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Abstract: Brain metabolism is comprised in Alzheimer’s disease (AD) and Parkinson’s disease (PD).
Since the brain primarily relies on metabolism of glucose, ketone bodies, and amino acids, aspects of
these metabolic processes in these disorders—and particularly how these altered metabolic processes
are related to oxidative and/or nitrosative stress and the resulting damaged targets—are reviewed
in this paper. Greater understanding of the decreased functions in brain metabolism in AD and PD
is posited to lead to potentially important therapeutic strategies to address both of these disorders,
which cause relatively long-lasting decreased quality of life in patients.

Keywords: Alzheimer’s disease; Parkinson’s disease; AD; PD brain metabolism; glucose; metabolic
reprogramming; neurodegeneration; oxidative stress

1. Introduction

Recent studies highlight the importance of metabolism in the regulation of brain
function, with the discovery of metabolism-linked genes and functional states. This may
provide clues to the understanding of how metabolism influences the onset and progression
of neurodegeneration. To this end, it is essential to comprehend the metabolic specificities of
brain function, and to develop tools to dissect the metabolic pathways potentially involved
in loss of brain function.

Brain metabolism represents 20% of the body’s total oxygen consumption; it is highly
dynamic, as brain metabolism responds to dynamic energy consumption typical of the
central nervous system (CNS). Energy depletion triggers compensatory mechanisms to en-
hance both metabolism and oxygen availability, and this occurs in a region-specific fashion
and within the same region, via specific neuronal structures (i.e., synapses). Neurons are
the main utilizers of the energy produced [1], which is channeled at the synaptic level to
restore membrane potential after depolarization [2].

Other energy-consuming functions include the high metabolic rates typical of neurons,
axonal transport, and neurotransmitter synthesis [3,4]. It follows that energy consumption
varies locally depending on neuronal function, and this variation requires a high degree of
plasticity in modulating oxygen supply, mitochondrial function, and metabolism. Dysreg-
ulation of these events is consistently associated with neurodegenerative disorders [5–9].
In the effort to understand the metabolic mechanism(s) underlying brain function, we will
start by describing the metabolic features of the brain in physiological conditions, and then
discuss how metabolic changes are involved in Alzheimer’s disease and Parkinson’s disease.

Table 1 summarizes the metabolic alterations associated with the main clinical features
of AD and PD discussed in this review.
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Table 1. Correlation between metabolic alterations and clinical features in Alzheimer disease (AD)
and Parkinson disease (PD).

Clinical Features Metabolic Alterations Pathologies

Vulnerability of hippocampus, lateral and
medial temporal lobes, and posterior

cingulate/precuneus
Reduction in neuronal and synaptic

activity
Atrophy of the cortical regions

Axonal damage
Neurodegeneration

Glucose hypometabolism
Aerobic glycolysis reduction

Elevated levels of lactate and pyruvate
Impairment of lactate shuttle
Aβ oligomer accumulation

Insulin resistance
Reduced number of GLUTs

Reduced TCA cycle metabolism
Reduced activity of the ETC complexes

Downregulation of IDH
PPP impairment

Altered GSH/GSSG ratio
Oxidative stress

Oxydated GLT1 and GS
Glutamate excitotoxicity

AD, PD

Cognitive decline
Dementia

Impaired neurotransmission

Glucose hypometabolism
Aβ oligomer accumulation

Insulin resistance
Reduced TCA cycle metabolism

Reduced activity of the ETC complexes
Oxidative stress

Reduced Blood BCAAs
Affected glutamate synthesis
Decreased levels of glutamine

Oxydated GLT1 and GS
Glutamate excitotoxicity

AD

Insulin desensitization
Brain insulin resistance

Glucose hypometabolism
Abnormalities in mitochondrial structure and function

Aβ oligomer accumulation
Secretion of pro-inflammatory cytokines (TNF-α)

Oxidative stress
Energy deficiency

AD, PD

Chronic inflammation Downregulation of BDNF and NGF
Oxidative stress AD, PD

Synaptic spine deterioration
BBB disfunction

Aβ oligomer accumulation
Reduction in the number of plasma membrane insulin receptors

Complex IV dysfunction
Oxidative stress

AD

Death of dopaminergic neurons
Neurodegeneration

Decline of insulin receptors
Hyperinsulinemia
Insulin resistance

GLT1 downregulation
Glutamate excitotoxicity

Downregulation of metabolism of glycine, serine, and threonine
Ornithine and proline accumulation

Altered collagen homeostasis

PD

Cell death

Inactivation of PKM2
Downregulation of the Wnt/β-catenin pathway

Complex I dysfunction
Oxidative stress
ATP deficiency

AD, PD

α-Synuclein (α-syn) aggregation

Glucose hypometabolism
GAPDH oxydation

Abnormalities in mitochondrial structure and function
Complex I dysfunction

Oxidative stress
Reduced ∆Ψm

PD
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Table 1. Cont.

Clinical Features Metabolic Alterations Pathologies

Neurological deficits
Hemolytic anemia

Myopathy
Locomotive defects
Loss of DA neurons

Reduced TCA cycle metabolism
Accumulation of citrate and 2-OG

Epigenetic regulation modifications
Deficiency of PGK activity
Defective ATP production

Defective dopamine production

PD

White matter degeneration
Demyelination

Bioenergetic shift from glucose toward ketones
Preserved metabolism of ketones

Decreased MCT1 expression in the BBB
Decline in mitochondrial respiration

Oxidative stress
Catabolism of myelin lipids into fatty acids to produce

ketone bodies

AD, PD

2. Brain Metabolism in Physiological Conditions
2.1. Glucose Metabolism

Glucose is the main energy substrate in the brain, as it is the principal source of
ATP (see Figure 1A). In the brain, glucose is taken up from the bloodstream by specific
glucose transporters to be metabolized through glycolysis. Pyruvate is then transported
into the mitochondria to be channeled into the TCA cycle. Oxidation of the TCA substrate
produces CO2 and reduces NAD+ and FAD+, which are the electron donors for the oxidative
phosphorylation (OXPHOS)—an electron transfer chain driven by substrate oxidation that
is coupled with the synthesis of ATP through an electrochemical transmembrane gradient.
The CO2 produced is then removed via blood circulation and eliminated through the
respiratory system.

Glucose metabolism is efficiently regulated in the brain; the first step of this regulatory
mechanism entails its uptake. Among the different glucose transporters, GLUT1 is mainly
expressed in astrocytes and endothelial cells, whereas GLUT3 is mainly expressed in
neurons. The fact that these transporters are insulin-independent does not mean that
glucose uptake is not regulated by insulin. Indeed, the insulin-dependent GLUT4 [10]
is also present in several brain regions, including the hippocampus and cerebellum [11].
Insulin crosses the blood–brain barrier (BBB) through a saturable transport system and, as
such, brain hormone levels only partially reflect those found in the blood [12]. Insulin’s
action is dependent on the expression of the insulin receptor (IR), which is abundant in
neurons [13]. Insulin signaling includes the Ras/mitogen-activated protein kinase (MAPK)
and PI3K/Akt pathways.

