistency constraint (G2) is
also satisfied, and thus S is a relaxed scenario. �

Claim 7 Every vertex v ∈ V 0(T ) was either created in Line 6 or in Line 15. In
particular, it holds for all x, y ∈ L(T ) with lcaT (x, y) = v:

(1) If v was created in Line 6, then xy /∈ E(G) and xy /∈ E(G<(S)).
(2) If v was created in Line 15, then xy ∈ E(G) and xy ∈ E(G<(S)).

Furthermore, G is a cograph with cotree (T , t) where t(v) = 0 if v was created in
Line 6 and t(v) = 1, otherwise.

Proof Since T is phylogenetic, every vertex v ∈ V 0(T ) is the last common ancestor
of two leaves x, y ∈ L := L(T ). Let v ∈ V 0(T ) be arbitrary and choose arbitrary
leaves x, y ∈ L such that lcaT (x, y) = v. Since v ∈ V 0(T ), the leaves x and y must
be distinct.

Note that v /∈ L(T ) ∪ {0T }, and thus, v is also an inner vertex in T ′. Therefore, we
have exactly the two cases (1) v = uT is created in Line 6, and (2) v = vT is created
in Line 15. Similar as before, the case that v = wK is assigned in Line 21 is covered
by Case (a), since, in this case, wK is created in a deeper recursion step.

We consider the recursion step on L ′ and uS , in which v was created. Clearly, it must
hold that x, y ∈ L ′. Before we continue, set R := R(G[L ′], σ|L ′,L(S(u)),CS(uS)) as
in Line 13. Note, since S is a relaxed scenario, the graph (G<(S), σ ) is well-defined.

For Statement (1), suppose that v = uT was created in Line 6. Hence, we have the
two cases (i) the vertex uS of S in this recursion step is a leaf, and (ii) uS is an inner
vertex. InCase (i), we have L(S(uS)) = {uS}. TogetherwithClaim4 andσ(x), σ (y) ∈
σ(L ′), this implies σ(x) = σ(x) = uS . By assumption, (G, σ ) is properly colored.
By Proposition 3 (G<(S), σ ) must be properly colored as well. Hence, we conclude
that xy /∈ E(G) and xy /∈ E(G<(S)), respectively. In Case (ii), uS is not a leaf.
Therefore, lcaT (x, y) = v = uT is only possible if x and y lie in distinct connected
components of G[L ′]. This immediately implies xy /∈ E(G). Moreover, we have
σ(x), σ (y) ∈ L(S(uS)) and thus lcaS(σ (x), σ (y)) 	S uS . Since τS is a time map for
S, it follows that τS(lcaS(σ (x), σ (y))) ≤ τS(uS). Together with τT (uT ) = τS(uS)+ε

(cf. Line 7) and ε > 0, this implies τS(lcaS(σ (x), σ (y))) < τT (v) = τT (lcaT (x, y)).
Hence, xy /∈ E(G<(S)).

For Statement (2), suppose that v = vT was created in Line 15. Therefore,
lcaT (x, y) = v = vT is only possible if x and y lie in the same connected com-
ponents of G[L ′] but in distinctR-classes. Now, we can apply Lemma 10 to conclude
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that xy ∈ E(G). Moreover, the fact that x and y lie in the same connected com-
ponent of G[L ′] but in distinct R-classes implies that σ(x) and σ(y) lie in distinct
sets of CS(uS). Hence, there are distinct vS, v

′
S ∈ childS(u) such that σ(x) 	S vS

and σ(y) 	S v′
S . In particular, lcaS(σ (x), σ (y)) = uS . In Line 18, we assign

τT (lcaT (x, y)) = τT (vT ) = τS(uS) − ε. Together with ε > 0, the latter two argu-
ments imply τT (lcaT (x, y)) < τS(uS) = τS(lcaS(σ (x), σ (y))). Therefore, we have
xy ∈ E(G<(S)).

By the latter arguments, the cotree (T , t) as defined above is well-defined and, for
all v ∈ V 0(T ), we have t(v) = 1 if and only if xy ∈ E(G) for all x, y ∈ L with
lcaT (x, y) = v. Hence, (T , t) is a cotree for G. �
Claim 8 The relaxed scenario S satisfies G<(S) = G.

Proof Since L(T ) = L , the two undirected graphs G<(S) and G have the same
vertex set. By Claim 7, we have, for all distinct x, y ∈ L , either xy /∈ E(G) and
xy /∈ E(G<(S)), or xy ∈ E(G) and xy ∈ E(G<(S)). �

Together, Claims 6 and 8 imply that Algorithm 1 returns a relaxed scenario S =
(T , S, σ, μ, τT , τS) with coloring σ such that G<(S) = G.

To see that Algorithm 1 runs in polynomial time, we first note that the function
BuildGeneTree() operates in polynomial time. This is clear for the setup and the
if part. The construction of R in the else part involves the computation of connected
components and the evaluation of Definition 12, both of which can be achieved in
polynomial time. This is also true for the comparisons of color classes required to
identify v∗

S and vS . Since the sets K in recursive calls of BuildGeneTree() form
a partition of L ′, and the vS are children of uS in S and the depth of the recursion is
bounded by O(|L(S)|), the total effort remains polynomial. ��
Theorem 3 A graph (G, σ ) is an LDT graph if and only if it is a properly colored
cograph and S(G, σ ) is compatible.

Proof By Lemma 6 and 8, if (G, σ ) is an LDT graph then it is a properly colored
cograph and S(G, σ ) is compatible. Now suppose that (G, σ ) is a properly colored
cograph and S(G, σ ) is compatible. Then, by Theorem 2, Algorithm 1 outputs a
relaxed scenario S = (T , S, σ, μ, τT , τS) such that G<(S) = G. By definition, this in
particular implies that (G, σ ) is an LDT graph. ��
Corollary 2 LDT graphs can be recognized in polynomial time.

Proof Cographs can be recognized in linear time (Corneil et al. 1981b), the proper
coloring can be verified in linear time, the triple set S(G, σ ) contains not more
than |V (G)| · |E(G)| triples and can be constructed in O(|V (G)| · |E(G)|) time,
and compatibility of S(G, σ ) can be checked in O(min(|S| log2 |V (G)|, |S| +
|V (G)|2 ln |V (G)|)) time (Jansson et al. 2005). ��
Corollary 3 The property of being an LDT graph is hereditary, that is, if (G, σ ) is an
LDT graph then each of its vertex induced subgraphs is an LDT graph.

123



Indirect identification of horizontal gene transfer Page 47 of 73 10

A B C D

Fig. 16 A relaxed scenario S (A) with gene tree T (B) and its associated graph (G<(S), σ ) (C). The
discriminating cotree TG<(S) (D) is not displayed by T

Proof Let (G = (V , E), σ ) be an LDT graph. It suffices to show that (G− x, σ|V \{x})
is an LDT graph, where G − x is obtained from G by removing x ∈ V and all its
incident edges. By Proposition 2, G − x is a cograph that clearly remains properly
colored. Moreover, every induced path on three vertices in G − x is also an induced
path on three vertices in G. This implies that if xy|z ∈ S′ = S(G − x, σ|V \{x}),
then xy|z ∈ S(G, σ ). Hence,S′ ⊆ S(G, σ ). By Theorem 3,S(G, σ ) is compatible.
Hence, any tree that displays all triples inS(G, σ ), in particular, displays all triples in
S′. Therefore, S′ is compatible. In summary, (G − x, σ|V \{x}) is a properly colored
cograph and S′ is compatible. By Theorem 3 it is an LDT graph. ��

The relaxed scenarios S explaining an LDT graph (G, σ ) are far from being unique.
In fact, we can choose from a large set of trees (S, τS) that is determined only by the
triple set S(G, σ ):

Corollary 4 If (G = (L, E), σ ) is an LDT graph with coloring σ : L → M, then
for all planted trees S on M that display S(G, σ ) there is a relaxed scenario S =
(T , S, σ, μ, τT , τS) that contains σ and S and that explains (G, σ ).

Proof If (G, σ ) is an LDT graph, then the species tree S assigned in Line 1 in Algo-
rithm 1 is an arbitrary tree on M displaying S(G, σ ). ��
Corollary 5 If (G, σ ) is an LDT graph, then there exists a relaxed scenario S =
(T , S, σ, μ, τT , τS) explaining (G, σ ) such that T displays the discriminating cotree
TG of G.

Proof Suppose that (G, σ ) is an LDT graph. By Theorem 3, (G, σ )must be a properly
colored cograph and S(G, σ ) is comparable. Hence, Theorem 2 implies that Algo-
rithm 1 constructs a relaxed scenario S = (T , S, σ, μ, τT , τS) explaining (G, σ ). In
particular, the tree T together with labeling t as specified in Claim 7 is a cotree for G.
Since the unique discriminating cotree (TG , t̂) of G is obtained from any other cotree
by contraction of edges in T , the tree T must display TG . ��

Although, Corollary 5 implies that there is always a relaxed scenario S where
the tree T displays the discriminating cotree TG of G = G(S), this is not true for
all relaxed scenarios S with G = G(S). Figure 16 shows a relaxed scenario S′ =
(T ′, S′, σ, μ′, τ ′

T , τ ′
S) with G = G(S′) for which T ′ does not display TG .

Corollary 5 enables us to relate connectedness of LDT graphs to properties of the
relaxed scenarios by which it can be explained.
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Lemma 11 An LDT graph (G = (L, E), σ ) with |L| > 1 is connected if and only
if for every relaxed scenario S = (T , S, σ, μ, τT , τS) that explains (G, σ ), we have
τT (ρT ) < τS(lcaS(σ (L))).

