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Abstract

Rapid impact assessment of cyclones on coastal ecosystems is critical for timely

rescue and rehabilitation operations in highly human-dominated landscapes.

Such assessments should also include damage assessments of vegetation for

restoration planning in impacted natural landscapes. Our objective is to develop

a remote sensing-based approach combining satellite data derived from optical

(Sentinel-2), radar (Sentinel-1), and LiDAR (Global Ecosystem Dynamics Inves-

tigation) platforms for rapid assessment of post-cyclone inundation in non-

forested areas and vegetation damage in a primarily forested ecosystem. We

apply this multi-scalar approach for assessing damages caused by the cyclone

Amphan that hit coastal India and Bangladesh in May 2020, severely flooding

several districts in the two countries, and causing destruction to the Sundarban

mangrove forests. Our analysis shows that at least 6821 sq. km. land across the

39 study districts was inundated even after 10 days after the cyclone. We fur-

ther calculated the change in forest greenness as the difference in normalized

difference vegetation index (NDVI) pre- and post-cyclone. Our findings indi-

cate a <0.2 unit decline in NDVI in 3.45 sq. km. of the forest. Rapid assessment

of post-cyclone damage in mangroves is challenging due to limited navigability

of waterways, but critical for planning of mitigation and recovery measures. We

demonstrate the utility of Otsu method, an automated statistical approach of

the Google Earth Engine platform to identify inundated areas within days after

a cyclone. Our radar-based inundation analysis advances current practices

because it requires minimal user inputs, and is effective in the presence of high

cloud cover. Such rapid assessment, when complemented with detailed infor-

mation on species and vegetation composition, can inform appropriate restora-

tion efforts in severely impacted regions and help decision makers efficiently

manage resources for recovery and aid relief. We provide the datasets from this

study on an open platform to aid in future research and planning endeavors.

Introduction

Tropical cyclones are high-energy low-pressure atmo-

spheric phenomena that originate in warm tropical ocean

surfaces and intensify due to complex interplay of sea sur-

face temperature, ocean heat content, and vertical wind

shear (Gray, 1968). They are a well-known form of natu-

ral disasters that cause severe losses to ecosystems, society,

economy, and lives. The frequency and intensity of

tropical cyclones have increased markedly since the 1970s

(Bhatia et al., 2019; Emanuel, 2005; Guzman &

Jiang, 2021), and the trend is expected to continue in the

future (Knutson et al., 2010). Climate change is predicted

to facilitate this continuing trend of cyclone severity and

economic damages are expected to double by 2100

(Mendelsohn et al., 2012).

Most of our ecological understanding of tropical

cyclones come from the North Atlantic Basin. Between
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1989 and 2018, only 14% of 1490 cyclones occurred in

the North Atlantic, but a disproportionate number of

studies (~67%) have focused on cyclones in this region

(Lin et al., 2020). For the same time period, only 5%

studies examined tropical cyclones in the Indian Ocean

basin, where almost 22% cyclones originated (Lin

et al., 2020). This skewed representation in the current

literature might lead to a flawed understanding of cyclone

impacts, as ecological impacts are known to vary spatially

and among oceanic basins (Lin et al., 2011). As a known

hotspot for tropical cyclones and due to its proximity to

diverse ecosystems and dense human population in

coastal regions, the North Indian Ocean, especially the

Bay of Bengal region, deserves special attention. Com-

pared to the Arabian Sea that is also part of the North

Indian Ocean, twice as many cyclones form in the Bay of

Bengal region (Sattar & Cheung, 2019). Singh

et al. (2001) detected a twofold increase in cyclone fre-

quency, 17% increase in the intensification rate, and 25%

increase in severity of cyclones over the Bay of Bengal

over 122 years (1877–1998). A recorded rise in sea level

and sea surface temperature is likely to increase the fre-

quency and intensity of tropical cyclones in the region

(Khan et al., 2020; Paul & Rashid, 2016). A recent study

simulated the effects of anthropogenic greenhouse warm-

ing, and predicted that future tropical cyclones will have

increased rainfall with the potential to cause widespread

coastal flooding (Chu et al., 2020). Cyclones originating

in the Bay of Bengal are among the most destructive

tropical cyclones ever documented in history, owing to

their effects on the densely populated coastal areas of

India and Bangladesh (Peduzzi et al., 2012).

Coastal vegetation such as mangrove forests can act as

an effective shield to limit the loss of human life and eco-

nomic damage due to tropical cyclones (Das & Vin-

cent, 2009; Hochard et al., 2019; Men�endez et al., 2020).