The IR and the insulin-like growth factor 1 receptor (IGF1R) convey the signal to
the insulin receptor substrate-1 (IRS-1) which, in turn, intracellularly activates PI3K—a
kinase involved in several intracellular signaling transduction processes [14]. Insulin bind-
ing to the IR recruits the intracellular IRS proteins through specific phosphorylation on
tyrosine residues. Tyrosine-phosphorylated IRS activates PI3Ks, involving Akt phospho-
rylation. PI3K/Akt modulates downstream factors, such as glycogen synthase kinase
3 (GSK3), mTOR, and forkhead box (FOX) transcription factors, regulating the brain’s
cellular functions [15].
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Figure 1. Overview of glucose metabolism in normal (A), AD (B), and PD (C) brains. (A) Glucose
is the main energy substrate in the brain, as it is the principal source of ATP. In the brain, glucose is
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taken up from the bloodstream by specific glucose transporters, to be metabolized through glycolysis.
Pyruvate enters the TCA cycle coupled with OXPHOS and ATP synthesis. Glucose transport in the
brain occurs via GLUT1 in astrocytes and GLUT3 in neurons. Insulin-dependent GLUT4 transport
also occurs in the brain, and its activation leads to insulin receptor signaling, occurring through the
PI3K/Akt and MAPK pathways, regulating the brain’s main cellular functions. Glucose metabolism
is prominent in the brain—especially in astrocytes—and strongly interconnected among the different
cell types. Glucose 6-phosphate (G6P) can be channeled into the pentose phosphate pathway (PPP)
to support NADPH synthesis, which is necessary to sustain the brain’s antioxidant defense, and this
is enhanced by the recycling of fructose 6-phosphate (F6P) originating from the PPP back to G6P due
to high GPI activity. (B) Glucose metabolism is impaired in AD brains. Signs of impaired insulin
signaling cascade are present in AD brains, with insulin resistance and downregulation of insulin
receptors, which contribute to brain glucose hypometabolism. In AD, decreased glucose metabolism
impacts the metabolic crosstalk between astrocytes and neurons, as the lactate shuttle is impaired,
leading to reduced ATP synthesis. GLUT1 and -3 are decreased in AD brains, and this correlates
to glucose hypometabolism, and is a major pathological sign of AD, whereas GLUT2 increases,
indicating prominent astroglial activation in AD brains. Glycolysis increases in astrocytes and
microglia, and this is associated with neurodegeneration. G6P and fructose 1,6-bisphosphate (F1,6BP)
levels are inversely correlated with age. Hexokinase (HK), PK, and PFK are downregulated in neurons,
whereas GAPDH is upregulated and can promote Aβ amyloidogenesis. Aβ plays a role in impairing
the PPP, leading to G6P accumulation—which inhibits HK activity—and to decreased defense against
ROS. Aβ oligomers also reduce the IR and promote synaptic spine deterioration. (C) Glucose
metabolism is dysfunctional in PD brains, and this mirrors a significant loss of IR. Furthermore,
IRS phosphorylation deactivates insulin signaling, leading to insulin resistance. Moreover, the
glucose transporters GLUT1 and GLUT3 are downregulated. The decrease in glucose metabolism,
prominent both in neurons and in astrocytes, is associated with pyruvate and lactate accumulation
and deleterious ATP depletion. Depletion of the ATP-generating enzyme PGK is associated with
neuronal deficits with PD-like symptoms. Low glucose promotes α-synuclein (α-syn) aggregation.
α-Syn fibrils interact with GAPDH, aldolase (ALD), and enolase (ENO), and their activities are
consequently decreased. Furthermore, GAPDH directly regulates α-syn aggregation and apoptotic
neuronal cell death. Increased metabolite levels are reported in green, whereas decreased levels are
reported in red.

mTOR is a serine/threonine kinase. In the brain, the mTOR signaling cascade is
activated by nutrients, neurotrophic factors, and neurotransmitters, and enhances protein
synthesis and suppresses autophagy, contributing to normal neuronal growth by promoting
their differentiation, axonal budding, regeneration, and myelination, along with the growth
of dendritic spines [16]. Furthermore, mTOR-regulated processes in neurons and glial cells
influence important superior physiological functions such as neuronal excitability and
survival, synaptic plasticity, cognition, nutrition, and circadian rhythm control [17]. There-
fore, disruption of mTOR signaling may cause neurodegeneration and abnormal neural
development [16]. mTOR includes two distinct complexes called mTORC1 and -2, with
several interacting proteins. Different nutritional and environmental signals activate AKT
which, in turn, activates mTORC1. In addition, cellular energy status, oxygen/hypoxia,
and stressors regulate mTORC1 activity. In the brain, neurotransmitters, neuromodulators,
and hormones are reported to activate mTORC1 [16]. Activated mTORC1 promotes cell
growth by phosphorylating substrates by enhancing anabolic processes such as mRNA
translation and lipid synthesis, or by limiting catabolic processes such as autophagy, while
mTORC2 promotes cell survival by activating AKT [17].

IRS-1 phosphorylation at specific serine residues disrupts PI3K/Akt coupling to IGF-1
and IR, leading to IRS-1 inactivation and degradation, which is a feature of brain insulin
resistance (IRes) [18].

The MAPK branch of insulin signaling is triggered by Shc phosphorylation, leading
to gene expression and cell growth [15]. IRS can be serine phosphorylated by MAPK, and
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this reduces its signaling [19]. Moreover, the function of IRS-1 is modulated by biliverdin
reductase-A (BVR-A) [20].

Glucose is metabolized through glycolysis, which occurs in all brain cell types to
different extents. Indeed the activity of phosphofructokinase (PFK), which catalyzes the
conversion of fructose 6-phosphate (F6P) into fructose 1,6-bisphosphate (F1,6BP), is higher
in astrocytes compared to neurons [21], although studies in rat brains suggest that the
glycolytic flux in both cell types seems to be interconnected [22]. Microglia also exploit gly-
colysis to maintain the immune functional response [23]. In particular, enhancing glycolytic
flux in the microglia promotes inflammasome activation [24]. Glucose 6-phosphate (G6P)
can be channeled into the pentose phosphate pathway (PPP) [25], which promotes the two-
step oxidative decarboxylation of G6P catalyzed by glucose-6-phosphate dehydrogenase
(G6PD) and 6-phosphogluconate dehydrogenase (6PGD), yielding ribulose-5-phosphate
(R5P). Both enzymes are NADP+-dependent; therefore, this process leads to the production
of NADPH. Hence, glucose metabolism can be diverted from glycolysis into the PPP in
order to meet the NADPH demand typical of oxygen-consuming cells. NADPH contributes
to the maintenance of GSH in its reduced form [26], since the exposure of GSH to ROS
leads to oxidized glutathione (GSSG), which can be replenished by the activity of the
NADPH-dependent GSH reductase. In the next non-oxidative steps of PPP, Ru5P is isomer-
ized into ribose-5-phosphate (R5P), which can enter the nucleotide biosynthetic pathway
or the subsequent PPP branch, leading to R5P epimerization and synthesis of different
phosphorylated sugars, including glyceraldehyde-3-phosphate (G3P) and F6P [25]. These
sugars can enter glycolysis, leading to pyruvate synthesis, so the F6P and G3P pools are
shared by glycolysis and the PPP. In neurons, recycling of G6P can occur from F6P, due to
the high glucose phosphate isomerase (GPI-1) activity [27,28]. G6P can re-enter the PPP,
leading to extra NADPH production, which is strongly demanded in the brain in order to
reduce oxidized glutathione and thereby protect the brain from oxidative damage.

2.2. TCA Cycle

The tricarboxylic acid cycle, also known as the citric acid cycle or the Krebs cycle, is a
cyclic pathway that represents a major metabolic hub for cell function [29] (see Figure 2A).
Acetyl-CoA, derived from pyruvate, amino acids, or fatty acid oxidation, is channeled
into a cycle of reactions that sustain (1) energy production, (2) anabolic and catabolic
processes, and (3) redox balance, as follows: (1) The TCA cycle oxidizes acetyl-CoA to two
molecules of CO2, leading to the production of ATP and the reduction of NAD+ and FAD+

to NADH and FADH2, which enter the electron transport chain (ETC) complex I (NADH
dehydrogenase) and complex II (succinate dehydrogenase, SDH), respectively. The electron
flux from complexes I and II through the ETC leads to the production of ATP by means of
OXPHOS, which is coupled with the TCA cycle as it reoxidizes the coenzymes necessary
for TCA function. (2) Intermediates of the TCA cycle are also sources of macromolecule
synthesis and, as such, are diverted from the mitochondria to the cytosol. An example
is GABA—an important neurotransmitter for synaptic plasticity [30]. The diminution of
TCA metabolites can be counteracted by the so-called anaplerotic reactions that provide
TCA intermediates to keep the cycle running. Examples of anaplerosis are represented by
glutaminolysis-related 2-oxoglutarate (2-OG) production and by pyruvate-to-oxaloacetate
conversion via pyruvate carboxylase.
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Figure 2. Overview of the TCA and OXPHOS functions in normal (A), AD (B), and PD (C) brains.
(A) The TCA cycle oxidizes acetyl-CoA to two molecules of CO2, leading to the production of ATP
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and the reduction of NAD+ and FAD+ to NADH and FADH2, which enter the electron transport chain
(ETC) complexes I and II, respectively. The electron flux from complexes I and II through the ETC
leads to production of ATP by means of OXPHOS, which is coupled with the TCA cycle as it reoxidizes
the coenzymes necessary for TCA function. ROS produced by OXPHOS are counteracted by Cu,Zn-
superoxide dismutase, Mn-superoxide dismutase, peroxiredoxin, and glutathione. In the brain,
pyruvate is recycled from malate and oxaloacetate through malic enzyme and phosphoenolpyruvate
carboxykinase (PEPCK), respectively. (B) Aging is characterized by dysfunctions of the TCA cycle. In
both aging and AD murine models, the levels of acetyl-CoA and NADH were increased, whereas the
levels of succinic acid, 2-OG, citric acid, cis-aconitic acid, fumaric acid are decreased. This mirrors
the reduction of IDH, 2-OGDH, PDH complexes, and CS with the increase in MDH and SDH in AD
brains. Complex I, complex III, and complex V proteins are reduced in different regions of AD brains,
leading to compromised OXPHOS. The activity of cytochrome c oxidase (complex IV) is lower in
many brain regions, but is increased in the hippocampus. The damage to mitochondrial respiratory
function in AD patients is associated with ROS formation, enhanced by the cellular inability to cope
with the oxidative surge due to a lower antioxidant defense. (C) PD is associated with mitochondrial
dysfunctions. In PD brains the lactate/pyruvate ratio is high, and this leads to TCA dysregulation.
Mitochondrial complex I deficiency and oxidative stress are key factors in PD’s pathogenesis, and they
are interconnected in a vicious cycle, in which a weakened antioxidant defense plays a role. Energy
failure of PD brains leads to a creatine kinase (CK)-mediated increase in ADP phosphorylation at the
expense of phosphocreatine, which is linked to upregulated creatine synthesis. Increased metabolite
levels are shown in green, whereas decreased levels are shown in red.