Proof By contraposition, suppose first that there is a relaxed scenario S =
(T , S, σ, μ, τT , τS) that explains (G, σ ) such that τT (ρT ) ≥ τS(lcaS(σ (L))). Since
|L(T )| = |L| > 1, the root ρT is not a leaf. To show that G is disconnected we con-
sider two distinct children v,w ∈ child(ρT ) of the root and leaves x ∈ L(T (v)) and
y ∈ L(T (w)) and verify that x and y cannot be adjacent in G. If σ(x) = σ(y),
then xy /∈ E since (G, σ ) is properly colored (cf. Lemma 8). Hence, suppose
that σ(x) �= σ(y). By construction, lcaT (x, y) = ρT and thus, by assumption,
τT (lcaT (x, y)) = τT (ρT ) ≥ τS(lcaS(σ (L))). Now lcaS(σ (L)) 
S lcaS(σ (x), σ (y))
implies that τS(lcaS(σ (L))) ≥ τS(lcaS(σ (x), σ (y))) and thus, τT (lcaT (x, y)) ≥
τS(lcaS(σ (x), σ (y))). Hence, xy /∈ E . Consequently, for all distinct children v,w ∈
child(ρT ), none of the vertices in L(T (v)) are adjacent to any of the vertices in
L(T (w)) and thus, G is disconnected.

Conversely, suppose that G is disconnected. We consider Algorithm 1 with
input (G, σ ). By Theorems 2 and 3, the algorithm constructs a relaxed scenario
S = (T , S, σ, μ, τT , τS) that explains (G, σ ). Consider the top-level recursion step
on L and ρS . Since G is disconnected, the vertex uT created in Line 6 of this step
equals the root ρT of the final tree T . To see this, assume first that ρS is a leaf.
Then, we attach the |L| > 1 elements in L as leaves to uT (cf. Line 10). Now
assume that ρS is not a leaf. Since G[L] = G has at least two components, we
attach at least two vertices vT created in Line 15 to uT . Hence uT is not suppressed in
Line 25 and thus ρT = uT . By construction, therefore, we have τT (ρT ) = τT (uT ) =
τS(uS) + ε = τS(ρS) + ε for some ε > 0. From σ(ρS) 
S lcaS(σ (L)) and the
definition of time maps, we obtain τS(ρS) ≥ τS(lcaS(σ (L))). Therefore, we have
τT (ρT ) ≥ τS(lcaS(σ (L))) + ε > τS(lcaS(σ (L))), which completes the proof. There-
fore, we have shown so-far that if all relaxed scenarios S = (T , S, σ, μ, τT , τS) that
explain (G, σ ) satisfy τT (ρT ) ≤ τS(lcaS(σ (L))), then (G, σ ) must be connected.
However, τT (ρT ) = τS(lcaS(σ (L))) cannot occur, since we can reuse the same argu-
ments as in the beginning of this proof to show that, in this case, G is disconnected.

��

A.4 Least resolved trees for LDT graphs

As we have seen e.g. in Corollary 4, there are in general many trees S and T forming
relaxed scenarios S that explain a given LDT graph (G, σ ). This begs the question to
what extent these trees are determined by “representatives”. For S, we have seen that S
always displays S(G, σ ), suggesting to consider the role of S = Aho(S(G, σ ), M).
This tree is least resolved in the sense that there is no relaxed scenario explaining the
LDT graph (G, σ ) with a tree S′ that is obtained from S by edge-contractions. The
latter is due to the fact that any edge contraction in Aho(S(G, σ ), M) yields a tree S′
that does not displayS(G, σ ) any more (Jansson et al. 2012). By Proposition 6, none
of the relaxed scenarios containing S′ explain the LDT (G, σ ).

123



Indirect identification of horizontal gene transfer Page 49 of 73 10

Definition 13 Let S = (T , S, σ, μ, τT , τS) be a relaxed scenario explaining the LDT
graph (G, σ ). The planted tree T is least resolved for (G, σ ) if no relaxed scenario
(T ′, S′, σ ′, μ′, τ ′

T , τ ′
S) with T ′ < T explain (G, σ ).

In other words, T is least resolved for (G, σ ) if no scenariowith a gene tree T ′ obtained
from T by a series of edge contractions explains (G, σ ). The examples in Fig. 3 show
that there is not always a unique least resolved tree.

As outlined in the main part of this paper, the examples in Fig. 3 show that LDT
graphs are in general not accompanied by unique least resolved trees and the example
in Fig. 4 shows that the unique discriminating cotree TG of an LDT graph (G, σ ) is
not always “sufficiently resolved”.

B Horizontal gene transfer and Fitch graphs

B.1 HGT-labeled trees and rs-Fitch graphs

As alluded to in the introduction, the LDT graphs are intimately relatedwith horizontal
gene transfer. To formalize this connection we first define transfer edges. These will
then be used to encode Walter Fitch’s concept of xenologous gene pairs (Fitch 2000;
Darby et al. 2017) as a binary relation, and thus, the edge set of a graph.

Definition 14 Let S = (T , S, σ, μ, τT , τS) be a relaxed scenario. An edge (u, v) in T
is a transfer edge if μ(u) and μ(v) are incomparable in S. The HGT-labeling of T in
S is the edge labeling λS : E(T ) → {0, 1} with λ(e) = 1 if and only if e is a transfer
edge.

The vertex u in T thus corresponds to an HGT event, with v denoting the subsequent
event, which now takes place in the “recipient” branch of the species tree. Note that
λS is completely determined by S. In general, for a given a gene tree T , HGT events
correspond to a labeling or coloring of the edges of T .

Definition 15 (Fitch graph) Let (T , λ) be a tree T together with a map λ : E(T ) →
{0, 1}. The Fitch graph �(T , λ) = (V , E) has vertex set V := L(T ) and edge set

E := {xy | x, y ∈ L, the unique path connecting x

and y in T contains an edge e with λ(e) = 1.}

By definition, Fitch graphs of 0/1-edge-labeled trees are loop-less and undirected. We
call edges e of (T , λ) with label λ(e) = 1 also 1-edges and, otherwise, 0-edges.

Remark 4 Fitch graphs as defined here have been termed undirected Fitch graphs
(Hellmuth et al. 2018), in contrast to the notion of the directed Fitch graphs of 0/1-
edge-labeled trees studied e.g. inGeiß et al. (2018) andHellmuth and Seemann (2019).

Proposition 5 (Hellmuth et al. 2018; Zverovich 1999) The following statements are
equivalent.

1. G is the Fitch graph of a 0/1-edge-labeled tree.
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2. G is a complete multipartite graph.
3. G does not contain K2 + K1 as an induced subgraph.

A natural connection between LDT graphs and complete multipartite graphs is
suggested by the definition of triple setsT(G), since each forbidden induced subgraph
K2 + K1 of a complete multipartite graphs corresponds to a triple in an LDT graph.
More precisely, we have:

Lemma 12 (G, σ ) is a properly colored complete multipartite if and only if it is prop-
erly colored and T(G) = ∅.
Proof The equivalence between the statements can be seen by observing that G is a
complete multipartite graph if and only if G does not contain an induced K2 + K1 (cf.
Proposition 5). By definition of T(G), this is the case if and only if T(G) = ∅. ��
Definition 16 (rs-Fitch graph) Let S = (T , S, σ, μ, τT , τS) be a relaxed scenario with
HGT-labeling λS. We call the vertex colored graph (�(S), σ ) := (�(T , λS), σ ) the
Fitch graph of the scenario S.
A vertex colored graph (G, σ ) is a relaxed scenario Fitch graph (rs-Fitch graph) if
there is a relaxed scenario S = (T , S, σ, μ, τT , τS) such that G = �(S).

Figure 5 shows that rs-Fitch graphs are not necessarily properly colored. A subtle
difficulty arises from the fact that Fitch graphs of 0/1-edge-labeled trees are defined
without a reference to the vertex coloring σ , while the rs-Fitch graph is vertex colored.

Observation 1 If (G, σ ) is an rs-Fitch graph then G is a complete multipartite graph.

The “converse” of Observation 1 is not true in general, as we shall see in Theorem 6
below. If, however, the coloring σ can be chosen arbitrarily, then every complete mul-
tipartite graphG can be turned into an rs-Fitch graph (G, σ ) as shown in Proposition 6.

Proposition 6 If G is a complete multipartite graph, then there exists a relaxed sce-
nario S = (T , S, σ, μ, τT , τS) such that (G, σ ) is an rs-Fitch graph.

Proof Let G be a complete multipartite graph and set L := V (G) and R := E(G).
If R = ∅, then the relaxed scenario S constructed in the proof of Lemma 4 shows
that E(G) = E(�(S)) = ∅. Hence, we assume that R �= ∅ and explicitly construct a
relaxed scenario S = (T , S, σ, μ, τT , τS) such that (G, σ ) is an rs-Fitch graph.

We start by specifying the coloring σ : L → M . Since G is a complete multipartite
graph it is determined by its independent sets I1, . . . , Ik , which form a partition of L .
We set M := {1, 2, . . . , k} and color every x ∈ I j with color σ(x) = j , 1 ≤ j ≤ k.
By construction, (G, σ ) is properly colored, and σ(x) = σ(y) whenever xy /∈ R, i.e.,
whenever x and y lie in the same independent set. Therefore, we have S(G, σ ) = ∅.
Let S be the planted star tree with leaf set L(S) = {1, . . . , k} = M and childS(ρS) =
M . Since R �= ∅, we have k ≥ 2, and thus, ρS has at least two children and is, therefore,
phylogenetic. We choose the time map τS by putting τS(0S) = 2, τS(ρS) = 1 and
τS(x) = 0 for all x ∈ L(S).
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Fig. 17 Construction in the proof of Proposition 6

Finally, we construct the planted phylogenetic tree T with planted root 0T and root
ρT as follows: Vertex ρT has k children u1, . . . , uk . If I j = {x j } consists of a single
element, then we put u j := x j as a leaf or T , and otherwise, vertex u j has exactly |I j |
children where child(u j ) = I j . Now label, for all i ∈ {2, . . . , k}, the edge (ρT , ui )
with “1”, and all other edges with “0”. Since k ≥ 2, the tree T is also phylogenetic by
construction.