However, the shield effect of these forests predisposes

them to biomass loss, structural, and compositional

changes due to wind force, storm surge, and inundation

associated with cyclones. Globally, extreme weather events

contributed to 11% of total mangrove losses between

2000 and 2016 (Goldberg et al., 2020); tropical cyclones

have been identified as the major non-anthropogenic dis-

turbance (45%) to mangroves (Sippo et al., 2018) that

affect the extent and canopy structure of these estuarine

forests (Simard et al., 2019). Tropical cyclones damage

the vegetation in several ways including defoliation, tree

uprooting, and mortality (Krauss & Osland, 2020). Mas-

sive mangrove collapses have been associated with storms

such as Hurricane Mitch in Central America (Cahoon

et al., 2003), Typhoon Haiyan (Long et al., 2016) in the

Philippines, and Irma in southwest Florida (Lagomasino

et al., 2021). However, tropical cyclones are also known

to enhance mangrove productivity and resilience by

increasing sediment and mineral nutrient deposition

(Casta~neda-Moya et al., 2020).

Several studies have attempted to assess the impacts of

specific tropical cyclones on the Sundarban mangrove for-

est, one of the largest mangrove forests in the world situ-

ated at the delta of the Ganga, Brahmaputra, and Meghna

rivers on the Bay of Bengal. These studies document a

wide range of impacts, even for the same cyclone, due to

the differences in the type of satellite data and analytical

techniques used by each study. For example, vegetation

damage due to cyclone Sidr in 2007 was assessed to range

between 22 and 45% in the Sundarban (Bhowmik &

Cabral, 2013). Recent assessments of damage caused by

21 cyclones that occurred between 1988 and 2016 in this

region reported that only the largest cyclones (H3 cate-

gory or higher) with a sustained wind speed above

100 km per hour had damaging effects on the Sundarban

(Mandal & Hosaka, 2020). More frequent and severe

cyclones could decrease structural complexity (Lin

et al., 2020) and thereby reduce the carbon storage capa-

bility of this mangrove forest (Rahman, Khan,

et al., 2015). Therefore, it would be prudent to develop

an accurate and reliable methodology that enables identi-

fication of damage hotspots so that appropriate long-term

mangrove monitoring can be planned. In addition to the

vegetation damage assessments, a rapid methodology with

a near real-time evaluation of on-the-ground condition

could considerably improve the efficacy of restoration

and immediate relief work, and inform the impact

response taskforce.

Rigorous evaluation of the ecological impacts of the

tropical cyclones is challenging for many reasons, such as

the unavailability of pre- and post-cyclone data, along

with the requirements for considerable time and high

computational resources for preliminary impact analysis

(Hogan et al., 2020; Pruitt et al., 2019). Despite its poten-

tial, remote sensing is grossly under-utilized for rapid

generation of geospatial information that can assist deci-

sion makers in expediting rescue and relief work, and

assessing ecological damage. Traditionally, the lack of no-

cost, all-weather radar images with global coverage hin-

dered the use of remote sensing products in assessments

of post-cyclonic damage (Markert et al., 2018). Widely

used satellite imagery, such as Landsat, Moderate Resolu-

tion Imaging Spectroradiometer (MODIS), or Advanced

Very-High-Resolution Radiometer (AVHRR), are optical

in nature, meaning these cannot penetrate the clouds pre-

sent during or after cyclones. Synthetic aperture radar

(SAR) data, such as Sentinel-1 data available at no cost

every 6–12 days since 2014, can overcome the challenge

of cloud cover. With the availability of the pre-processed

SAR data on platforms such as Google Earth Engine
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(GEE), remote sensing technology can now provide an

efficient means to assess impacts of cyclones in near real-

time (Gorelick et al., 2017). Moreover, the availability of

several global-scale satellite-derived datasets on forest

cover, forest height, and human population characteristics

make this technology a preferred choice for rapid assess-

ments appropriate for decision-making. These technologi-

cal and computational advancements have been effective

in providing an early forecast of cyclogenic activities, real-

time tracking of cyclone evolution, their trajectory, and

projections of impacted areas (Leroux et al., 2018). Such

early warning systems have resulted in a drastic reduction

in loss of human life (Morrow & Lazo, 2015).

Here, we propose a framework for rapid post-cyclone

assessments that would be of particular interest to deci-

sion makers. As a case study, we analyzed the areas

impacted by the tropical cyclone Amphan, which made

landfall in the coastal areas of India and Bangladesh on

May 20, 2020. Our case study serves as a template for

time-sensitive demonstration of the use of remote sensing

technology to achieve near real-time geospatial data layers

that can be useful for decision-making for relief and

recovery work by the relevant implementation agencies.

Our overarching goal is to present a rapid and robust

remote sensing-based analysis of cyclone-induced flooding

and damages, which is otherwise challenging due to inac-

cessibility of remote regions and logistics. We address two

specific objectives in our study:

1. Mapping the spatial extent of inundation in non-

mangrove regions as a direct impact of the cyclone.