A typical metabolic feature of the brain is pyruvate recycling [31] that is, pyruvate
synthesis from the TCA cycle intermediates malate and oxaloacetate via malic enzymes
and phosphoenolpyruvate carboxykinase (PEPCK), respectively [32,33].

OXPHOS generates reactive oxygen species (ROS) as byproducts, which cannot be
completely inactivated by the antioxidant defenses that in the brain—a high-oxygen-
consuming organ—are quite low. Cu,Zn-superoxide dismutase, Mn-superoxide dismutase,
peroxiredoxin, and glutathione (among other moieties) represent some of the endogenous
antioxidant defenses. The TCA cycle can contribute to the redox balance as reducing
equivalents are produced from OXPHOS and mitochondrial NADH can be converted
into NADPH [34,35]. Conversely, the redox state can impinge on energy metabolism by
regulating key enzyme and respiratory chain complex activities [36–39].

2.3. Ketone Bodies

While the brain utilizes glucose almost exclusively as its main energy source, other sub-
strates, such as ketone bodies and lactate, contribute to metabolism in certain circumstances,
especially when glucose supply is restricted or insufficient—for example, during fasting or
in low-carbohydrate diets [40,41]. Uptake of the ketone bodies occurs through the mono-
carboxylate carriers (MCTs), which are highly expressed within the brain [42]—mainly
in neurons (MCT2, [43,44]) and astrocytes (MCT1 and 4, [42,45]). Transport of ketone
bodies is strongly dependent on their circulating levels [46]. Studies on murine models
indicate that MCT upregulation occurs after fasting [47] and in a ketogenic diet [48]. Both
β-hydroxybutyrate and acetoacetate are reduced to acetyl-CoA in the mitochondria by an
NAD+-dependent process that does not require ATP [49]. Sources of ketone bodies can also
be endogenous, as astrocytes can degrade free fatty acids (FFAs) that cross the BBB, pro-
ducing ketone bodies via a mechanism mediated by adenosine-monophosphate-activated
protein kinase (AMPK) activity [50], which is triggered by low glucose levels [50] and
hypoxia [51]. Astrocytes can also provide lactate of glycolytic origin, which are supplied to
neurons for energy purposes [52].
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2.4. Amino Acids

Glutamate and branched-chain amino acids (BCAAs) are the main subject of this
section (see Figure 3A). BCAAs (i.e., valine, leucine, and isoleucine) are essential amino
acids. The catabolism of BCAAs begins with a reversible reaction of transamination
catalyzed by branched-chain aminotransferase (BCAT), of which there are two isoforms:
one mitochondrial and one cytosolic. These enzymes transfer the α-amino group from
BCAAs to 2-OG, using vitamin B6 as a cofactor, producing branched-chain 2-oxoacids
and glutamate (Figure 3A). A mitochondrial multienzyme complex of branched-chain
2-oxoacid dehydrogenase catalyzes a series of irreversible reactions, leading to acetyl-CoA,
propionyl-CoA, and succinyl-CoA, which are involved in various biochemical processes.

Early studies had shown that BCAAs readily cross the BBB in rats [53]. Absorption of
BCAAs at the level of the BBB exceeds that of all other amino acids [54]. Indeed, the brain’s
ability to oxidize BCAAs is approximately four times higher than that of muscles [55].
Consequently, the mammalian brain constitutes an important organ of utilization for these
amino acids [56]. The continuous passage of BCAAs across the BBB is mediated by specific
transport systems that control the levels of metabolites and substrate/product spatial
distribution in different brain areas. These transporters exhibit substrate-specificity or
preference for some amino acids. The predominant transporter that has been shown to
deliver BCAAs to the brain is the sodium-independent facilitated transporter LAT1 [57,58],
which allows the entry of BCAAs in exchange for intracellular glutamine [59].

In the mammalian brain, in addition to their involvement in protein synthesis and
energy production, BCAAs are engaged in the metabolism of neurotransmitters [56]. Glu-
tamate is the main excitatory neurotransmitter in the mammalian brain [60]; for optimal
brain function, its concentration should be relatively constant [61]. However, as glutamate
is not able to cross the BBB in considerable quantities [62], it needs to be newly synthesized
from constantly available precursors such as BCAAs—efficient donors of amino groups
that can be quickly transported to the brain and easily transaminated [63] at the expense
of 2-OG (Figure 3A). The transamination reaction occurs in astrocytes in the vicinity of
the capillaries through which the BCAAs are carried by the blood. Astrocytes release
branched-chain ketoacids into the extracellular fluid, from which they enter the neurons
to be converted back into BCAAs, which are released into the extracellular fluid as well
conveyed to astrocytes, completing the BCAA–glutamate cycle (Figure 3A).

A role of BCAA in mediating ammonia transfer between astrocytes and neurons
has been postulated, based on the finding that the brain’s branched-chain amino acid
aminotransferase isozymes (BCATs) can be cytosolic or mitochondrial isoforms. However,
astrocytes exclusively display the mitochondrial form, whereas neurons present the cytoso-
lic form [64] (Figure 3A). This selective localization plays an important functional role in
the shuttling of ammonium nitrogen between astrocytes and neurons [64,65].

Glutamate metabolism is crucial in the brain. Generally, glutamate links amino acids
to glucose metabolism through the TCA cycle, as aminotransferases use glutamate as an
ammonia donor, leading to 2-OG production. Accumulating findings have contributed to
the concept of “metabolic compartmentation” of glutamate—particularly in astrocytes and
neurons [66]—based on the fact that glutamine synthetase (GS) and pyruvate carboxylase
are exclusively present in astrocytes [67]. This represents the so-called glutamine–glutamate
cycle between neurons and astrocytes, which is mediated by sodium-coupled amino acid
transporters [68] (Figure 3A). This compartmentalization is conceivably related to the
fact that glutamate is an excitatory neurotransmitter. Once glutamate’s signaling role is
executed, it is taken up by astrocytes, in which glutamate is converted back to glutamine
in a reaction catalyzed by GS. This prevents the so-called excitotoxic effect of glutamate
accumulation in the synapse. Furthermore, de novo glutamate synthesis occurs exclusively
in astrocytes following pyruvate-carboxylase-dependent anaplerosis [69].
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Figure 3. Overview of amino acid (AA) metabolism in normal (A), AD (B), and PD (C) brains. (A)
BCAAs enter the CNS via the BBB (LAT1) and, mainly in astrocytes (mitochondria), undergo transamina-
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tion, which yields the corresponding BCOAs and glutamate via BCAT. BCOAs enter the TCA for
energy production; in this way, BCATs are a constant source of glutamate. Astrocytes then release
the oxoacids to the neuron, where they are reconverted to BCAAs (cytosol), which are released back
into the extracellular space. Glutamate is an excitatory neurotransmitter. Once glutamate’s signaling
role is executed, it is taken up by astrocytes (GLT-1, also known as EAAT2), in which glutamate is
converted to glutamine in a reaction catalyzed by GS. This prevents the so-called excitotoxic effect of
glutamate accumulation in the synapse. Furthermore, de novo glutamate synthesis occurs exclusively
in astrocytes following pyruvate-carboxylase-dependent anaplerosis and BCAA transamination.
Glutamate transamination also occurs in the brain as a result of the activity of ALT and AST in
both astrocytes and neurons. In this way, ammonia transfer can occur. (B) BCAA metabolism is
altered in AD brains. Reduced levels of BCAAs (indicated in red) have been found in the blood,
CSF, and brains of AD patients, and this reduction is associated with cognitive decline in AD.
BCAA diminution might impair glutamate synthesis, leading to impaired neurotransmission and
impaired NMDAR function. The glutamate/glutamine cycle is impaired in AD brains, due to GS
and GLT-1 oxidation-related loss of activity in astrocytes, exposing neurons to the effect of glutamate
excitotoxicity. NAA is accumulated in AD brains, suggesting a cytosolic and mitochondrial metabolic
compromise in AD brains. (C) BCAA metabolism is altered in PD brains, with accumulation of these
amino acids (in green). Glutamate excitotoxicity is also prominent in PD brains, and this is associated
with downregulation of astrocytic GLT-1. Increased metabolite levels are shown in green, whereas
decreased levels are shown in red.