We specify the time map τT and the reconciliation map μ by defining, for every
v ∈ V (T ),

τT (v) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 = τS(0S)

0

1/2

1/4

μ(v) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0S if v = 0T ,

σ (v) if v ∈ L(T ),

(ρS, 1) if v = ρT , and

(ρS, i) if v = ui /∈ L(T ), 1 ≤ i ≤ k.

With the help of Fig. 17, it is now easy to verify that (i) τT is a time map for T ,
(ii) the reconciliation map μ is time-consistent, and (iii) λS = λ. In summary, S =
(T , S, σ, μ, τT , τS) is a relaxed scenario, and (G, σ ) = (�(S), σ ) is an rs-Fitch graph.

��

Although every complete multipartite graph can be colored in such a way that it
becomes an rs-Fitch graph (cf. Proposition 6), there are colored, complete multipartite
graphs (G, σ ) that are not rs-Fitch graphs, i.e., that do not derive from a relaxed
scenario (cf. Theorem 6). We summarize this discussion in the following

Observation 2 There are (planted) 0/1-edge labeled trees (T , λ) and colorings
σ : L(T ) → M such that there is no relaxed scenario S = (T , S, σ, μ, τT , τS) with
λ = λS.

A subtle—but important—observation is that trees (T , λ) with coloring σ for which
Observation 2 applies may still encode an rs-Fitch graph (�(T , λ), σ ), see Example 1
and Fig. 6. The latter is due to the fact that �(T , λ) = �(T ′, λ′) may be possible for a
different tree (T ′, λ′) for which there is a relaxed scenario S′ = (T ′, S, σ, μ, τT , τS)

with λ′ = λS. In this case, (�(T , λ), σ ) = (�(S′), σ ) is an rs-Fitch graph. We shall
briefly return to these issues in the discussion Sect. 8.
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B.2 LDT graphs and rs-Fitch graphs

We proceed to investigate to what extent an LDT graph provides information about
an rs-Fitch graph. As we shall see in Theorem 5 there is indeed a close connection
between rs-Fitch graphs and LDT graphs. We start with a useful relation between the
edges of rs-Fitch graphs and the reconciliation maps μ of their scenarios.

Lemma 13 Let �(S) be an rs-Fitch graph for some relaxed scenario S. Then, ab /∈
E(�(S)) implies that lcaS(σ (a), σ (b)) 	S μ(lcaT (a, b)).

Proof Assume first that ab /∈ E(�(S)) and denote by Pxy the unique path in T that
connects the two vertices x and y. Clearly, u := lcaT (a, b) is contained in Pab, and
this path Pab can be subdivided into the two paths Pu,a and Pu,b that have only vertex
u in common. Since ab /∈ E(�(S)), none of the edges (v,w) along the path Pab in T is
a transfer edge, and thus, the imagesμ(v) andμ(w) are comparable in S. This implies
that the images of any two vertices along the path Pu,a as well as the images of any
two vertices along Pu,b are comparable. In particular, therefore, μ(u) is comparable
with both μ(a) = σ(a) =: A and μ(b) = σ(b) =: B, where we may have A = B.
Together with the fact that A and B are leaves in S, this implies thatμ(u) is an ancestor
of A and B. Since lcaS(A, B) is the “last” vertex that is an ancestor of both A and B,
we have lcaS(A, B) 	S μ(u). ��

The next result shows that a subset of transfer edges can be inferred immediately
from LDT graphs:

Theorem 4 If (G, σ ) is an LDT graph, then G ⊆ �(S) for all relaxed scenarios S
that explain (G, σ ).

Proof Let S = (T , S, σ, μ, τT , τS) be a relaxed scenario that explains (G, σ ), i.e.,
G = G<(S). By definition, V (G) = V (�(S)) = L(T ). Hence it remains to show that
E(G) ⊆ E(�(S)). To this end, consider ab ∈ E(G) and assume, for contradiction,
that ab /∈ E(�(S)). Let A := σ(a) and B := σ(b). By Lemma 13, lcaS(A, B) 	S

μ(lcaT (a, b)). But then, by Definitions 3 and 4, τS(lcaS(A, B)) ≤ τS(lcaT (a, b)),
implying ab /∈ E(G), a contradiction. ��

Since we only have that xy is an edge in �(S) if the path connecting x and y in the
tree T of S contains a transfer edge, Theorem 4 immediately implies

Corollary 6 For every relaxed scenario S = (T , S, σ, μ, τT , τS) without transfer
edges, it holds that E(G<(S)) = ∅.

Theorem 4 provides the formal justification for indirect phylogenetic approaches
to HGT inference that are based on the work of Lawrence and Hartl (1992), Clarke
et al. (2002), and Novichkov et al. (2004) by showing that xy ∈ E(G<(S)) can be
explained only byHGT, irrespective of how complex the true biological scenariomight
have been. However, it does not cover all HGT events. Figure 7 shows that there are
relaxed scenarios S for which G<(S) �= �(S) even though �(S) is properly colored.
Moreover, it is possible that an rs-Fitch graph (G, σ ) contains edges xy ∈ E(G) with
σ(x) = σ(y). In particular, therefore, an rs-Fitch graph is not always an LDT graph.
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It is natural, therefore, to ask whether for every properly colored Fitch graph there
is a relaxed scenario S such that G<(S) = �(S). An affirmative answer is provided
by

Theorem 5 The following statements are equivalent.

1. (G, σ ) is a properly colored complete multipartite graph.
2. There is a relaxed scenario S = (T , S, σ, μ, τT , τS) with coloring σ such that

G = G<(S) = �(S).
3. (G, σ ) is complete multipartite and an LDT graph.
4. (G, σ ) is properly colored and an rs-Fitch graph.

In particular, for every properly colored complete multipartite graph (G, σ ) the triple
set S(G, σ ) is compatible.

Proof (1) implies (2). We assume that (G, σ ) is a properly colored multipartite graph
and set L := V (G) and E := E(G). If E = ∅, then the relaxed scenario S con-
structed in the proof of Lemma 4 satisfies G = G<(S) = �(S), i.e., the graphs are
edgeless. Hence, we assume that E �= ∅ and explicitly construct a relaxed scenario
S = (T , S, σ, μ, τT , τS) with coloring σ such that G = G<(S) = �(S).

The graph (G, σ ) is properly colored and complete multipartite by assumption. Let
I1, . . . , Ik denote the independent sets of G. Since E �= ∅, we have k > 1. Since all
x ∈ Ii are adjacent to all y ∈ I j , i �= j and (G, σ ) is properly colored, it must hold

that σ(Ii ) ∩ σ(I j ) = ∅. For a fixed i let v1i , . . . v|Ii |
i denote the elements in Ii .

We first start with the construction of the species tree S. First we add a planted root
0S with child ρS . Vertex ρS has children w1, . . . , wk where each w j corresponds to
one I j . Note, σ : L → M may not be surjective, in which case we would add one
additional child x to ρS for each color x ∈ M\σ(L).

If |σ(I j )| = 1, then we identify the single color x ∈ σ(I j ) with w j . Otherwise,
i.e., if |σ(I j )| > 1, vertex w j has as children the set childS(w j ) = σ(I j ) which are
leaves in S. See Fig. 18 for an illustrative example. Now we can choose the time map
τS for S such τS(0S) = 3, τS(ρS) = 2, τS(x) = 0 for all x ∈ L(S) and τS(x) = 1 for
all x ∈ V 0(S)\{ρS}.

We now construct T as follows. The tree T has planted root 0T with child ρT .
Vertex ρT has k children u1, . . . , uk where each u j corresponds to one I j . Vertex u j is
a leaf if |I j | = 1, and, otherwise, has exactly |I j | children that are uniquely identified
with the elements in I j .

We now define the time map τT and reconciliation map μ for v ∈ V (T ):

τT (v) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3 = τS(0S)

0

1.5

1.25

μ(v) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0S if v = 0T ,

σ (v) if v ∈ L(T ),

(ρS, w1) if v = ρT , and

(ρS, wi ) if v = ui /∈ L(T ), 1 ≤ i ≤ k.

With the help of Fig. 18 it is now easy to verify that (i) τT is a time map for T ,
and that (ii) the reconciliation map μ is time-consistent. In summary the constructed
S = (T , S, σ, μ, τT , τS) is a relaxed scenario.
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Fig. 18 Construction of the relaxed scenario S in the proof of Theorem 5

We continue with showing that E = E(G<(S)) = E(�(S)). To this end, let
a, b ∈ L be two vertices. Note, ab ∈ E if and only if a ∈ Ii and b ∈ I j for distinct
i, j ∈ [k] := {1, 2, . . . , k}.

First assume that ab ∈ E and thus, a ∈ Ii and b ∈ I j for distinct i, j ∈ [k]. By
construction, a 	T ui �= u j 
T b with lcaT (ui , u j ) = ρT . In particular, we have
parT (ui ) = parT (u j ) = ρT and the path from a to b contains the two edges (ρT , ui )
and (ρT , u j ). By construction, we have μ(ρT ) = (ρS, w1), and for all 1 ≤ l ≤ k,
μ(ul) = σ(ul) = wl if ul is a leaf, and μ(ul) = (ρS, wl) otherwise. These two
arguments imply that μ(ρT ) and μ(ul) are comparable if and only if ul = u1. Now,
since ui �= u j , they cannot both be equal to u1 and thus, at least one of the edges
(ρT , ui ) and (ρT , u j ) is a transfer edge. Hence, ab ∈ E(�(S)). By construction, ab ∈
E implies lcaT (a, b) = ρT . Hence, we have μ(lcaT (a, b)) = μ(ρT ) = (ρS, w1) ≺S

ρS = lcaS(σ (a), σ (b)), and thus ab ∈ E(G<(S)).
Now assume that ab /∈ E , and thus, a, b ∈ Ii for some i ∈ [k]. It clearly suffices

to consider the case a �= b, and thus, a, b ∈ childT (ui ) and ui /∈ L(T ) holds by
construction. In particular, the path between a and b only consists of the edges (ui , a)

and (ui , b). Moreover, we have σ(a), σ (b) 	S wi and μ(ui ) = (ρS, wi ). Hence,
none of the edges (ui , a) and (ui , b) is a transfer edge, and ab /∈ E(�(S)). We have
μ(lcaT (a, b)) = (ρS, wi ) �T wi 
T lcaS(σ (a), σ (b)), and thus τT (lcaT (a, b)) >

τS(lcaS(σ (a), σ (b))). Hence, ab /∈ E(G<(S)).
In summary, ab ∈ E if and only if ab ∈ E(�(S)) if and only if ab ∈ E(G<(S)),

and consequently, G = G<(S) = �(S).
(2) implies (1). Thus, suppose that there is a relaxed scenario S = (T , S, σ, μ, τT , τS)

with coloring σ such that G = G<(S) = �(S). Proposition 3 implies that (G, σ ) =
(G<(S), σ ) is properly colored. Moreover, (G, σ ) = (�(S), σ ) is an rs-Fitch graph
and thus, by Observation 1, G is complete multipartite.