2. Documenting the relative extent of vegetation damage

within the Sundarban mangrove forest.

These two objectives address different aspects of the

socio-economic and ecological impacts of tropical

cyclones. In addition to directly affecting millions of peo-

ple, inundation might affect current agricultural practices

by introducing saline water into the farmland (Farukh

et al., 2019; Quadir & Iqbal, 2008; Rahaman & Esraz-Ul-

Zannat, 2021). Vegetation damage might have negative

consequences for forest structure and composition, there-

fore affecting the overall integrity and health of the

coastal ecosystem (Goldberg et al., 2020; Simard

et al., 2019). With the analysis presented here, we aspire

to bring advanced remote sensing analysis at the forefront

of decision-making in highly human-modified and eco-

logically dynamic landscapes.

Materials and Methods

Study event

In May 2020, Amphan began as a low-pressure depression

in the Southeastern Bay of Bengal, and eventually

strengthened into a category 4 cyclonic storm. Moving

northwards, Amphan made landfall on May 20, 2020 near

Bakkhali, West Bengal, India with a wind speed of

155 km per hour (100 mph). Thereafter, it weakened

rapidly while moving further inland and ultimately dissi-

pated. The coastal areas impacted by the torrential rain

and storm surge due to Amphan are densely populated

and ecologically sensitive. The inhabitants in this region

are primarily dependent on aquaculture and seasonal

agriculture. Amphan killed over 100 people in India and

Bangladesh, and was one of the most destructive cyclones,

causing economic damage and losses estimated at US

$13.2 billion (Sud & Rajaram, 2020).

Study area

For the first objective (i.e., inundation analysis), we

focused on 39 districts across coastal India and Bangla-

desh (124 811 sq. km.) that were affected by Amphan

(Fig. 1). This region has a high but heterogeneously dis-

tributed population, where livelihoods are mainly depen-

dent on farming and fisheries. For our second objective

(i.e., post-cyclone vegetation change), we focus on the

Sundarban mangrove forest. The Sundarban, covering an

area of 10 029 sq. km. across India and Bangladesh, is a

UNESCO world heritage site. These forests are a source

of livelihood for 3.4 million people living around it

(Gopal & Chauhan, 2006; Hussain, 2014; Sannigrahi

et al., 2020; Uddin et al., 2013). Apart from this, an esti-

mated population of about 12.2 million people (7.79 mil-

lion in Bangladesh and 4.4 million in India) live within a

20 km periphery of the Sundarban forest (Hussain, 2014).

This complex ecosystem is a network of numerous tidal

waterways, evolving mudflats and islands of salt-tolerant

mangrove species, composed of 24 “true mangrove” spe-

cies and 70 “mangrove associates” including dominant

tree species such as Sundri (Heritiera fomes), Gewa

(Excoecaria agallocha), Goran (Ceriops decandra), and

Keora (Sonneratia apetala) (Rahman, Hossain,

et al., 2015). This ecosystem also supports over 1000 doc-

umented faunal species including several endangered and

threatened vertebrate species such as tiger (Panthera tigris

tigris), South Asian river dolphin (Platanista gangetica),

Irrawaddy dolphin (Orcaella brevirostris), masked finfoot

(Heliopais personatus), Northern river terrapin (Batagur

baska), and saltwater crocodile (Crocodylus porosus) (Aziz

& Paul, 2015; Rahman et al., 2019).

Analysis 1: assessment of inundation using
radar satellite data

Optical remote sensing images (such as Landsat 8,

Sentinel-2) have large data gaps in the presence of a high
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cloud cover. Hence, for post-cyclone assessments,

Sentinel-1 would be a better choice since it provides all-

weather radar images (Malmgren-Hansen et al., 2020).

We used dual-polarization C-band SAR data from the

Sentinel-1 mission (European Space Agency, 2020) for

the inundation analysis (Fig. 2).

We analyzed ready-to-use SAR data on a cloud com-

puting platform, GEE. These SAR data are preprocessed

using Ground Range Detected (GRD) border-noise

removal, thermal noise removal, radiometric calibration,

and terrain correction, to derive backscatter coefficients

(r°) in decibels (dB) (European Space Agency, 2020).

GEE has Sentinel-1 data available since 2014 at multiple

spatial resolutions (10, 25, and 40 m). While both VV

(single co-polarization, vertical transmit/vertical receive)

and VH (dual-band cross-polarization, vertical transmit/

horizontal receive) bands were available on GEE, we used

VH polarization instead of VV, because the former is less

affected by windy conditions (Twele et al., 2016). We

used SAR data from May 5–18, 2020 (pre-Amphan) and

May 22–30, 2020 (post-Amphan) with the native spatial

resolution of 10 m.