Glutamate metabolism regulates ammonia levels, as it is a concomitant co-substrate
of glutamate dehydrogenase (GDH), as well as alanine (ALT) and aspartate (AST) amino-
transferases (Figure 3A). In the brain, due to the high NAD+/NADH ratio, glutamate is
deaminated to 2-OG [70]; this is important in order to replenish the TCA cycle. Glutamate
is also produced through transamination. ALT and AST are both present in the brain,
although ALT activity is lower than that of AST [71]. Due to its presence in both astrocytes
and neurons, ALT seems to be involved in ammonium nitrogen transfer between these
cells [72] (Figure 3A).

Glutamate is the precursor of the inhibitory neurotransmitter γ-aminobutyric acid
(GABA), via glutamate decarboxylase (GAD) [73], which in the brain consists of several
isoforms exclusively present in GABAergic neurons [74]. GABA is metabolized to succinate
via the enzyme succinic semialdehyde dehydrogenase (GABA-shunt).

Glutamate is the product of BCAA transamination, yielding the three ketoacids α-
ketoisovalerate, α-ketoisocaproate, and α-keto-β-methylvalerate which, after conversion to
succinyl-CoA or acetyl-CoA, enter the TCA cycle [75]. In actuality, BCAA metabolism in
the brain is modest [65].

3. Metabolic Alterations in AD and PD Brains

Neurodegenerative processes are characterized by changes in the utilization of energy
sources—mostly glucose—by the entire brain and its individual regions. Understanding
how these alterations could be the cause and/or the result of neurodegenerative pro-
cesses, and which mechanisms are involved in aberrant brain metabolism, is crucial for the
development of treatments for neurodegenerative diseases [76].

3.1. Glucose Metabolism

Studies on glucose metabolism in AD brains are extensive (see Figure 1B). [18F]-
fluorodeoxyglucose positron emission tomography (FDG-PET) studies led to the discov-
ery of glucose hypometabolism AD brains. The regions known to be vulnerable to AD
pathology—such as the hippocampus, lateral and medial temporal lobes, and posterior
cingulate/precuneus—are the areas most severely affected by glucose hypometabolism [77–79].
This association can be attributed to the fact that the cerebral metabolic rate of glucose (CM-
Rglc) is an important indicator of neuronal and synaptic activity and is correlated with the
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main clinical features of AD [77]. The reduction in the CMRglc evidently predicts the pro-
gression from mild cognitive impairment (MCI) to AD, with greater than 80% accuracy [80].
Additionally, conditions associated with a high risk for AD—such as carrying the ApoE4
allele [81,82] or being prediabetic/diabetic and elderly [83]—also show AD-like reductions
in the CMRglc, even without any clinical manifestation of the pathology. Also associated
with lower CMRglc is the progressive increase in glucose concentrations in the posterior
cingulate/precuneus of AD brains [84], as measured with magnetic resonance imaging
(MRI), since decreased glucose utilization leads inevitably to increased concentration of
remaining intra- and/or extracellular glucose [84].

Studies using MRI and FDG-PET have shown that patients with PD have extensive ar-
eas of glucose hypometabolism [85,86], which correlates with impaired cognition [87], to the
point that hypometabolism and atrophy represent stepwise stages of the neurodegenerative
process in most of the cortical regions affected in Parkinson’s disease [88] (see Figure 1C).

As noted above, cerebral glucose uptake has been considered to be mainly independent
of the action of insulin [12]. However, the expression of insulin-sensitive GLUT4 in the brain
confirms that glucose metabolism in the brain is at least partially regulated by insulin [89].
The colocalization of GLUT3- and GLUT4-expressing cells further indicates that insulin
plays an important role in regulating brain glucose [90]. In general, aging is characterized
by chronic hyperinsulinemia that is associated with reduced expression of insulin receptors
and impaired insulin signaling cascades (i.e., insulin resistance) [91,92]. Consequently,
insulin desensitization in the brain increases the risk of developing neurodegenerative
diseases, such as AD and PD. Analyses of the brain tissue of AD and PD patients show
insulin desensitization, independent of a previous history of type 2 diabetes mellitus
(T2DM) [93–97].

Chronic inflammation is one of the main drivers of growth factor desensitization—not
just to insulin and IGF-1. Indeed, a variety of key neuronal growth factors, such as brain-
derived neurotrophic factor (BDNF) and nerve growth factor (NGF), are downregulated by
chronic inflammation [98,99]. Because of chronic inflammation, the activation of microglia
leads them to secrete pro-inflammatory cytokines, such as TNF-α [100–102], which can, in
turn, downregulate insulin signaling [103].

Since insulin in part regulates glucose uptake in neuronal and glial cells, alterations
in the insulin cascades may be implicated in glucose hypometabolism associated with
AD. In AD brains, insulin signaling is inhibited, and this inhibition is closely connected
to inefficiency in glucose metabolism [104]. The impairment of insulin signaling is also
involved in abnormalities in mitochondrial structure and function [105], as well as following
activation of the mechanical target of rapamycin complex 1 (mTORC1) [9,106]. In addition,
significant alterations in gene expression observed in the AD brain are connected to the
generation and transmission of insulin signals [107]. The insulin-degrading enzyme (IDE)—
which plays an important role in the degradation of amyloid beta (Aβ) monomers [108],
and is reduced in AD brains [109]—is competitively inhibited by insulin, leading to the
elevation of extracellular Aβ levels [110]. In vitro Aβ oligomers reduce plasma membrane
insulin receptors and promote oxidative stress and synaptic spine deterioration [111].

In the 3xTg-AD murine model, oxidative stress, after inducing initial activation of
IRS-1, activates negative feedback mechanisms to turn off IRS-1 hyperactivity, causing brain
insulin resistance [20]. This alteration might contribute to impaired glucose metabolism,
BBB dysfunction, and energy supply shortage, which are common hallmarks of diabetes
mellitus, and can further contribute to Aβ generation [112,113]. Thus, insulin resistance
might be a major cause of energy deficiency in AD brains, which is related to the manifesta-
tion of diabetes. In this respect, AD has been termed a neuroendocrine disorder, identified
as “type 3 diabetes”, mirroring a new mechanism of neurodegeneration [20,96,114].

Brain mRNA levels of insulin receptors decline in age—especially in the hypothala-
mus, cortex, and hippocampus—and this is connected to chronic secondary hyperinsu-
linemia [92,115], which is enhanced in PD (Figure 1C). Studies found a significant loss of
insulin receptor mRNA in the substantia nigra pars compacta (SNpc) of patients with PD
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with increased insulin resistance compared with age-matched controls [116–118]. Moreover,
an increase in levels of IRS phosphorylation at serine residues that deactivates insulin
signaling is also observed in the basal ganglia and substantia nigra [94]. Additionally, these
alterations reportedly may precede the death of dopaminergic neurons [94]. IRS-1 Ser312
phosphorylation is increased in neurons in the putamina of PD patients, whereas higher
levels of Ser616 phosphorylation are found in the hippocampi of PD patients compared
with controls [119] (Figure 1C).

Phosphorylation of IRS-1 on serine residues is a critical component of intact insulin
signaling, and prevents insulin/IGF-1 from binding to the IR and causing subsequent
activation of downstream effectors. This is consistent with other studies that found elevated
levels of IRS-1 pSer307, pSer312, and pSer616 connected with neuronal insulin resistance in
AD [93,120] (Figure 1B). However, an important aspect that needs to be explored is whether
brain insulin resistance is due to altered transit of insulin through the BBB, or whether
the neurons themselves are no longer sensitive to the effects of insulin. Peripheral insulin,
produced by the pancreas, crosses the BBB and exerts effects on the brain—especially on
the hypothalamus. Studies have found that hypo- and hyperinsulinemia have little effect
on total brain insulin, suggesting that brain insulin resistance may be due to decreased
responsiveness to endogenous insulin [121].