Statements (1) and (2) together with Proposition 5 imply (3). Conversely, if (3) is
satisfied then Proposition 3 implies that (G, σ ) is properly colored. This and the fact
that G is complete multipartite implies (1). Therefore, Statements (1), (2) and (3) are
equivalent.
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Furthermore, (4) implies (1) by Observation 1. Conversely, (G, σ ) in Statement (2)
is an rs-Fitch graph and an LDT graph. Hence it is properly colored by Proposition 3.
Thus (2) implies (4).

Statement (3), in particular, implies that every properly colored complete multi-
partite (G, σ ) is an LDT graph and, thus, there is a relaxed scenario S such that
G = G<(S). Now, we can apply Lemma 6 to conclude that S(G, σ ) is compatible,
which completes the proof. ��
Corollary 7 A colored graph (G, σ ) is an LDT graph and an rs-Fitch graph if and
only if (G, σ ) is a properly colored complete multipartite graph (and thus, a properly
colored Fitch graph for some 0/1-edge-labeled tree).

Proof If (G, σ ) is an rs-Fitch graph then, by Observation 1, G is a complete multi-
partite graph. Moreover, since (G, σ ) is an LDT graph, (G, σ ) is properly colored
(cf. Proposition 3). Conversely, if (G, σ ) is a properly colored complete multipartite
graph it is, by Theorem 5(2), an rs-Fitch graph and an LDT graph. Now the equivalence
between Statements (1) and (3) in Theorem 5 shows that (G, σ ) is an LDT graph. ��
Corollary 8 Let (G, σ ) be a vertex-colored graph. IfT(G) = ∅ andS(G, σ ) is incom-
patible, then G is a complete multipartite graph (and thus, a Fitch graph for some
0/1-edge-labeled tree), but σ is not a proper vertex coloring of G.

Proof By definition, if T(G) = ∅, then G cannot contain an induced K2 + K1. By
Proposition 5, G is a Fitch graph. Contraposition of the last statement in Theorem 5
andG being a Fitch graph for some (T , λ) implies that σ is not a proper vertex coloring
of G. ��

As outlined in the main part of this paper, LDT graphs are sufficient to describe
replacing HGT. They fail, however, to describe additive HGT in full detail.

B.3 rs-Fitch graphs with general colorings

In scenarios with additive HGT, the rs-Fitch graph is no longer properly colored and
no-longer coincides with the LDT graph. Since not every vertex-colored complete
multipartite graphs (G, σ ) is an rs-Fitch graph (cf. Theorem 6), we ask whether an
LDT graph (G, σ ) that is not itself already an rs-Fitch graph imposes constraints
on the rs-Fitch graphs (�(S), σ ) that derive from relaxed scenarios S that explain
(G, σ ). As a first step towards this goal, we aim to characterize rs-Fitch graphs, i.e.,
to understand the conditions imposed by the existence of an underlying scenario S on
the compatibility of the collection of independent setsI of G and the coloring σ . As
we shall see, these conditions can be explained in terms of an auxiliary graph that we
introduce in a very general setting:

Definition 17 Let L be a set, σ : L → M a map andI = {I1, . . . , Ik} a set of subsets
of L . Then the graph A�(σ,I ) has vertex set M and edges xy if and only if x �= y
and x, y ∈ σ(I ′) for some I ′ ∈ I . We define an edge labeling � : E(A�) → 2I

such that �(e) := {I ∈ I | ∃x, y ∈ I s.t. σ(x)σ (y) = e}.
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By construction A�(σ,I ′) is a subgraph of A�(σ,I ) whenever I ′ ⊆ I . The
labeling of an edge e records the sets I ∈ I that imply the presence of the edge.

Theorem 6 Agraph (G, σ ) is an rs-Fitch graph if and only if (i) it is completemultipar-
tite with independent setsI = {I1, . . . , Ik}, and (ii) if k > 1, there is an independent
set I ′ ∈ I such that A�(σ,I \{I ′}) is disconnected.

Proof Let G = (L, E) be a graph with coloring σ : L → M . Suppose first that G
satisfies (i) and (ii). To show that (G, σ ) is an rs-Fitch graph,wewill construct a relaxed
scenario S = (T , S, σ, μ, τT , τS) such that G = �(S). If k = 1, or equivalently
E = ∅, then the relaxed scenario S constructed in the proof of Lemma 4 satisfies
G = �(S), i.e., both graphs are edgeless. Now assume that k > 1 and thus, E �= ∅.
Hence, we can choose an independent set I ′ ∈ I such that A′

�
:= A�(σ,I \{I ′})

is disconnected. Note that I \{I ′} is non-empty since k > 1. Moreover, since A′
�
is

a disconnected graph on the color set M , there is a connected component C of A′
�

such that (M\C) ∩ σ(I ′) �= ∅. Hence M1 := M\C and M2 := C form a bipartition
of M such that neither M1 nor M2 are empty sets.

We continue by showing that every I ∈ I \{I ′} satisfies either σ(I ) ⊆ M1 or
σ(I ) ⊆ M2. To see this, assume, for contradiction, that there are colors A ∈ σ(I )∩M1
and B ∈ σ(I ) ∩ M2 for some I ∈ I \{I ′}. Thus, B ∈ C and, by definition, AB ∈
E(A′

�
). Therefore, A and B must lie in the connected component C ; a contradiction.

Therefore, we can partition I \{I ′} into I1 := {I ∈ I \{I ′} | σ(I ) ⊆ M1} and
I2 := {I ∈ I \{I ′} | σ(I ) ⊆ M2}. Note that one of the setsI1 andI2, but not both
of them, may be empty. This may be the case, for instance, if σ is not surjective.

Now, we construct a relaxed scenario S = (T , S, σ, μ, τT , τS) with coloring σ

such that G = �(S). We first define the species tree S as the planted tree where ρS

(i.e. the single child of 0S) hast two children w1 and w2. If |M1| = 1, we identify w1
with the single element in M1, and otherwise, we set childS(w1) = L(S(w1)) := M1.
We proceed analogously for w2 and M2. Thus, S is phylogenetic by construction. We
choose the time map τS by putting τS(0S) = 2, τS(ρS) = 1, τS(w1) = τS(w2) = 0.5
and τS(x) = 0 for all x ∈ L(S). This completes the construction of S and τS .

We proceed with the construction of the gene tree T , its time map τT and the
reconciliation map μ. This tree T has leaf set L , planted root 0T , and root ρT . We set
μ(0T ) = 0S and τT (0T ) = τS(0S) = 2, and moreover μ(x) = σ(x) and τT (x) = 0
for all x ∈ L .

For each I j ∈ I \{I ′}, we add a vertex u j . We will later specify how these vertices
are connected (via paths) to ρT . If |I j | = 1, u j becomes a leaf of T that is identified
with the unique element in I j . Otherwise, we add exactly |I j | children to u j , each of
which is identified with one of the elements in I j . If u j is a leaf, we already defined
μ(u j ) = σ(u j ) and τT (u j ) = 0.

Otherwise, we set τT (u j ) = 0.6 and μ(u j ) = (ρS, w1) if I j ∈ I1 and μ(u j ) =
(ρS, w2) if I j ∈ I2. Recall that M1 ∩ σ(I ′) �= ∅. However, both M2 ∩ σ(I ′) �= ∅
and M2 ∩ σ(I ′) = ∅ are possible. The latter case appears e.g. whenever A�(σ,I )

was already disconnected. To connect the vertices u j to ρT , we distinguish the three
mutually exclusive cases:
Case (a): M2 ∩ σ(I ′) = ∅ and I1 �= ∅.
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A B C

Fig. 19 Illustration of the relaxed scenario constructed in the if -direction of the proof of Theorem 6. For
Cases (a) and (c), only the situation in which a vertex u′ and u′′, resp., is necessary is shown. Otherwise,
the single element in I ′, I ′1 or I ′2 would be a child of the root ρT . Moreover, the vertices u j are drawn under
the assumption that |I j | > 1. Otherwise, there are identified with the single leaf in I j

We set μ(ρT ) = (ρS, w2) and τT (ρT ) = 0.9. We attach all u j that correspond to
elements I j ∈ I1 as children of ρT . If |I ′| > 1 or I2 �= ∅, we create a vertex u′ to
which all elements in I ′ and all u j such that I j ∈ I2 are attached as children, attach u′
as a child of ρT , and set μ(u′) = (ρS, w1) and τT (u′) = 0.75. Otherwise, we simply
attach the single element x ′ in I ′ as a child of ρT . Clearly, the so constructed tree T is
phylogenetic. Note that the edges (ρT , u j ) with I j ∈ I1 as well as the edges (u′, u j )

with I j ∈ I2 are transfer edges. Together with (ρT , u′) or (ρT , x), respectively, these
are the only transfer edges.
Case (b): M2 ∩ σ(I ′) = ∅ and I1 = ∅.
By the arguments above, the latter implies I2 �= ∅. Hence, we can set μ(ρT ) =
(ρS, w1) and τT (ρT ) = 0.9 and attach all elements of I ′ as well as the vertices u j

corresponding to the independent sets I j ∈ I2 = I \{I ′} as children of ρT . Since
|I ′| ≥ 1 and I2 ≥ 1, the tree T obtained in this manner is again phylogenetic.
Moreover, note that the transfer edges are exactly the edges (ρT , u j ).
Case (c): M2 ∩ σ(I ′) �= ∅.
In this case, the sets I ′

1 := {x ∈ I ′ | σ(x) ∈ M1} and I ′
2 := {x ∈ I ′ | σ(x) ∈ M2}

must be non-empty. We set μ(ρT ) = (0T , ρT ) and τT (ρT ) = 1.5. If |I ′
1| > 1 or

I2 �= ∅, we create a vertex u′ to which all elements in I ′
1 and all u j such that I j ∈ I2

are attached as children, and set μ(u′) = (ρS, w1) and τT (u′) = 0.75. Otherwise, we
simply attach the single element in I ′

1 as a child of ρT . For the “other side”, we proceed
analogously: If |I ′

2| > 1 or I1 �= ∅, we create a vertex u′′ to which all elements in I ′
2

and all u j such that I j ∈ I1 are attached as children, and set μ(u′) = (ρS, w2) and
τT (u′′) = 0.75. Otherwise, we simply attach the single element in I ′

2 as a child of ρT .
By construction, the so constructed tree is again phylogenetic. Moreover, the transfer
edges are exactly the edges (u′, u j ) and (u′′, u j ).