In order to derive the level of inundation as a direct

effect of the cyclone, we focus on a binary water/non-

water classification. Areas under water were identified in

the pre- and post-Amphan images. We used the

Figure 1. Top panel shows (A) 39 study districts distributed across Odisha, and West Bengal, India, and Bangladesh along with the track of cyclone

Amphan in solid red line. Inset shows the entire study area in yellow. Odisha districts include Baleshwar, Bhadrak, Cuttack, Jagatsinghpur, Jajpur,

Kendrapara, Keonjhar, Khordha, Mayurbhanj, and Puri. West Bengal districts include Barddhaman, East Midnapore, Haora, Hugli, Kolkata, Nadia, North

24 Parganas, South 24 Parganas, and West Midnapore. Bangladesh districts include Bagerhat, Barguna, Barisal, Bhola, Chuadanga, Jessore, Jhalokati,

Jhenaidah, Khulna, Kushtia, Lakshmipur, Meherpur, Naogaon, Natore, Noakhali, Pabna, Patuakhali, Pirojpur, Rajshahi, and Satkhira. The district

boundaries for India and Bangladesh were obtained from ArcGIS Hub. Bottom panel shows (B) the extent of the Sundarban mangrove forest across

India and Bangladesh (Giri et al., 2005), and (C) differences in canopy height across Sundarban derived from Potapov et al. (2021).
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automated Otsu thresholding approach (Otsu, 1979) that

finds optimum threshold values based on clusters found

in the histograms of pixel values. This method is particu-

larly useful for detecting inundated areas, because water

bodies have considerably lower backscatter values com-

pared to other land cover classes in a SAR image (Borah

et al., 2018; Donchyts et al., 2016; Moharrami

et al., 2021; Tiwari et al., 2020). The Otsu method

assumes that there is a clear distinction between the two

classes of interest in a bimodal histogram of the radar

backscattering values, which is a valid assumption in this

study (Fig. S1). For our study area, the Otsu threshold

value used to differentiate between backscatter values for

water and non-water is �16 dB (Fig. S2); pixels with val-

ues lower than the threshold were identified as “water.”

As the method is fully automated, it avoids the human

error or inconsistency in generating the inundation map

using a supervised classification method. This automated

method is highly recommended, especially during or

immediately after the disaster events when collecting field

data is a challenging task. It is worth noting that

Sentinel-1 provides C-band radar data that has a shorter

wavelength (~5.5 cm) compared to that of L-band

(~22.9 cm) available from other spaceborne platforms,

such as Advanced Land Observation Satellite (ALOS). In

general, L-band radar is better suited for identifying

flooded vegetation due to the higher capability of pene-

trating vegetation canopy. However, ALOS-2 (launched in

2014) L-SAR data are not freely available. Hence, we lim-

ited our inundation analysis to non-mangrove extents

within our study area.

We used the Otsu method on both pre- and post-

Amphan images on GEE, resulting in two classified

images (Mondal et al., 2020). We then used a decision

rule to identify areas that changed from “non-water” to

“water” after the cyclone. The decision rule generated the

“inundation layer” with the permanent water bodies such

as river, lakes, oceans, and aquaculture masked out. This

layer (Fig. 3) does not highlight areas that were temporar-

ily flooded in the pre-Amphan image (e.g., rice/jute

fields), even when affected by the cyclone. We further cal-

culated the area inundated because of the cyclone by

counting pixels for each of the 39 districts in our study

area. We have distributed these data layers through an

open access data platform (Mondal et al., 2020).

We used approximate locations of inundated regions in

Bangladesh, as reported by Khan et al. (2020) based on

local print media, for visual accuracy assessment of the

inundation data layers (Fig. S3). Moreover, in order to

check the performance of the Otsu method, we compared

the pre-Amphan inundation layer with Sentinel-2 optical

imagery for the same period (May 5–18, 2020). We used

Sentinel-2 Level 2 assets for surface reflectance data on

GEE. We obtained the median composites of all the

images during this period. Thereafter, we used a false

color composite (FCC) of the Sentinel-2 bands 8 (near

Figure 2. Schematic diagram for the methodology presented in this study.
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infrared), 4 (red), and 3 (green), all with spatial resolu-

tion of 10 m, for visual identification of water pixels. In

order to collect validation points with minimum human

bias, we first generated random points using the “strati-

fiedSample” function in GEE. We then overlaid these

points on the FCC image and labeled as either “water” or

“non-water,” and ultimately identified 50 “water” and 50

“non-water” validation points. We then calculated user’s

and producer’s accuracy estimates based on how these

validation points were classified in the pre-Amphan inun-

dation layer. We did not perform the same accuracy

assessment on the post-Amphan inundation layer to

avoid data gaps in the Sentinel-2 images due to the pres-

ence of high cloud cover.