Brain cells can metabolize glucose to ATP by either oxidative or non-oxidative metabolism.
Whereas non-oxidative metabolism produces considerably less ATP than oxidative phos-
phorylation, it is preferentially used by the brain because it also supplies substrates for
physiological processes such as synaptogenesis, myelination, and axonal elongation, pro-
ducing less reactive oxygen species than oxidative phosphorylation [122,123].

While aerobic glycolysis gradually decreases with aging, oxidative glucose use remains
unaffected. Consequently, reduction in aerobic glycolysis mainly contributes to the total
reduction in glucose utilization, which is one of the main risk factors for AD [124].

Glucose metabolism is a well-orchestrated process that involves adjacent brain cells of
different types. While astrocytes predominantly metabolize glucose via glycolysis, neurons
depend on oxidative metabolism. Studies have shown that in aged mice the intercellular
metabolic “crosstalk” between glia and neurons is disrupted [125]. This impairs the lactate
shuttle, so neurons rely mainly on their own glycolysis and oxidation for energy, reducing
their capacity for energy generation [125]. Cerebral ATP production is reduced by ~20%
in early AD, and a further reduction occurs in the advanced stages of the disease [126]. In
addition to reduced glucose metabolism, decreased ATP production can be attributed to an
inadequate cellular uptake of glucose because of a reduced number of GLUTs observed in
brain cells of different types [127,128].

Postmortem studies in individuals with AD have demonstrated a decrease in GLUT1
and GLUT3, especially in the parietal, frontal, temporal, and occipital cortices, the caudate
nucleus, and the hippocampus [127–129]—coincidentally the same brain regions that
demonstrate glucose hypometabolism in FDG-PET studies [127] (Figure 1B). Furthermore,
the number of hyperphosphorylated tau-containing neurofibrillary tangles (NFTs) [128]
and tau pathology [130] correlates with GLUT reductions in AD. In vitro, the Aβ peptide
induces dysfunctional GLUT3, which leads to decreased glucose uptake despite increased
GLUT3 expression [131]. The Aβ-induced reduction of GLUT1 and -3 function lowers
protein O-GlcNAcylation, which is neuroprotective [132]. However, decreased GLUT3
function is associated with tau hyperphosphorylation [128].

In postmortem brain tissue from AD patients, GLUT2 overexpression was observed.
Since GLUT2 overexpression is associated with increased expression of the astrocytic
marker glial fibrillary acidic protein (GFAP), the increased GLUT2 expression in AD brains
may be the result of astrocytic activation [128], which is likely explained as a mecha-
nism to supply additional astrocytic GLUTs in order to shuttle energy to neurons though
astrocytes [128] (Figure 1B).

In addition to changes in GLUT, alterations in glycolysis are observed in AD (Figure 1B).
The relationship between glycolysis and aging in the brain [133] is complex. Glycolytic
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dysfunctions can cause age-related neurodegeneration [134], and in murine models of
aging, the levels of glycolytic intermediates—such as G6P and F1,6BP—are inversely corre-
lated with age [135]. However, astrocyte-specific glycolytic flux increases with age [136],
and is associated with a decline in the resting cerebral blood flow [137]. Furthermore,
reducing glycolytic flow via 2-deoxyglucose (2DG)—a known inhibitor of the glycolytic
processes [138]—prevents neurodegeneration by reducing microglial inflammatory activ-
ity [133]. Additionally, 2DG reduces the effect of Aβ on neuronal cells [139]. Increas-
ing NADH levels reverses the aforementioned effects of 2DG [140], and reducing the
NADH/NAD+ ratio is suggested to be a possible way to attenuate AD-associated pathol-
ogy [141]. In many studies, increased reliance on glycolysis and suppression of mito-
chondrial respiration confers increased neuronal resistance and survival [142]. From the
above-mentioned studies, it can be concluded that upregulation of glycolysis in neurons
may act as a compensatory mechanism against AD pathology. Although this compensation
might be initially beneficial in AD, it will eventually be detrimental once the disease pro-
gresses to a stage in which the brain displays glucose hypometabolism—even in preclinical
stages of AD [143].

Enzymes involved in glycolysis have also been evaluated, such as hexokinase (HK),
glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and pyruvate kinase (PK) [9,144,145]
(Figure 1B). HK and PFK expression are lower in AD brains, and this is linked to dysregu-
lated Wnt signaling, which is known to exert neuroprotective effects by promoting glucose
metabolism [146]. However, HK activity can be competitively inhibited by G6P [147],
which accumulates in AD [148]. GAPDH is involved in the sixth step of glycolysis, and cat-
alyzes the conversion of glyceraldehyde 3-phosphate (GAD3P) to 1,3-bisphosphoglycerate,
increasing the NADH/NAD+ ratio [149]. GAPDH can promote Aβ amyloidogenesis
in vitro [150], and in the S-glutathionylated form might represent a blood marker of neu-
ronal death during AD progression [151]. In the 5xFAD murine model of AD, GAPDH
expression was increased by the inflammatory response generated by Aβ, which reportedly
induced a shift from OXPHOS to glycolysis via the mTOR-HIF-1α pathway [23].

PK is a rate-limiting enzyme in glycolysis, and has four isomers: M1, M2, L, and R.
PKM2, which regulates the levels of glycolytic intermediates along with ATP, is connected
to neurodegenerative diseases [152] (Figure 1B). The upregulation of the Wnt/β-catenin
pathway can promote glycolysis, which is related to PKM2. In AD, the Wnt/β-catenin
pathway is downregulated through the partial inactivation of PKM2, and this is associated
with oxidative stress and cell death [152].

As discussed further below, our laboratory used redox proteomics and enzyme ac-
tivity assays to identify several glycolytic and TCA enzymes as oxidatively modified
and dysfunctional in brains from subjects with AD and MCI, as well as animal models
thereof [9,153–155].

Glycolytic dysfunctions have also been observed in PD (Figure 1C). Decreased glucose
metabolism has been found to be associated with abnormally elevated levels of lactate and
pyruvate in PD patients [156–159]. Interruption of glycolysis in astrocytes and oligoden-
drocytes leads to axonal damage and neurodegeneration [160,161].

Interestingly, α-synuclein (α-syn) aggregation is promoted by glucose deprivation [162].
Conversely, lactate reportedly exerts an opposing effect on α-syn [163]. Glycolysis is up-
regulated in response to mitochondrial dysfunction, and ATP generation via glycolysis
has a protective role when complex I is inhibited [164–169]. Indeed, failure by neuronal
cells to upregulate glycolysis seems to make them more sensitive to mitochondrial dysfunc-
tion [170].

Phosphoglycerate kinase (PGK) catalyzes the ATP-generating step of glycolysis, in
which a phosphate group in 1,3-biphosphoglycerate is transferred to ADP, with the produc-
tion of 3-phosphoglycerate and one molecule of ATP. Deficiency of PGK activity caused
by genetic mutations (e.g., c.649G > A), which leads to defective ATP production, has
been shown to be a major cause of medical conditions related to PD, such as neurological
deficits, hemolytic anemia, and myopathy [171]. Multiple studies have shown that patients
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with a deficit of PGK activity exhibit PD-like symptoms, highlighting the role of PGK
deficiency in the development of idiopathic PD [172–175]. These clinical findings have been
further explored in studies conducted in preclinical models. Indeed, in a Drosophila model,
PGK knockdown induced in dopaminergic (DA) neurons resulted in locomotive defects
characterized by significant reductions in ATP and dopamine levels, with a stepwise loss
of DA neurons [175]. Moreover, in different toxin-induced or genetic PD models, treat-
ment with terazosin—a PGK agonist—enhanced brain ATP and dopamine levels with the
restoration of motor function, suggesting that stimulation of PGK and glycolytic activities
could represent a possible therapeutic approach in the treatment of PD [174].

Other studies found that PD-related genes—such as PARK2 (Parkin), SNCA (α-synuclein),
PINK1, and PARK7 (DJ-1)—indirectly regulate glycolysis by interfering with different
signaling proteins, including p53, HIF-1α, and AMPK [176–179].

Additionally, methylglyoxal (MGO)—a byproduct of the metabolism of GAD3P and
dihydroxyacetone phosphate (DHAP)—is a potent glycation agent that quickly binds
nucleic acids, lipids, and protein lysines/arginines to produce advanced glycation end
products (AGEs), which have been reported in PD [180]. MGO induces mitochondrial
dysfunction, and is detoxified by the glyoxalase system through the activity of glyoxalase-1
and -2 (GLO1–2), with GSH used as a cofactor [181–183]. Additionally, Parkin was recently
shown to regulate glucose metabolism via ubiquitinylation of pyruvate kinase M1 and
PKM2, which leads to a decrease in their enzymatic activity [184].