Using Fig. 19, one can easily verify that, in all three Cases (a)-(c), the reconciliation
map μ is time-consistent with τT and τS . Thus, S is a relaxed scenario. Moreover,
Fig. 19 together with the fact that σ(I ) ⊆ M1 holds for all I ∈ I1, and σ(I ) ⊆ M2
holds for all I ∈ I2, shows that G = �(S) in all three cases. Hence, (G, σ ) is an
rs-Fitch graph.
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For the only-if -direction, assume that (G = (V , E), σ ) is an rs-Fitch graph. Hence,
there exists a relaxed scenarioS = (T , S, σ, μ, τT , τS) such thatG = �(S). ByObser-
vation 1 and Proposition 5, (G, σ ) is a complete multipartite graph that is determined
by its set of independent sets I = {I1, . . . , Ik}. Hence, Condition (i) is satisfied.

Now assume, for contradiction, that Condition (ii) is violated. Thus k ≥ 2 and there
is no independent set I ′ ∈ C such that A�(σ,I \{I ′}) is disconnected. If |M | = 1,
then the species tree S only consists of the planted root 0S and the root ρS , which
in this case is identified with the single element in M . Clearly, all vertices and edges
are comparable in such a tree S, and hence, there is no transfer edges in S, implying
E = ∅ and thus |I | = 1; a contradiction to k ≥ 2.

Thus we have |M | ≥ 2 and the root ρS of the species tree S has at least two
children. Since A�(σ,I \{I ′}) is connected for every I ′ ∈ C , the graph A�(σ,I )

is also connected. Since each color appears at most once as a leaf of S, σ(L(S(v1)))∩
σ(L(S(v2))) = ∅ holds for any two distinct children v1, v2 ∈ childS(ρS). These three
assertions, together with the definition of the auxiliary graph A�(σ,I ), imply that
there are two distinct colors A, B ∈ M such that AB is an edge inA�(σ,I ), A 	S v1
and B ≺S v2 for distinct children v1, v2 ∈ childS(ρS). By definition of A�(σ,I )

there is an independent set I ′ ∈ I containing a vertex a ∈ I ′ with σ(a) = A and a
vertex b ∈ I ′ with σ(b) = B. Since a and b lie in the same independent set, we have
ab /∈ E . By Lemma 13, μ(lcaT (a, b)) 
S lcaS(A, B) = ρS . Since, by assumption,
A�(σ,I \{I ′}) is also connected, we find two distinct colorsC and D (not necessarily
distinct from A and B) such that CD is an edge in A�(σ,I ), C 	S v3 and D ≺S v4
for distinct children v3, v4 ∈ childS(ρS) (but not necessarily distinct from v1 and v2),
and in particular, an independent set I ′′ ∈ I \{I ′} containing a vertex c ∈ I ′′ with
σ(c) = C and a vertex d ∈ I ′′ with σ(d) = D. By construction, I ′ �= I ′′, and thus,
all edges between I ′ and I ′′ exist in G, in particular the edges ac, ad, bc, bd. Since
c, d ∈ I ′′, we have cd /∈ E and thus, by Lemma 13, μ(lcaT (c, d)) 
S lcaS(C, D) =
ρS .

We now consider the unique path P in T that connects lcaT (a, b) and lcaT (c, d).
Sinceμ is time-consistent andμ(lcaT (a, b)), μ(lcaT (c, d)) 
S ρS , we conclude that,
for every edge uv along this path P , we haveμ(u), μ(v) 
S ρS and thusμ(u), μ(v) ∈
{ρS, (0S, ρS)}. But then, μ(u) and μ(v) are comparable in S. Therefore, P does not
contain any transfer edge. Since ab /∈ E , the path connecting a and lcaT (a, b) does
not contain any transfer edges. Likewise, cd /∈ E implies that the path connecting c
and lcaT (c, d) does not contain any transfer edges. Thus, the path connecting a and
c also does not contain any transfer edge, which implies that ac /∈ E(�(S)) = E ; a
contradiction since a and c belong to two distinct independent sets.

Hence, we conclude that for k > 1 there exists an independent set I ′ ∈ C such that
A�(σ,I \{I ′}) is disconnected. ��
Corollary 9 rs-Fitch graphs can be recognized in polynomial time.

Proof Every rs-Fitch graph (G, σ ) must be complete multipartite, which can be veri-
fied in polynomial time. In this case, the set of independent sets I = {I1, . . . , Ik} of
G can also be determined and the graph A�(σ,I ) can be constructed in polynomial
time. Finally, we need to find an independent set I ′ ∈ I , such thatA�(σ,I \{I ′}) is
disconnected. Clearly, checking whetherA�(σ,I \{I ′}) is disconnected can be done
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in polynomial time and since there are at most |V (G)| independent sets inI , finding
an independent set I ′ such that A�(σ,I \{I ′}) is disconnected (if one exists) can be
done in polynomial time as well. ��
Corollary 10 Let (G, σ ) be a complete multipartite graph with coloring σ : V (G) →
M and set of independent sets I . Then, (G, σ ) is an rs-Fitch graph if and only if
A�(σ,I ) is disconnected or there is a cut Q ⊆ E(A�(σ,I )) such that all edges
e ∈ Q have the same label �(e) = {I } for some I ∈ I .

Proof IfA�(σ,I ) is disconnected, thenA�(σ,I \{I }) remains disconnected for all
I ∈ I and, by Theorem 6, (G, σ ) is an rs-Fitch graph.

If there is a cut Q ⊆ E(A�(σ,I )) such that all edges e ∈ Q have the same
label �(e) = {I } for some I ∈ I , then, by definition, E(A�(σ,I \{I })) ⊆ E ′ :=
E(A�(σ,I ))\Q. Since Q is a cut in A�(σ,I ), the resulting graph A′

�
= (M, E ′)

is disconnected. By the latter arguments, A�(σ,I \{I }) is a subgraph of A′
�
, and

thus, disconnected as well. By Theorem 6, (G, σ ) is an rs-Fitch graph.
Conversely, if (G, σ ) is an rs-Fitchgraph, thenTheorem6 implies thatA�(σ,I \{I })

is disconnected for some I ∈ I . If A�(σ,I ) was already disconnected, then there
is nothing to show. Hence assume that A�(σ,I ) = (M, E) is connected and let
A�(σ,I \{I }) = (M, E ′). Moreover, let F ⊆ E be the subset of edges e ∈ E
with I ∈ �(e). Note, F contains all edges of E that have potentially been removed
from E to obtain E ′. However, all edges e = xy in F with |�(e)| > 1 must remain
in A�(σ,I \{I }), since there is another independent set I ′ ∈ �(e)\{I } such that
x, y ∈ σ(I ′). Hence, only those edges e in F for which |�(e)| = 1 are removed from
E . Hence, there is a cut Q ⊆ F ⊆ E such that all edges e ∈ Q have the same label
�(e) = {I } for some I ∈ I . ��
Corollary 11 If (G, σ ) with coloring σ : V (G) → M is an rs-Fitch graph, then there
are no two disjoint independent sets I and I ′ of G with σ(I ) = σ(I ′) = M.

Proof Let I be the set of independent sets of G. If |I | = 1, there is nothing to
show and thus, we assume that |I | > 1. Assume, for contradiction, that there are
two distinct independent sets I , I ′ ∈ I such that σ(I ) = σ(I ′) = M . For every
I ′′ ∈ I , the set I \{I ′′} clearly contains at least one of the two sets I and I ′, both of
which contain all colors in M . Therefore, A�(σ,I \{I ′′}) is the complete graph by
construction and, thus, connected for every I ′′ ∈ I . This together with Theorem 6
implies that (G, σ ) is not an rs-Fitch graph; a contradiction. ��
Corollary 12 Every complete multipartite graph (G, σ ) with a vertex coloring
σ : V (G) → M that is not surjective is an rs-Fitch graph.

Proof If σ : V (G) → M is not surjective, then A�(σ,I ) is disconnected, where I
denotes the set of independent sets ofG. Hence, if k > 1, thenA�(σ,I \{I }) remains
disconnected for all I ∈ I . By Theorem 6, (G, σ ) is an rs-Fitch graph. ��

Corollary 12 may seem surprising since it implies that the property of being an
rs-Fitch graph can depend on species (colors M) for which we have no genes L in
the data. The reason is that an additional lineage in the species tree provides a place
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to “park” interior vertices in the gene tree from which HGT-edges can emanate that
could not always be accommodated within lineages that have survivors—where they
may force additional HGT edges.