Analysis 2: assessment of mangrove
damage using optical satellite data

We accessed Sentinel-2 Level 2 assets for surface reflec-

tance data on GEE to calculate the normalized difference

vegetation index (NDVI) (Fig. 2). The use of NDVI as a

proxy for vegetation health is well-established across

Figure 3. The extent of post-cycloneflood in the study districts across India and Bangladesh along with the track of cyclone Amphan in solid red line.

Three smaller insets show sample landscapes with greater details. We define inundation as water in the post-cyclone image that was not water in the

pre-cyclone image. Several crop fields had water in the pre-cyclone image due to the pre-monsoon farming activities, and were not identified as being

inundated (darker blue color in the insets).
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disciplines, especially in mangrove forest ecosystems

(Almahasheer et al., 2016; LeMarie et al., 2006; Macamo

et al., 2016). It might be challenging to find usable optical

satellite data, such as Sentinel-2, immediately after a

cyclone due to the presence of high cloud cover. How-

ever, when available, these post-cyclone images can pro-

vide a quick assessment of the extent of damage in the

impacted forest ecosystems.

In this study, we were able to use the relatively cloud-free

time window between January and March for the years 2020

(pre-Amphan) and 2021 (post-Amphan) for investigating

post-Amphan vegetation damage in the entire Sundarban

mangrove forest by utilizing the median values for the time

window of interest (Fig. 2). The GEE image collection pro-

vides radiometrically calibrated and atmospherically cor-

rected surface reflectance values and has a quality band

QA60 to flag cloudy pixels (European Space Agency, 2015).

We used this band to exclude all pixels with opaque or cirrus

clouds. NDVI was calculated using an in-built GEE function

(normalizedDifference) along with bands 4 (red) and 8

(near infrared) at a spatial resolution of 10 m. The NDVI

difference (ΔNDVI) image represents the difference between

post- and pre-Amphan NDVI values at a pixel level. We

used ArcGIS Pro for all analysis hereafter.

Previous studies have used ΔNDVI < �0.2 to represent

mangrove damage (Taillie et al., 2020; Zhang

et al., 2019). Such thresholding approaches, when applied

at a regular temporal interval, can provide important

visual clues about immediate damage, such as forced tip-

ups, prominent breakage of large trees, or prolonged

damage including slower post-storm recovery in man-

grove forests with reduced growth potential (Krauss &

Osland, 2020). Identifying and delineating damage hot-

spots would be particularly useful for post-cyclone impact

assessments. Therefore, we utilized the Getis-Ord Gi*
statistics (Getis & Ord, 1992; Ord & Getis, 1995) to iden-

tify statistically significant spatial clustering of high and

low ΔNDVI values. This tool examines each feature

(point or polygon) within the context of neighboring fea-

tures. A feature must have high/low value and must be

surrounded by similar values in order to be identified as

statistically significant. Among the outputs from this tool

are z-scores, p-values, and confidence level bin for each

feature. We then used a marginal plot to demonstrate dif-

ferences in the distribution of median ΔNDVI values

along latitude and longitude axes of the ΔNDVI image.

Impact assessment on varying canopy
heights using Lidar satellite data

We also used a recently developed global canopy height

dataset (Potapov et al., 2021) to document selective vege-

tation damage as a direct result of Amphan. The canopy

height dataset was developed by integrating the Global

Ecosystem Dynamics Investigation (GEDI) lidar forest

structure data and Landsat analysis-ready time-series data

for 2019. The NASA GEDI is a spaceborne lidar instru-

ment onboard the International Space Station and pro-

vides vegetation structure including forest canopy height.

The GEDI RH95 (relative height at 95%) metric was used

to calibrate a bagged regression tree ensemble model that

used Landsat-derived surface phenology metrics as inde-

pendent variables for the forest height prediction. The

resulting global canopy height data has a spatial resolu-

tion of 30 m and provides canopy height between 52°N
and 52°S. The GEDI dataset has several known limita-

tions, including forest height overestimation on temperate

and subtropical mountain slopes, no discrimination

between the heights of vegetation and manmade objects,

and calibration uncertainties. The forest height model

does not adequately represent the tallest trees of the

world, as it saturates above 30 m. However, another inde-

pendently derived mangrove height dataset confirms that

the tallest trees in this region have a height <30 m

(Simard et al., 2019). We extracted canopy height data

for all NDVI grid cells within the Sundarban mangrove

forest. This step resulted in 6 357 195 grid cells with

canopy height values ranging between 3 and 30 m. We

also assessed distribution of ΔNDVI values along the

canopy height categories using violin plots.