In PD brains, GAPDH, aldolase A, and enolase 1 are oxidatively modified by the
lipid peroxidation product 4-hydroxynonenal (4-HNE) [185] (Figure 1C). These glycolytic
enzymes are subjected to interaction and sequestration by amyloid-like structures such as
α-syn fibrils [186,187]. GAPDH has been found to directly regulate α-syn aggregation and
apoptotic neuronal cell death in an independent manner different from its role in glycolysis
(Figure 1C).

Furthermore, GPI-1 was recently shown to have a protective effect against proteotoxic
stress induced by α-syn in dopaminergic neurons, and this effect was demonstrated to be
linked to glycolysis [188]. Notably, other studies have found a possible interaction between
α-syn and glycolytic enzymes such as aldolase [189,190].

3.2. Ketone Bodies

As stated above, under normal physiological conditions, the brain primarily utilizes
glucose for energy production. However, in situations where glucose is low, such as during
prolonged fasting, ketone bodies become an important energy source for the brain. Indeed,
infants who are breastfed utilize ketone bodies almost entirely. Neurodegenerative diseases
are characterized by a deterioration of brain glucose metabolism, which naturally enhances
ketone utilization.

Monocarboxylate transporters (MCTs) are a family of 14 receptors that are responsible
for the passive transport of lactate, pyruvate, and ketone bodies into the brain [191]. During
aging, the brain favors ketone metabolism by increasing neuronal MCT2 and decreasing
astrocytic MCT4—perhaps as a compensatory response to glucose hypometabolism [192].
This hypothesis is further supported by the observation that the elevation of ketones in
aged rat brains correlates with the rise of markers of mitochondrial dysfunction [193].

The main source of ketones for peripheral organs and the brain is the liver. However,
myelin catabolism can be a source of ketones when peripherally produced ketones are
not available to the brain—an age-related condition of reduced ketone transport [193]
due to decreased MCT1 expression in the BBB [192], which may cause white matter de-
generation [193]. In particular, the activation of the cytosolic phospholipase A2 (cPLA2)-
sphingomyelinase pathway, induced by the age-induced decline in mitochondrial respira-
tion and increased oxidative stress, leads to the catabolism of myelin lipids into fatty acids.
Then, astrocytes can further catabolize fatty acids to produce ketone bodies that can enter
the neurons via MCTs. This phenomenon may contribute to the demyelination observed
in AD, and might play a pathogenic role [194]. Cerebral ketone uptake is proportional to
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peripheral levels of ketone bodies, and this ability is conserved in the AD brain, underlining
that in AD brains normal ketone metabolism occurs [195]. Notably, PET studies in MCI
and AD individuals showed that brain regions characterized by glucose hypometabolism
metabolize acetoacetate normally [78,196]. In the 3xTgAD murine model, hippocampal
MCTs were altered [192]. In AD, although glial MCT1 and MCT4 protein expression
decreases, neuronal MCT2 protein expression increases [192]. These alterations occur con-
comitantly with reductions in GLUT1 and GLUT3 protein expression [192], highlighting a
compensatory mechanism executed to deal with glucose hypometabolism. This observa-
tion is substantiated by studies in female 3xTgAD mice, in which the ketone-metabolizing
succinyl-CoA:3-ketoacid coenzyme A transferase (SCOT) enzyme is inversely correlated
with pyruvate dehydrogenase (PDH) [197]. These changes in enzymatic activity indicate a
bioenergetic shift from glucose toward ketones as metabolic substrates in AD [197].

The ability of the brain to utilize ketones in other neurodegenerative diseases, such as
PD, has not been studied in depth. However, it has been hypothesized that, like AD, the
pathology of PD may be associated with preserved metabolism of ketones, which could
offset the energy deficit due to glucose hypometabolism. This is confirmed by the positive
effects of ketogenic interventions in experimental models of PD [198].

3.3. TCA Cycle and OXPHOS

Cerebral glucose hypometabolism—characterized by reduced glucose uptake and uti-
lization associated with brain insulin resistance [20,96,114,199]—and progressive mitochon-
drial dysfunction with aging [200,201] have recently been correlated with AD, and suggest
the involvement of energy metabolism alterations in AD’s pathophysiology (Figure 2B).

Mitochondrial energy production involves electron transfer between the enzymes of
the TCA cycle, generating the reducing coenzymes NADH and FADH2, and successive
oxidation of these factors on the complexes of the ETC. At the end of glycolysis, pyruvate is
oxidized to acetyl-CoA in order to access the TCA cycle, or is reduced to lactate, depending
on the redox status of oxidized/reduced forms of NAD+. In AD transgenic mice, the
NADH pool is reduced with age, and the redox state becomes more oxidized [202–205].

Proteomic analysis revealed that in aging, alterations of NADH levels correlate with
dysfunction of TCA enzymes, such as upregulation of fumarase 1 (FH1), malate dehy-
drogenase 1 (MDH1), SDH, PDH, and subunits of complex I [206]. Reduced TCA cycle
metabolism is also correlated with the downregulation of isocitrate dehydrogenase 1/2
(IDH 1/2) and a subunit of succinyl-CoA synthetase in aged murine brains. In particular,
the downregulation of IDH leads to lower NADPH and 2-OG, known for their protective
role against oxidative stress, resulting in inefficient ROS clearance [207,208]. AD brains
display reductions in IDH, 2-OGDH, and PDH complexes [209], although the activities of
MDH and SDH are increased [210]. Citrate synthase (CS) activity appears to be negatively
regulated by ApoE4 [211] and decreased in AD patients [212]. As a downstream product of
2-OG, succinyl-CoA may also be reduced [133] (Figure 2B).

TCA cycle intermediates—such as citrate, cis-aconitate, and 2-OG—are altered in the
plasma and cerebrospinal fluid (CSF) of patients with AD or MCI [213,214]. This is mirrored
by reduced levels of ketogenic and glucogenic amino acids, which produce intermediates
that flow into the TCA cycle. In contrast, high concentrations of creatinine are observed in
the CSF of AD patients, indicative of a disrupted creatine–phosphocreatine shuttle [215]
under conditions of inadequate glucose intake. Therefore, lactate, amino acids, and fatty
acids represent an alternative energy source for neurons during hypoglycemia [52], with
lactate acting as a neuroprotective metabolite [216] via transcriptional activation of brain-
derived neurotrophic factor expression [217].

In both aging and AD mouse models, the flux to the TCA cycle is increased together
with the levels of acetyl-CoA and NADH, which are positively correlated with age and
AD progression [218]. Glutamine and fatty acid metabolism are upregulated with age and
AD, possibly indicating a cellular requirement for additional energy production [218]. In
the APP/PS1 mice with early-stage disease, the levels of succinic acid, 2-OG, citric acid,
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cis-aconitic acid, and fumaric acid are decreased [219,220]. In the same model, 13C flux
analysis detected reduction in energy metabolism as well as neurotransmitter precursors
(glutamine, glutamate, γ-aminobutyric acid, and aspartate) [221], and this observation was
correlated with accumulated brain glucose. This result indicates that decreased glucose
responsiveness in AD could induce compensatory activation of alternative sources—both
glucogenic and ketogenic—to fuel the TCA cycle, such as fatty acids and amino acids [222].
In support of this hypothesis, plasma from AD patients displays elevated carnitine forms
of major fatty acid oxidation intermediates such as acetyl-carnitine (C2) and long-chain
acyl-carnitines (LCACs, from C6 to C18) [213].

In addition to AD, alterations in glucose metabolism have also been reported to
occur in PD, such as a decrement in glucose flux and atypically high levels of lac-
tate/pyruvate [156–158] (Figure 2C). Furthermore, dysregulation in the TCA cycle has
been reported in PD brains [156,223]. Not only mitochondrial energy dysfunction, but also
genetic variations are related to mitochondrial changes in early-onset PD. As mentioned
above, alterations in the PINK1, Parkin, SNCA, and DJ-1 genes alter mitochondrial morphol-
ogy [224–227]. α-Syn enters the mitochondria in a manner dependent on energy state [228],
and once accumulated in the mitochondria causes complex I dysfunction, increased ROS
production, and reduced ∆Ψm, which exacerbate the mitochondrial injury present in old
substantia nigra neurons in PD [229,230] (Figure 2C).