Corollary 13 Every Fitch graph (G, σ ) that contains an independent set I and a vertex
x ∈ I with σ(x) /∈ σ(I ′) for all other independent sets I ′ �= I , is an rs-Fitch graph.

Proof Let I denote the set of independent sets of G. If there is an independent set
I ∈ I that contains a vertex x ∈ I with σ(x) /∈ σ(I ′) for all other independent
sets I ′ �= I , then the vertex σ(x) in A�(σ,I \{I }) is an isolated vertex and thus,
A�(σ,I \{I }) is disconnected. By Theorem 6, (G, σ ) is an rs-Fitch graph. ��
As for LDT graphs, the property of being an rs-Fitch graph is hereditary.

Corollary 14 If (G = (L, E), σ ) is an rs-Fitch graph, then the colored vertex induced
subgraph (G[W ], σ|W ) is an rs-Fitch graph for all non-empty subsets W ⊆ L.

Proof It suffices to show the statement for W = L\{x} for an arbitrary vertex x ∈ L .
If G = (L, E) is edgeless, then G[W ] is edgeless and thus, by Theorem 6, an rs-Fitch
graph.

Thus, assume that E �= ∅ and thus, for the set I of independent sets of G it holds
that |I | > 1. Since G does not contain an induced K2 + K1, it is easy to see that
G[W ] cannot contain an induced K2 + K1 and thus, G[W ] is a complete multipartite
graph. Hence, Theorem 6(i) is satisfied. Moreover, if for the set I ′ of independent
sets of G[W ] it holds that |I ′| = 1 then, Theorem 6 already shows that (G[W ], σ|W )

is an rs-Fitch graph.
Thus, assume that |I ′| > 1. Now compare the labeling � of the edges in A� =

A�(σ,I ) and the labeling �′ of the edges inA′
�

= A�(σ|W ,I ′). Note,A� andA′
�

have still the same vertex set M . Let I ∈ I with x ∈ I . For all vertices y ∈ I with
σ(x) �= σ(y), we have an edge e = σ(x)σ (y) in A� and I ∈ �(e). Consequently,
for all edges e of A� that are present in A′

�
we have �′(e) ⊆ �(e). In particular, A′

�

cannot have edges that are not present in A�, since we reduced for one independent
set the size by one. Therefore, A′

�
is a subgraph of A�.

By Theorem 6, there is an independent set I ′ ∈ I , not necessarily distinct from
I , such that A�(σ,I \{I ′}) is disconnected. If I ′ = {x}, then I ′ = I \{I ′} and
A′

�
= A� must be disconnected aswell. Otherwise,A′

�
⊆ A� and similar arguments

as above show thatA�(σ,I ′\{I ′}) ⊆ A�(σ,I \{I ′}). Therefore, in both of the latter
cases, A�(σ,I ′\{I ′}) is disconnected and Theorem 6 implies that (G[W ], σ|W ) is
an rs-Fitch graph. ��

As outlined in the main part of this paper, Corollary 14 is usually not satisfied if
we restrict the codomain of σ to the observable part of colors, even if σ is surjective.

B.4 Least resolved trees for Fitch graphs

It is important to note that the characterization of rs-Fitch graphs in Theorem 6 does
not provide us with a characterization of rs-Fitch graphs that share a common relaxed
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scenario with a given LDT graph. As a potential avenue to address this problem we
investigate the structure of least-resolved trees for Fitch graphs as possible source of
additional constraints.

All trees considered in this Appendix B.4 are rooted and phylogenetic but not
planted unless stated differently. This is no loss of generality, since we are interested
in Fitch-least-resolved trees, which are never be planted because the edge incident
with the planted root can be contracted without affecting the paths between the leaves.

Definition 18 The edge-labeled tree (T , λ) is Fitch-least-resolved w.r.t. �(T , λ), if
for all trees T ′ �= T that are displayed by T and every labeling λ′ of T ′ it holds that
�(T , λ) �= �(T ′, λ′).

Definition 19 Let (T , λ) be an edge-labeled tree and let e = (x, y) ∈ E(T ) be an
inner edge. The tree (T/e, λ/e) with L(T/e) = L(T ), is obtained by contraction of the
edge e in T and by keeping the edge labels of all non-contracted edges.

Note, if e is an inner edge of a phylogenetic tree T , then the tree T/e is again phylo-
genetic.

Definition 20 An edge e in (T , λ) is relevantly-labeled in (T , λ) if, for the tree (T , λ′)
with λ′( f ) = λ( f ) for all f ∈ E(T )\{e} and λ′(e) �= λ(e), it holds that �(T , λ) �=
�(T , λ′).

Lemma 14 An outer 0-edge e = (v, x) in (T , λ) is relevantly-labeled in (T , λ) if and
only if zx /∈ E(�(T , λ)) for some z ∈ L(T )\{x}.
Proof Assume that e = (v, x) is a relevantly-labeled outer 0-edge. Hence, for (T , λ′)
with λ′( f ) = λ( f ) for all f ∈ E(T )\{e} and λ′(e) = 1, it holds that �(T , λ) �=
�(T , λ′). Since we only changed the label of the outer edge (v, x), it still holds that
yy′ ∈ E(�(T , λ′)) if and only if yy′ ∈ E(�(T , λ)) for all distinct y, y′ ∈ L(T )\{x}.
Moreover, since λ′(e) = 1 and e = (v, x) is an outer edge, we have xz ∈ E(�(T , λ′))
for all z ∈ L(T )\{x}. Thus, �(T , λ) �= �(T , λ′) implies that xz /∈ E(�(T , λ)) for at
least one z ∈ L(T )\{x}.

Now, suppose that zx /∈ E(�(T , λ)) for some z ∈ L(T )\{x}. Clearly, this implies
that the outer edges e = (v, x) and f = (w, z) must be 0-edges and changing one of
them to a 1-edge would imply that xz becomes an edge in the Fitch graph. Hence, e
is relevantly-labeled in (T , λ). ��
Lemma 15 For every tree (T , λ) and every inner 0-edge e of T , it holds �(T , λ) =
�(T/e, λ/e).

Proof Suppose that (T , λ) contains an inner 0-edge e = (u, v). The contraction of this
edge does not change the number of 1-edges along the paths connecting any two leaves.
It affects the least common ancestor of x and y, if lcaT (x, y) = u or lcaT (x, y) = v.
In either case, however, the number of 1-edges between lcaT (x, y) and the leaves x
and y remains unchanged. Hence, we have �(T , λ) = �(T/e, λ/e). ��
Lemma 16 If (T , λ) is a Fitch-least-resolved tree w.r.t. �(T , λ), then it does neither
contain inner 0-edges nor inner 1-edges that are not relevantly-labeled.
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Proof Suppose first, by contraposition, that (T , λ) contains an inner 0-edge e = (u, v).
By Lemma 15, �(T , λ) = �(T/e, λ/e), and thus, (T , λ) is not Fitch-least-resolved.

Assume now, by contraposition, that (T , λ) contains an inner 1-edge e that is not
relevantly-labeled. Hence, we can put λ′(e) = 0 and λ( f ) = λ( f ′) for all f ∈
E(T )\{e} and obtain �(T , λ) = �(T , λ′). Since (T , λ′) contains an inner 0-edge, it
cannot be Fitch-least-resolved. Therefore and by definition, (T , λ) cannot be Fitch-
least-resolved as well. ��

The converse of Lemma 16 is, however, not always satisfied. To see this, consider
the Fitch graph G � K3 with vertices x, y and z. Now, consider the tree (T , λ) where
T is the triple xy|z, the two outer edges incident to y and z are 0-edges while the
remaining two edges in T are 1-edges. It is easy to verify that G = �(T , λ). In
particular, the inner edge e is relevantly-labeled, since if λ′(e) = 0 we would have
yz /∈ E(�(T , λ′)). However, (T , λ) is not Fitch-least-resolved w.r.t. G, since the star
tree T ′ on the three leaves x, y, z is displayed by T , and the labeling λ′ with λ′(e) = 1
for all e ∈ E(T ′) provides a tree (T ′, λ′) with G = �(T ′, λ′).
Lemma 17 A tree (T , λ) is a Fitch-least-resolved tree w.r.t. �(T , λ) if and only if
�(T , λ) �= �(T/e, λ

′) holds for all labelings λ′ of T/e and all inner edges e in T .

Proof Let (T , λ) be an edge-labeled tree. Suppose first that (T , λ) is Fitch-least-
resolved w.r.t. �(T , λ). For every inner edge e in T , the tree T/e �= T is displayed
by T . By definition of Fitch-least-resolved trees, we have �(T , λ) �= �(T/e, λ

′) for
every labeling λ′ of T/e.

For the converse, assume, for contraposition, that (T , λ) is not Fitch-least-resolved
w.r.t. �(T , λ). Hence, there is a tree (T ′, λ′) such that T ′ �= T is displayed by T and
�(T , λ) = �(T ′, λ′). Clearly, T and T ′ must have the same leaf set. Therefore and
since T ′ < T , the tree T ′ can be obtained from T by a sequence of contractions of
inner edges e1, . . . , e� (in this order) where � ≥ 1. If � = 1, then we have T ′ = T/e1
and, by assumption, �(T , λ) = �(T/e1 , λ

′). Thus, we are done. Now assume � ≥ 2.
We consider the tree (T/e1, λ

′′) where λ′′( f ) = λ′( f ) if f ∈ E(T ′) and λ′′( f ) = 0
otherwise. Hence, (T ′, λ′) can be obtained from (T/e1 , λ

′′) by stepwise contraction of
the 0-edges e2, . . . , e�, and by keeping the labeling of λ′′ for the remaining edges in
each step. Hence, we can repeatedly apply Lemma 15 to conclude that �(T/e1, λ

′′) =
�(T ′, λ′). Together with �(T , λ) = �(T ′, λ′), we obtain �(T , λ) = �(T/e1, λ

′′),
which completes the proof. ��

As a consequence of Lemma 17, it suffices to show that �(T , λ) = �(T/e, λ
′) for

some inner edge e ∈ E(T ) and some labeling λ′ for T/e to show that (T , λ) is not Fitch-
least-resolved tree w.r.t. �(T , λ). The next result characterizes Fitch-least-resolved
trees and is very similar to the results for “directed” Fitch graphs of 0/1-edge-labeled
trees (cf. Lemma 11(1,3) in Geiß et al. 2018). However, we note that we defined Fitch-
least-resolved in terms of all possible labelings λ′ for trees T ′ displayed by T , whereas
Geiß et al. (2018) call (T , λ) least-resolved whenever (T/e, λ/e) results in a (directed)
Fitch graph that differs from the one provided by (T , λ) for every e ∈ E(T ).