Results

Findings from analysis 1 (inundation analysis) indicate

that c. 6821 sq. km of land area (not considering inun-

dated forest) across the 39 study districts was under water

as a direct result of Amphan even 10 days after the event.

From analysis 2 (vegetation damage analysis) we find out

that c. 73.5% of the Sundarban witnessed a decline in the

NDVI values after Amphan. Analysis 2 also reveals that

about 3.45 sq. km. of the Sundarban mangrove forest

(~0.05%) had a considerably lower NDVI value (ΔNDVI
< �0.2) almost a year after Amphan.

Analysis 1: post-Amphan inundation

According to the accuracy assessment, the pre-Amphan

inundation layer has an 85% overall accuracy. The pro-

ducer’s accuracy for the water and non-water classes are

88% and 82%, respectively. The user’s accuracy for the

water and non-water classes are 83% and 87%, respec-

tively. Inundation was most extensive in Odisha (Fig. 3),

despite this Indian state not being in the direct path of

Amphan (Fig. 1). As per our Sentinel-1 derived inunda-

tion data layers (Mondal et al., 2020), Odisha had at least

2625 sq. km. area under water after 10 days as a direct
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result of Amphan. These inundated regions were more or

less uniformly distributed across 10 districts (Fig. 4), with

Baleshwar and Jagatsinghpur each with 9–10% of the total

inundated land area. West Bengal state in India had at

least 1987 sq. km. area under water post-Amphan; how-

ever, East Midnapore district experienced the most flood-

ing with over 18% of the total inundated area. Haora and

North 24 Parganas districts covered 5–7% of the total

inundated area, while the state capital Kolkata had <1%
share of the total inundated area 10 days after Amphan.

In Bangladesh, at least 2208 sq. km. was under water as

seen in the processed and analyzed satellite images; how-

ever, only two of the 20 districts, Pirojpur and Jhalokati,

had more than 10% of the total inundated area (Fig. 4),

with Jhenaidah, Jessore, Natore, and Chuadanga districts,

each with c. 7–9% of the total inundated area.

Analysis 2: damage in the Sundarban
mangrove forest

The ΔNDVI image derived from the pre- and post-

Amphan NDVI images, 1 year apart, shows a decline in

NDVI values in most regions (Fig. 5). The difference values

range between �0.67 and 0.95. Approximately 4588 sq.

km. area (73.5%) has ΔNDVI values <0; however, c.

3637 sq. km. (58%) have a value range of �0.05 and 0. The

other dominant value range is �0.2 to �0.05, covering c.

948 sq. km (15.2%). We find that c. 3.5 sq. km. of man-

grove forests (0.05%) show ΔNDVI < �0.2 almost a year

after Amphan, hence likely to experience severe damage.

The hotspot analysis utilizing Getis-Ord Gi* statistics

reveals that the pixels with low ΔNDVI values are located

in statistically significant clusters or cold spots (Fig. 5).

However, the cold spots shown in Figure 5 consider all

NDVI decline, and not just ΔNDVI < �0.2. Almost all

districts with mangrove forests have these “NDVI decline

clusters” with a total area of 2933 sq. km., with larger

patches in North 24 Parganas, Satkhira, and Bagerhat dis-

tricts. More decline clusters are noticeable in the western

side of the study area, which is closer to the cyclone track

and landfall sites (Fig. 5; Fig. S4). However, there is no

noticeable gradient in ΔNDVI values as we move from

west to east and south to north; rather several cold spots

of various sizes are scattered across the entire Sundarban.

A marginal plot of the median ΔNDVI values summa-

rizing the location-specific mangrove damage (Fig. S5)

further supports the spatial clustering pattern. This plot

reveals that the biggest changes in NDVI values are along

the southern and western regions of Sundarban. Regions

that exhibit little to no variability in DNDVI (northern

and eastern regions) likely indicate a cumulative resilience

and emergent property of this large non-fragmented for-

est to frequent cyclones.

Furthermore, our results show that the damage is not

uniform across canopy heights (Fig. 6). Shorter man-

groves have a wider range of damage and more extreme

values, whereas the range of extreme damage decreases

for taller mangrove trees. This is likely because Amphan’s

eye and track were closer to the western Sundarban that

also has shorter vegetation stands as compared to the

eastern side that has relatively taller trees (Fig. 1). Never-

theless, this finding is noteworthy, given that the total

forest area of the short-statured mangroves (3 m tall

canopy in this case) is close to 40%, c. 3154 sq. km., of

the entire Sundarban.