Disturbances in OXPHOS involve many effects on cellular homeostasis, e.g., (1) pro-
moting the accumulation of NADH and FADH2 in mitochondria, (2) reductions in ATP
production, and (3) increased ROS production. The brain is an organ with high oxygen
consumption and low antioxidant defenses; thus, the brain is vulnerable to oxidative
stress [133].

The elevation of NADH and ROS levels in mitochondria inhibits the activity of TCA
enzymes, leading to accumulation of the TCA intermediates [231]. Changes in the 2-
OG/succinate levels modify the activity of NAD+-dependent 2-OG-oxygenases (2-OGDO)—
enzymes controlling the epigenetic modifications of chromatin [232]—ultimately perturbing
neuronal function. The impaired OXPHOS in AD could induce the accumulation of citrate
and 2-OG, which are two potent epigenetic regulators [233,234]. In particular, 2-OG can
induce random changes in DNA and histone methylation, leading to an epigenetic drift in
gene expression, such as in the aging process and AD [235].

Complex I protein levels are significantly reduced in the temporal, parietal, and
occipital cortices in AD brains [236]. The biosynthesis of the 24 KDa subunit of complex
I is lower in the temporal and occipital cortices, while the 75 KDa subunit complex I is
lower in the parietal cortex of AD brains [237]. Complex III protein levels are reduced in
the temporal cortex [238], whereas complex V proteins are reduced in the hippocampus of
AD brains [239]. The activity of cytochrome c oxidase (complex IV) is altered in the brain
areas affected by AD [240–242], in a region-specific fashion; reportedly, it is lower in the
temporal, frontal, and parietal cortices, but higher in the hippocampus [243] (see Figure 2B).
A decreased expression of subunit 4 in the cytochrome c oxidase complex was noted
in transgenic AD mice [244]. Furthermore, Aβ can induce ROS production in neuronal
mitochondria, disturbing complex IV functions [245]. The Aβ fragment 25–35 reduced the
activity of complex IV without changing the activity of the other respiratory complexes
in isolated rat brain mitochondria [246]. Two caveats of studies employing Aβ25-35 are
(a) the mechanism of ROS production with a terminal Met residue is different from that of
Aβ1-42 with an interchain Met-35 residue [247]; and (b) There is no reported evidence of
Aβ25-35 in AD brains, making studies using this Aβ peptide fragment of academic interest,
but not of relevance to AD.

Mitochondria are not only the principal source of ROS, but also an important target
of ROS attack, leading to a vicious cycle in which oxidative stress can further exacerbate
mitochondrial dysfunction [6,248]. As mentioned above, the activity of the ETC complexes
is considerably reduced in AD, leading to compromised OXPHOS [249]. This phenomenon
has been established in mitochondria isolated from 3-month-old AD mice [250] and brain
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tissue from AD patients [239]. The damage to mitochondrial respiratory function in AD
patients may be caused by the effect of Aβ on mitochondrial OXPHOS capability, and may
also be correlated with Aβ levels [251] (Figure 2B).

The above-mentioned lower TCA cycle flux in AD might suggest that the ETC-
OXPHOS is deprived of NADH for ATP generation [210]. The NAD+/NADH redox couple
is a potential sensor for dehydrogenases, and acts as a switch to affect the rate or direction
of the cellular metabolic flux. Moreover, as discussed above, in AD, metabolic upregulation
of fatty acid β-oxidation is exploited to generate NADH as an alternative to carbohydrate
oxidation, so as to maintain redox balance and maximize energetic function [218].

Mitochondrial dysfunction—specifically a deficiency in complex I of the ETC—is
prominent in PD [252], although its deficiency seems to be limited to regions of the brain
that are pathologically altered in PD [253,254] (Figure 2C). However, mitochondrial complex
I deficiency and oxidative stress appear to be key factors in PD’s pathogenesis [255].
These are interconnected, as inhibition of complex I results in increased production of
ROS which, in turn, inhibit complex I. Over time, this vicious cycle in dopaminergic
neurons leads to excessive oxidative damage and ATP deficiency that will eventually lead
to cell death [256–259]. Evidence supporting the energy failure of PD brains includes
the creatine kinase (CK)-mediated increase in ADP phosphorylation at the expense of
phosphocreatine, which is linked to upregulated creatine synthesis at the expense of
amino acids such as glycine [252] (Figure 2C). These mechanisms underscore energy
inefficiency and mitochondrial dysfunction in PD [260]. As noted above, alternative energy
sources have been shown to protect against PD neurodegeneration; most studies show that
glycolysis is upregulated in response to mitochondrial dysfunction, and ATP generation
via glycolysis plays a protective role against complex I inactivation [164,167,169].

3.4. Aminoacid Metabolism

Several findings support the notion that glucose metabolism, mitochondrial dysfunc-
tion, and metabolism of BCAAs are altered in the brains of AD models [261] (Figure 3B). A
significant reduction in valine found in AD CSF [262] has been recently confirmed in newly
diagnosed AD patients [263]. Lower plasma valine levels were correlated with the rate of
cognitive decline [264]. Reduced levels of BCAAs in the blood were found to be associated
with an increased risk of dementia and AD [265]. The decreased levels of BCAAs could
affect glutamate synthesis, thereby impairing neurotransmission. Indeed, in line with lower
BCAA levels in AD, a reduction in glutamate levels was reported in AD patients [266],
together with decreased levels of glutamine [267]. Furthermore, since glutamate, as an
excitatory neurotransmitter, binds to cell surface receptors such as α-amino-3-hydroxy-5-
methyl-4-isoxazolopropionic acid (AMPA) receptors and N-methyl-D-aspartate (NMDA)
receptors [268], and since reduction in NMDA receptor function relates to Ca2+ dysregu-
lation and reduced synaptic plasticity [269], it is conceivable that reduced BCAA levels
contribute to dementia in AD [265] (Figure 3B).

The enzyme GS plays a key role in brain function. In normal astrocytes this protein, by
catalyzing the rapid amidation of glutamate, forms glutamine, and in this way contributes
to establishing the correct levels of glutamate and ammonia and, consequently, to modulat-
ing the excitotoxicity that results from impairment of the glutamate–glutamine cycle. In AD
brains, the conversion of glutamate to glutamine by GS occurs less efficiently than in control
brains [270–272]. Moreover, both the glutamate transporter GLT1 [273] and GS [274] are
oxidatively modified and dysfunctional in AD [254,259], potentially exposing neurons to
glutamate excitotoxicity that is extensive in AD brains [275] (Figure 3B). Protein oxidation
might be part of the mechanism of neurodegeneration in AD brains [9,274,276–281].

Glutamate excitotoxicity is also extensive in PD brains, and this seems to be related to
GLT1 downregulation [282] (Figure 3C).

Microglial metabolism plays a significant role in inflammatory responses during AD-
associated neurodegeneration [283]. It is important to highlight the fact that GS activity in
the microglia mitigates microglial inflammatory response, suggesting a novel mechanism
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by which GS loss of function amplifies inflammatory activity, leading to neurodegenera-
tion [284]. Moreover, GS inhibition reduces insulin-related glucose uptake in the microglia,
suggesting GS activity as a potential unifying mechanism controlling insulin resistance,
inflammation, and metabolism [284].

Accumulation of N-acetyl aspartate (NAA), together with alterations of metabolites
such as aspartate, glutamate, citrate, malate, pyruvate, serine, and lactate, are found in the
frontal cortex samples of AD subjects. This suggests that the amino acid transport mech-
anism between mitochondria and the cytosol could be compromised in AD brains [285].
During early postnatal CNS development, NAA production in neurons is increased. NAA
is transported from neurons to the cytoplasm of oligodendrocytes, where aspartoacylase
(ASPA) cleaves the acetate moiety to promote synthesis of fatty acids and steroids as build-
ing blocks for myelin lipid synthesis [286] (Figure 3B). Previous findings indicate that
cholinergic treatment could induce elevated NAA levels in AD [287,288], and that this
effect could be reversed by other therapeutic strategies [289,290], suggesting a possible
influence of dietary regimens or pharmacological treatments on NAA levels measured
in AD subjects. The recent finding that NAA could mitigate the inflammatory response
of macrophages through NMDAR interaction [291] clearly opens interesting clues with
respect to the role of this metabolite in the neurodegenerative processes underlying the
pathologies of AD and PD.