Theorem 7 Let G be a Fitch graph, and (T , λ) be a tree such that G = �(T , λ). If all
independent sets of G are of size one (except possibly for one independent set), then
(T , λ) is Fitch-least-resolved for G if and only if it is a star tree.
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If G has at least two independent sets of size at least two, then (T , λ) is Fitch-least-
resolved for G if and only if

(a) every inner edge of (T , λ) is a 1-edge,
(b) for every inner vertex v ∈ V 0(T ) there are (at least) two relevantly-labeled outer

0-edges (v, x), (v, y) in (T , λ)

In particular, if distinct x, y ∈ L(T ) are in the same independent set of G, then they
have the same parent in T and (par(x), x), (par(x), y) are relevantly-labeled outer
0-edges.

Proof Suppose that every independent set ofG is of size one (except possibly for one).
Let (T , λ) be the star tree where λ((ρT , v)) = 1 if and only if v is the single element in
an independent set of size one. It is now a simple exercise to verify that G = �(T , λ).
Since (T , λ) is a star tree, it is clearly Fitch-least-resolved. The converse follows
immediately from this construction together with fact that the star tree is displayed by
all trees with leaf set V (G). In the following we assume that G contains at least two
independent sets of size at least two.

First suppose that (T , λ) is Fitch-least resolved w.r.t. �(T , λ). By Lemma 16,
Condition (a) is satisfied. We continue with showing that Condition (b) is satisfied.
In particular, we show first that every inner vertex v ∈ V 0(T ) is incident to at least
one relevantly-labeled outer 0-edge. To this end, assume, for contradiction, that (T , λ)

contains an inner vertex v ∈ V 0(T ) for which this property is not satisfied.
That is, v is either (i) incident to 1-edges only (incl. λ((parT (v), v)) = 1 in case v �=

ρT byCondition (a)) or (ii) there is an outer 0-edge (v, x) that is not relevantly-labeled.
In Case (i), we put λ′ = λ. In Case (ii), we obtain a new labeling λ′ by changing the
label of every outer 0-edge (v, x) with x ∈ childT (v)∩ L(T ) to “1” while keeping the
labels of all other edges. This does not affect the Fitch graph, since every such 0-edge is
not relevantly-labeled, and thus, zx ∈ E(�(T , λ)) for all z ∈ L(T )\{x} by Lemma 14.
Hence, for both Cases (i) and (ii), for the labeling λ′ all outer edges (v, x) with x ∈
child(v)∩L(T ) are labeled as 1-edges, v is incident to 1-edges only (by Condition (a))
and �(T , λ) = �(T , λ′). We thus have xy ∈ E(�(T , λ′)) = E(�(T , λ)) for all
x ∈ L(T (v)) and y ∈ L(T )\L(T (v)). Now, if v �= ρT let e = (u := parT (v), v).
Otherwise, if v = ρT then let e = (v, u) for some inner vertex u ∈ childT (v).
Note, such an inner edge (ρT , u) exists since G contains at least two independent sets
of size at least two and T is not a star tree as shown above. Now consider the tree
(T/e, λ

′
/e), and denote by w the vertex obtained by contraction of the inner edge e. By

construction, every path in T/e connecting any x ∈ L(T (v)) and y ∈ L(T )\L(T (v))

must contain some 1-edge (w,w′) with w′ ∈ childT/e (w) = childT (v) implying
xy ∈ E(�(T/e, λ

′
/e)). Moreover, the edge contraction does not affect whether or not

the path between any vertices within L(T (v)) or within L(T )\L(T (v)) contains a
1-edge. Hence, �(T , λ) = �(T , λ′) = �(T/e, λ

′
/e), and (T , λ) is not Fitch-least-

resolved; a contradiction. In summary, every inner vertex v must be incident to at least
one relevantly-labeled outer 0-edge (v, x). By Lemma 14, (v, x) is a relevantly-labeled
outer 0-edge if and only if there is a vertex z ∈ L(T )\{x} such that zx /∈ E(�(T , λ)).
By Condition (a), all inner edges in (T , λ) are 1-edges, and thus, there is only one place
where the leaf z can be located in T , namely as a leaf adjacent to v. In particular, the
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outer edge (v, z) is a relevantly-labeled 0-edge, since zx /∈ E(�(T , λ)). Therefore,
Condition (b) is satisfied for every inner vertex v of T .

The latter arguments also show that all distinct vertices x, y ∈ L(T ) that are
contained in the same independent set must have the same parent. Clearly, (par(x), x),
(par(x), y)must be outer 0-edges, since otherwise xy ∈ E(�(T , λ)). Hence, the final
statement of the theorem is satisfied.

Now let (T , λ) be such that Conditions (a) and (b) are satisfied. First observe that
none of the outer edges can be contracted without changing L(T ). Now let e = (u, v)

be an inner edge. By Condition (a), e is a 1-edge. Moreover, by Condition (b), vertex u
and v are both incident to at least two relevantly-labeled outer 0-edges. Hence, there are
outer 0-edges (u, x), (u, x ′), (v, y), (v, y′) with pairwise distinct leaves x, x ′, y, y′ in
T . Since (u, v) is a 1-edge, we have xy, xy′, x ′y, x ′y′ ∈ E(�(T , λ)). Moreover, we
have xx ′, yy′ /∈ E(�(T , λ)). Now consider the tree (T/e, λ

′)with an arbitrary labeling
λ′ and denote by w the vertex obtained by contraction of the inner edge (u, v). In this
tree, x, x ′, y, y′ all have the same parent w. If λ′((w, x)) = 1 or λ′((w, y)) = 1, we
have xx ′ ∈ �(T/e, λ

′) or yy′ ∈ E(�(T/e, λ
′)), respectively. If λ′((w, x)) = 0 and

λ′((w, y)) = 0, we have xy /∈ E(�(T/e, λ
′)). Hence, it holds �(T/e, λ

′) �= �(T , λ)

in both cases. Since the inner edge e and λ′ were chosen arbitrarily, we can apply
Lemma 17 to conclude that (T , λ) is Fitch-least-resolved. ��

As a consequence of Theorem 7, Fitch-least-resolved trees can be constructed in
polynomial time. To bemore precise, if a Fitch graphG contains only independent sets
of size one (except possibly for one), we can construct a star tree T with edge labeling
λ as specified in the proof of Theorem 7 to obtain the 0/1-edge labeled tree (T , λ) that
is Fitch-least-resolved w.r.t. G. This construction can be done in O(|V (G)|) time.

Now, assume that G has at least two independent sets of size at least two. Let I
be the set of independent sets of G and I1, . . . , Ik ∈ I , k ≥ 2 be all independent
sets of size at least two. We now construct a tree (T , λ) with root ρT as follows: First
we add k vertices v1 = ρT and v2, . . . , vk , and add inner edges ei = (vi , vi+1) with
label λ(ei ) = 1, 1 ≤ i ≤ k − 1. Each vertex vi gets as children the leaves in Ii ,
1 ≤ i ≤ k and all these additional outer edges obtain label “0”. Finally, all elements
in the remaining independent sets I \{I1, . . . , Ik} are of size one and are connected
as leaves via outer 1-edges to the root v1 = ρT . It is an easy exercise to verify that
T is a phylogenetic tree and that �(T , λ) = G. In particular, Theorem 7 implies that
(T , λ) is Fitch-least-resolved w.r.t. G. This construction can be done in O(|V (G)|)
time. We summarize this discussion as

Proposition 7 For a given Fitch graph G, a Fitch-least-resolved tree can be con-
structed in O(|V (G)|) time.

Fitch-least-resolved trees, however, are only of very limited use for the construction
of relaxed scenarios S = (T , S, σ, μ, τT , τS) from an underlying Fitch graph. First
note that we would need to consider planted versions of Fitch-least-resolved trees,
i.e., Fitch-least-resolved trees to which a planted root is added, since otherwise, such
trees cannot be part of an explaining scenario, which is defined in terms of planted
trees. Even though (G, σ ) is an rs-Fitch graph, Example 3 shows that it is possible
that there is no relaxed scenario S = (T , S, σ, μ, τT , τS) with HGT-labeling λS such
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Fig. 20 An rs-Fitch graph (G, σ ) and a possible relaxed scenario S = (T , S, σ, μ, τT , τS) with G =
�(T , λS). For the planted versions (T1, λ1) and (T2, λ2) of the Fitch-least-resolved trees of (G, σ ) there is
no relaxed scenario S such that (Ti , λi ) = (Ti , λS), i ∈ {1, 2}. Red edges indicate 1-labeled (i.e., transfer)
edges. See Example 3 for further details

that (T , λ) = (T , λS) for the planted version (T , λ) of any of its Fitch-least-resolved
trees.

Example 3 Consider the rs-Fitch graph (G, σ ) with V (G) = {a, b, b′, c}, E(G) =
{ab′, ac, bb′, bc} and surjective coloring σ such that σ(a) = A, σ(b) = σ(b′) = B,
σ(c) = C and A, B,C are pairwise distinct. The rs-Fitch graph (G, σ ), a Fitch tree
(T , λ) and relaxed scenario S with (T , λ) = (T , λS) as well as the planted versions
(T1, λ1) and (T2, λ2) of its two Fitch-least-resolved trees are shown in Fig. 20.