Discussion

We use multiple sources of remotely sensed data available

on a cloud-computing platform (GEE) for assessing the

impacts of Amphan on the coastal ecosystems. Specifically,

we provide a near real-time estimation of the post-cyclone

inundation of coastal lands. We also examine any potential

vegetation damage in the Sundarban by utilizing pre- and

post-Amphan NDVI images. Our findings indicate that a

land area of c. 6821 sq. km was inundated in the surround-

ing landscape. We also find that 0.05% (3.45 sq. km.) of

the pixels recorded a decline of over 0.2 units in NDVI val-

ues, more likely showing damage from Amphan. While an

additional 73.5% of the pixels (4584.39 sq. km.) recorded a

decline in NDVI values, this likely represents annual vari-

ability and not cyclone-related damage. Our findings

demonstrate the potential of a rapid assessment method to

identify post-cyclone inundation using open-access data

and cloud computing platform that is helpful for recovery

planning in affected areas. It is also possible to replicate our

vegetation damage analysis for a rapid assessment if cloud-

free images are available after the event.

Coastal ecosystems and communities dependent on

them are vulnerable to cyclones and storm surges (Marois

& Mitsch, 2015). Coastal areas of the northern edge of

the Bay of Bengal are specifically vulnerable to these natu-

ral calamities due to the dense human population and

inadequate mitigation resources (Quader et al., 2017).

Historically, cyclones have a marked devastating effect on

human life, livelihood, and property in this region. Over

700 000 human lives were lost due to cyclones in Bangla-

desh over a period of 50 years (Haque et al., 2012). With

the advent of early warning technologies, their adoption

by the governments of Bangladesh and India, and proac-

tive planning, cyclone-related mortality have reduced by

more than a 100 times during the last five decades

(Haque et al., 2012). Despite this, post-cyclone rescue

and relief work are still a big challenge due to limited

resources and logistics (Islam & Hasan, 2016; Mallick &

Vogt, 2012).
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Figure 4. Percentage of inundated regions in the study districts across India and Bangladesh.
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Analyzing the extent and severity of inundation is

important to enumerate the ecological and economic

impacts of cyclones and flooding events (Emanuel, 2005;

Woodruff et al., 2013). Open-access high-resolution

images, acquired at a shorter time interval, and analysis

on cloud computing platforms, have made it possible for

near real-time mapping of the effects of cyclones on

human-dominated and natural ecosystems. Use of remo-

tely sensed data for flood monitoring or cyclone impact

assessment is not new (Hassan et al., 2020; Tiwari et al.,

2020); yet, most studies rely either on before/after image

classification to draw conclusions on inundation extent or

conduct decadal studies to document long-term vegeta-

tion changes. Such classification schemes require accuracy

assessments of the classified images, which in turn rely on

reference data to train and test the classifiers. These refer-

ence data are collected either on the ground or by visual

assessment of high-resolution imagery. Completing

ground validation or assessment could be particularly

challenging for decision makers, especially for immediate

impact assessment. While we conducted an accuracy

assessment of our inundation datasets to show the robust-

ness of the method, our methodology generated geospa-

tial data layers that account for uncertainties without the

requirement of ground data (Mondal et al., 2020). The

input dataset, Sentinel-1 radar data, is particularly useful

for such applications, since the microwave section of the

electromagnetic spectrum can penetrate through cloud

cover. These data layers not only captured the extent of

inundations for all the reported locations, but were also

Figure 5. Top panel shows NDVI differences (ΔNDVI) between pre- and post-Amphan NDVI values. Bottom panel shows confidence levels of

spatial clustering of negative ΔNDVI according to Getis-Ord Gi* statistics.
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able to provide this information at a very high resolution

owing to the input satellite data from Sentinel-1. In the

absence of any operational network for on-the-ground

inundation monitoring, especially during a widespread

pandemic such as COVID-19, such high-resolution and

accurate inundation data layers could greatly benefit the

decision-making process. Depending on the event time

and location, the methodology presented here (Fig. 2)

can generate data layers in a few days (for inundation

output) or a couple of weeks/months (for vegetation

damage). This near real-time and objective framework

does not only minimize input-related errors, but also pro-

vides an accurate baseline for future in-depth studies.

Utilization of freely available global datasets derived from

state-of-the-art remote sensing technology, such as

LiDAR, could be particularly useful for informed ecologi-

cal restoration in a fragile ecosystem.

It should be noted that our findings present conserva-

tive estimates of inundation, since we used a decision rule

to identify pixels that changed from “no water” in pre-

cyclone image to “water” in post-cyclone image. This rule

led to identifying regions that were not under standing

water in pre-cyclone satellite images. Thus, our estimates

do not include farmlands or other land uses such as

aquaculture that require standing water as a farming

strategy. While including these areas will result in greater

numbers, it is not our intention to provide an estimation

of the land area under water. Rather, we present a quick,

automated, and effective method that requires minimal

user input; hence can be used in near real-time after a

cyclone to identify regions needing immediate relief atten-

tion.