Fitch-least-resolved trees for (G, σ )must contain an inner 1-edge, since G has two
independent sets of size two and by Theorem 7. Thus, it is easy to verify that there are
no other Fitch-least-resolved trees for (G, σ ).

By Lemma 13, we obtain lcaS(A, B) 	S μ(lcaTi (a, b)) and lcaS(B,C) 	S

μ(lcaTi (b
′, c)), i ∈ {1, 2}, for both (planted versions of the) Fitch-least-resolved trees.

However, for all of the possible species trees on three leaves A, B,C , this implies that
the images μ(lcaTi (a, b)) and μ(lcaTi (b

′, c)) are the single inner edge or the edge
(0T , ρT ) in S. Therefore, μ(lcaTi (a, b)) and μ(lcaTi (b

′, c)) are always comparable
in S. Hence, for all possible relaxed scenarios S, we have λS(e) = 0 for the single
inner edge e, whereas λi (e) = 1 in Ti , i ∈ {1, 2}. This implies that there is no relaxed
scenario S with (Ti , λi ) = (Ti , λS), i ∈ {1, 2}.

C Editing problems

C.1 Editing colored graphs to LDT graphs and Fitch graphs

We consider the following two edge modification problems for completion, deletion,
and editing.
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Problem 7 (LDT- Graph- Modification (LDT- M))

Input: A colored graph (G = (V , E), σ ) and an integer k.
Question: Is there a subset F ⊆ E such that |F | ≤ k and (G ′ = (V , E�F), σ ) is an

LDT graph where � ∈ {\,∪,Δ}?
Problem 8 (rs- Fitch Graph- Completion/Editing (rsF- D/E))

Input: A colored graph (G = (V , E), σ ) and an integer k.
Question: Is there a subset F ⊆ E such that |F | ≤ k and (G ′ = (V , E�F), σ ) is an

rs-Fitch graph where � ∈ {\,∪,Δ}?
NP-completeness of LDT- M be shown by reduction from

Problem 9 (Maximum Rooted Triple Compatibility (MaxRTC))

Input: A set of (rooted) triples R and an integer k.
Question: Is there a compatible subset R∗ ⊆ R such that |R∗| ≥ |R| − k?

Theorem 8 (Jansson 2001, Thm. 1) MaxRTC is NP-complete.

Theorem 9 LDT- M is NP-complete.

Proof Since LDT graphs can be recognized in polynomial time (cf. Corollary 2), a
given solution can be verified in polynomial time. Thus, LDT- M is contained in NP.

We now show NP-hardness by reduction fromMaxRTC. Let (R, k) be an instance
of this problem, i.e., R is a set of triples and k is a non-negative integer. We construct
a colored graph (GR = (L, E), σ ) as follows: For each triple ri = xy|z ∈ R, we
add three vertices xi , yi , zi , two edges xi zi and yi zi , and put σ(xi ) = x , σ(yi ) = y
and σ(zi ) = z. Hence, (GR, σ ) is properly colored and the disjoint union of paths
on three vertices P3. In particular, therefore, (GR, σ ) does not contain an induced
P4, and is therefore a properly colored cograph (cf. Proposition 2). By definition and
construction, we have R = S(GR, σ ).

First assume that MaxRTC with input (R, k) has a yes-answer. In this case let
R∗ ⊆ R be a compatible subset such that |R∗| ≥ |R| − k. For each of the triples ri =
xy|z ∈ R\R∗, we add the edge xi yi toGR or remove the edge xi zi fromGR forLDT-
E/C and LDT- D, respectively, to obtain the graph G∗. In both cases, we eliminate the
corresponding triple xy|z fromS(G∗, σ ). By construction, therefore, we observe that
S(G∗, σ ) = R∗ is compatible. Moreover, since we have never added edges between
distinct P3s, all connected components of G∗ are of size at most three. Therefore, G∗
does not contain an induced P4, and thus remains a cograph. By Theorem 3, the latter
arguments imply that (G∗, σ ) is an LDT graph. Since (G∗, σ ) was obtained from
(GR, σ ) by using |R\R∗| ≤ k edge modifications, we conclude that LDT- M with
input (GR, σ, k) has a yes-answer.

For the converse, suppose that LDT- M with input (GR, σ, k) has a yes-answer
with a solution (G∗ = (L, E�F), σ ), i.e., (G∗, σ ) is an LDT graph and |F | ≤ k.
By Theorem 3, S(G∗, σ ) is compatible. Let R∗ be the subset of R = S(GR, σ )

containing all triples of R for which the corresponding induced P3 in GR remains
unmodified and thus, is still an induced P3 in G∗. By construction, we have R∗ ⊆

123



Indirect identification of horizontal gene transfer Page 67 of 73 10

S(G∗, σ ). Hence,R∗ is compatible. Moreover, since |F | ≤ k, at most k of the vertex-
disjoint P3s have been modified. Therefore, we conclude that |R∗| ≥ |R| − k.

In summary, LDT- M is NP-hard. ��

Theorem 10 rsF- C and rsF- E are NP-complete.

Proof Since rs-Fitch graphs can be recognized in polynomial time, a given solution
can be verified as being a yes- or no-answer in polynomial time. Thus, rsF- C/E∈ N P .

Consider an arbitrary graphG and an integer k.We construct an instance (G, σ, k)of
rsF- C/E by coloring all vertices distinctly. Then condition (ii) in Theorem 6 is always
satisfied. To see this, we note that for k > 1 there are no edges between colors in the
auxiliary graphA�(σ,I ) such that their corresponding unique vertices are in distinct
independent sets I , I ′ ∈ I . The problem therefore reduces to completion/editing of
(G, σ ) to a complete multipartite graph, which is equivalent to a complementary
deletion/editing of the complement of (G, k) to a disjoint union of cliques, i.e., a
cluster graph. Both Cluster Deletion and Cluster Editing are NP-hard (Shamir
et al. 2004). ��

Although Cluster Completion is polynomial (it is solved by computing the
transitive closure), rsF- D remains open: Consider a colored complete multipartite
graph (G, σ ) that is not an rs-Fitch graph. Then solving Cluster Completion on
the complement returns (G, σ ), which by construction is not a solution to rsF- D.

C.2 Editing LDT graphs to Fitch graphs

Lemma 18 There is a linear-time algorithm to solve Problem 3 for every cograph G.

Proof Instead of inserting in the cograph G the minimum number of edges necessary
to reach a complete multipartite graph, we consider the equivalent problem of deleting
a minimal set Q of edges from its complement G, which is also a cograph, to obtain
the complement of a complete multipartite graph, i.e., the disjoint union of complete
graphs. This problem is known as the Cluster Deletion problem (Shamir et al.
2004), which is known to have an polynomial-time solution for cographs (Gao et al.
2013): A greedy maximum clique partition ofG is obtained by recursively removing a
maximum clique K from G, see also Dessmark et al. (2007). For cographs, the greedy
maximum clique partitions are the solutions of the Cluster Deletion problem (Gao
et al. 2013, Thm. 1). The Maximum Clique problem on cographs can be solved in
linear time using the co-tree of G (Corneil et al. 1981a), which can also be obtained
in linear time (Corneil et al. 1981a). ��

An efficient algorithm to solve the Cluster Deletion problem for cographs
can be devised by making use of the recursive construction of a cograph along its
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discriminating cotree (T , t). For all u ∈ V (T ), we have

G[u] =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⋃
·

v∈child(u)

G[v] if t(u) = 0

�
v∈child(u)

G[v] if t(u) = 1

({u},∅) if u is a leaf

Denote byP(u) the optimal clique partition of the cograph implied by the subtree T (u)

of the discriminating cotree (T , t). We think of P(u) := [Q1(u), Q2(u), . . . ] as an
ordered list, such that |Qi (u)| ≥ |Q j (u)| if i < j . It will be convenient to assume that
the list contains an arbitrary number of empty sets acting as an identity element for the
join and disjoint union operation. With this convention, the optimal clique partitions
P(u) satisfy the recursion:

P(u) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⋃

v∈child(u)

P(v) if t(u) = 0

⎡

⎣
⋃

v∈child(u)

Qi (v)

∣
∣
∣ i = 1, 2, . . .

⎤

⎦ if t(u) = 1

[{u},∅, . . . ] if u is a leaf

In the first case, where t(u) = 0, we assume that the union operation to obtain
P(u) = [Q1(u), Q2(u), . . . ]maintains the property |Qi (u)| ≥ |Q j (u)| if i < j . In an
implementation, this can e.g. be achieved using k-way merging where k = | child(u)|.

To see that the recursion is correct, it suffices to recall that the greedy clique partition
is optimal for cographs as input (Gao et al. 2013) and to observe the following simple
properties of cliques in cographs (Corneil et al. 1981a): (i) a largest clique in a disjoint
union of graphs is also a largest clique in any of its components. The optimal clique
partition of a disjoint union of graphs is, therefore, the union of the optimal clique
partitions of the constituent connected components. (ii) For a join of two or more
graphs Gi , each maximum size clique Q is the join of a maximum size clique of each
constituent. The next largest clique disjoint from Q = �i Qi is, thus, the join of a
largest cliques disjoint from Qi in each constituent graph Gi . Thus a greedy clique
partition of G is obtained by size ordering the clique partitions of Gi and joining the
k-largest cliques from each.

The recursive construction of P(ρT ) operates directly on the discriminating
cotree (T , t) of the cograph G. For each node u, the effort is proportional to
|L(T (u))| log(deg(u)) for the deg(u)-wise merge sort step if t(u) = 0 and pro-
portional to |L(T (u))| for the merging of the k-th largest clusters for t(u) = 1.
Using

∑
u deg(u)|L(T (u))| ≤ |L(T )|∑u deg(u) ≤ |L(T )|2|E(T )| together with

|E(T )| = |V (T )| − 1 and |V (T )| ≤ 2|L(T )| − 1 (cf. Hellmuth et al. 2015, Lemma
1), we obtain

∑
u deg(u)|L(T (u))| ∈ O(|L(T )|2) = O(|V (G)|2), that is, a quadratic

upper bound on the running time.
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