Mangroves are proven natural barriers that reduce the

impact of cyclones, tsunamis, and storm surges (Del Valle

et al., 2020; Hochard et al., 2019; Marois & Mitsch, 2015;

Men�endez et al., 2020). The list of their ecosystem provi-

sioning goes beyond reducing death rates and safeguard-

ing livelihood options of coastal communities (Hochard

et al., 2019; Sun & Carson, 2020). They are biodiversity

rich dynamic ecosystems that perform essential ecosystem

services such as carbon sequestration and nutrient recy-

cling (Cummings & Shah, 2018). This unique and diverse

community is arranged in a successional pattern and is

governed by various abiotic factors, including salinity and

tidal inundation. Furthermore, Sundarban is the only

mangrove ecosystem in the world that has tigers as the

apex predator of the ecosystem. With c. 200 wild tigers

between India and Bangladesh (Aziz et al., 2019; Jhala

et al., 2019), Sundarban is among one of the largest con-

tiguous tiger habitats worldwide. Due to its remoteness,

the lack of accessibility, and the highly dynamic nature of

this ecosystem, it is extremely difficult to conduct wildlife

surveys to assess the impact of cyclones immediately after

such events. In this work, we presented a methodology

that compares vegetation greenness before and after a

cyclone event. Here, we compared images from the winter

seasons (8–10 months after the event) in order to avoid

high cloud cover. Such analysis might not capture imme-

diate damage due to natural recovery in mangrove (Lago-

masino et al., 2021). However, it is possible to compare

images for similar analyses immediately before and after a

cyclone event. Such analysis would inevitably result in a

conservative estimate of damage owing to data gaps due

to the presence of high cloud cover in the post-cyclone

Figure 6. Violin plots showing ΔNDVI distribution across different canopy heights in the Sundarban mangrove forest. The sample sizes (i.e., number of

pixels) for each height category are shown in smaller font.
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optical images. Yet, simple but robust methodology as

presented here can generate rapid and focused geospatial

information for grassroots network of volunteers to direct

relief work (Karan, 2015) and can provide a baseline for

long-term ecological assessments and monitoring. Sam-

pling for vegetation disturbance is a critical part of moni-

toring habitat quality for wildlife (Jhala et al., 2017). Our

suggested methodology can explicitly contribute toward

wildlife and habitat surveys when it is feasible to do so,

and provides a way to strategically plan monitoring

efforts to be able to quantify the short- and long-term

impact of such disturbance events on vegetation and

wildlife.

The severity of cyclone impacts on mangrove forests is

not only dependent on cyclone-induced storm surge and

high velocity winds, but also on factors such as structural

composition and heterogeneity of the vegetation, canopy

cover, canopy height, species traits, and their spatial

arrangement in the mangrove forest (Krauss &

Osland, 2020; Peereman et al., 2021). The current status

of mangrove forests is defined by a legacy of past tropical

cyclones and recovery regime (Awty-Carroll et al., 2019).

More intense and frequent tropical cyclones can affect the

overall canopy structure and may reduce the regeneration

and recovery time of these forests, which will have a cas-

cading effect on the faunal diversity dependent on this

dynamic ecosystem (Sandilyan & Kathiresan, 2012;

Simard et al., 2019). We recommend that post-cyclone

impact assessment on any mangrove ecosystems should

include structural complexity, or at least forest height as a

proxy for forest structure. A longer-term impact analysis

might then include individual species traits, hydro-

geologic and orographic data, wind-speed and storm

surge models, resulting in an accurate prediction of the

species to community-level impacts of tropical cyclones

on Sundarban mangrove forest (e.g., Lagomasino

et al., 2021; Radabaugh et al., 2020). Information gener-

ated from such models can also be used for predictive

modeling of the impact of simulated cyclones on the

mangrove forest and project future composition and

structure of this forest in response to ongoing climate

change.

We demonstrate the use of recent advances in remote

sensing and cloud computing to assess the impact of

cyclone Amphan on coastal ecosystems in India and Ban-

gladesh. By harnessing these technical developments, we

show that it can be effectively used to assess the impact,

magnitude, and extent of natural disturbances over large

geographic regions, in near real-time, and in a relatively

short time period. Automated algorithms produce results

that are easy to interpret and reliable, thus ensuring that

disaster management teams in these countries can use the

technique with minimal knowledge of these techniques.

The entire process can also be computationally pro-

grammed within a short period of the first information of

cyclogenesis and estimated day of landfall for proactive

strategic mitigation planning.
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