Metabolomic studies have identified increased alanine and phenylalanine [292] and
reduced tryptophan in PD brains [293]. Dysregulation of the kynurenine pathway—a
metabolite derived from tryptophan—was found in PD [294–296], providing potential
novel biomarker candidates for investigating the pathogenesis of PD and suggesting
new therapeutic strategies [294]. This study confirmed the pioneering research of M.
Flint Beal on decreased kynurenine in neurodegenerative disorders [297]. Alterations in
phenylalanine—an initial metabolite in the biosynthesis of dopamine—may be corrected
by treatment with different dopaminergic drugs [298]. In addition, L-DOPA treatment has
a profound impact on aromatic amino acid metabolic pathways.

Metabolomics studies profiling the blood metabolomes of PD patients showed a
significant increase in BCAAs in this disorder [299] (Figure 3C). In normal brain function,
threonine and glycine can be converted to creatine, providing phosphate groups for ADP
to produce ATP [252]. During the initiation of neurodegenerative processes associated with
PD, the metabolism of glycine, serine, and threonine is downregulated [252], consistent
with mitochondrial dysfunction in PD [260].

Proline is involved in aging and neurodegeneration [300,301]. In this regard, a recent
study found high concentration levels of ornithine—the precursor of proline—in the sera
of patients with PD [302], confirming results obtained by Çelik et al. [303]. Ornithine
accumulation is associated with hyperosmolarity in different regions of the brain via urea
cycle flux [303]. Additionally, ornithine accumulation leads to higher proline levels, which
could induce collagen biosynthesis, leading to a shift in the immune system towards a
program of wound healing [303]. Increased levels of trans-4-hydroxyproline were found
in the CSF and sera of patients with PD—possibly partially caused by the intensified
degradation of collagen [302,304].

3.5. Redox Status

The brain is characterized by high oxygen consumption (20% of the total bodily
consumption is employed by the brain), high energy demand, and relatively low levels of
antioxidant systems [305]. It follows that a common element in AD and PD is the presence
of high levels of ROS, which are correlated with neuron death [306]. ROS are highly reactive,
oxidizing, small molecules, in the form of hydrogen peroxide, superoxide radical anions,
and other free radicals (such as hydroxyl radicals). The main endogenous sources of ROS
are the respiratory chain in mitochondria, peroxisomal activity, NADPH oxidases (NOX),
the endoplasmic reticulum, and activated inflammatory cells [307]. In the brain there are
further ROS sources, such as Ca2+ signaling, metals, and neurotransmitters (Figure 4).
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ROS have many physiologically regulated functions in the brain. Indeed, microglia and
astrocytes produce ROS with the purpose of regulating neurons and glial exchanges and
neuronal activity [308]; this phenomenon is reported as “redox signaling” [305]. ROS can
contribute to the activation of guanylate cyclase, leading to the production of cGMP—an
important second messenger. Additionally, ROS are involved in the activation of the
transcription factor nuclear factor κB (NF-kB) [306]. The superoxide anion and hydrogen
peroxide originating from NOX2 act on the PI3K/Akt pathway, with a beneficial effect in
maintaining stem cell proliferation in the hippocampus [309], potentiating learning and
memory [310]. Interestingly, NOX2 deficiency leads to cognitive loss [309]. Then, the
hippocampus is highly affected in AD [311]. Moreover, NOX-derived H2O2 plays a role
in axon development [312], managing the correct innervation [313]. Thus, ROS contribute
to the potentiation of synaptic plasticity, neuronal development, and polarization [314] in
physiological conditions (Figure 4).

However, ROS can be highly reactive and, therefore, dangerous. In response, cells
have developed many enzymatic (superoxide dismutase (SOD), catalase (CAT), glutathione
peroxidase (GPx), thioredoxin (TRX), peroxiredoxin (PRX), glutathione reductase (GR),
glutathione S-transferases (GST)) and non-enzymatic systems (glutathione (GSH), vitamins
A, C, E, b-carotene) to keep ROS production under control [315]. Among these, glutathione
represents the most abundant endogenous antioxidant molecule in the brain [316]. GSH is
synthesized from three amino acids: glutamate, glycine, and cysteine (Cys), with Cys being
the most limiting reagent compared to the others, to the point that its shortage could restrain
GSH de novo synthesis [317]. A GSH de novo synthesis precursor, N-acetyl-cysteine, was
shown to be useful in improving memory deficits in AD patients [318,319] and, when given
in drinking water to a pertinent AD murine model, to significantly decrease oxidative
damage in the brain [320]. Glutathione is characterized by a reactive thiol group (GSH)
that can combine with free radicals, becoming oxidized (GSSG). GPx is mostly responsible
for this reaction, which also can occur spontaneously. GR then reduces GSSG back to GSH,
using NADPH for reducing equivalents. Beyond free radicals, GSH can also react with
other nucleophilic molecules, due to the action of GST, forming glutathione-S-conjugates—a
means of detoxifying toxic compounds—and GST is defective in AD brains [321]. GSH is
also involved in the glutathionylation of proteins—a mechanism protecting proteins from
oxidation. It was reported that in AD many proteins are glutathionylated [322,323].

Among the alterations observed in AD brain metabolism, the PPP’s impairment
impacts on redox balance, because it can generate NADPH equivalents which, as noted
above, are useful to reduce GSSG derived from ROS back to GSH [133]. The rate-limiting
enzyme G6PD has been shown to exert a role in neuroprotection [324]. Moreover, G6PD
activity was found to be decreased in aged murine brain cortices [325], as we;; as in the
hippocampi of human AD brains [326], but also upregulated in AD [327]. Notably, Aβ
peptides, tau aggregation, and ApoE in AD are involved in PPP impairment [328,329],
as well as with the alteration of some metabolites, such as G6P, gluconolactone, and
gluconate [330]. Additionally, Aβ damage can be hindered via deviation of glucose through
the PPP [331,332]. In AD, increased levels of lactate together with reduced levels of R5P
are indicators of PPP upregulation [333]. Furthermore, the activity of the other PPP rate-
limiting enzyme, transketolase, has been shown to be lowered in AD [334,335].
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Figure 4. ROS sources and targets in the brain. Schematic representation of cerebral ROS sources
and targets. Sources: beyond the mitochondrial inner-membrane-resident respiratory chain, peroxi-
somes, endoplasmic reticulum, NADPH oxidases (NOX), and activated inflammatory cells, there
are also specific brain sources such as neuronal nitric oxide synthase (nNOS), monoamine oxidases
(MAO), Ca2+ signaling, redox-active metal ions, neurotransmitters, and synaptic transmission. Targets
of ROS include lipids present in membranes, in particular polyunsaturated fatty acids; mitochondria,
and especially the electron transport chain (ETC) complexes; proteins such as the glutamate trans-
porter (GLT-1), or enzymes, for example (among others), glyceraldehyde 3-phosphate dehydrogenase
(GAPDH), α-enolase, or glutamine synthetase (GS) in AD brains; Ca2+ homeostasis; DNA.

Derangements of the PPP are accompanied by GSH abnormalities. With aging and
in many neurodegenerative diseases, GSH levels are reduced [336]. In AD, the ratio
GSH/GSSG is unbalanced toward the oxidized form [337], and GSSG levels are correlated
with the decreased cognitive functions in AD patients [338]. Moreover, in AD patients,
activities of GPx and SOD reportedly are low [339], with consequent H2O2 accumulation.
In such conditions, ROS can damage macromolecules and structures such as membranes,
proteins, lipids, and DNA [340] (Figure 4).

Oxidative stress also involves cell metabolism and signaling [9,114], and often triggers
a pro-inflammatory response, with increased cytokine production, observed in AD and
PD [341]. In this state of chronic inflammation, astrocytes can release pro-inflammatory
factors together with free radicals, leading to microglial activation [342]. Astrocytes also
supply GSH to other brain cells, but the inflammatory activation associated with neurode-
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generation reduces the intracellular GSH levels through p38 MAP-kinase, Jun-N-terminal
kinase, and NF-κB in human microglia and astrocytes [343]. All of these events are of-
ten present in the early stages of the pathologies, and contribute to the shortage of the
antioxidant defenses, favoring disease progression [344] (Figure 4).

Oxidative stress targeting proteins could have serious consequences, especially be-
cause the associated enzymatic activity can be impaired by oxidation [155,345]. Indeed,
many enzymes have been reported to display lowered activity consequent to their oxidation
in neurodegenerative diseases, including GAPDH, a-enolase [274,346], and GS [272,347]—
with obvious consequences for brain function. The oxidation-dependent inactivation of the
glycolytic enzymes leads to the alterations in glucose metabolism observed in AD [126,145]
and, ultimately, to neurodegeneration [348,349].

The brain also is vulnerable to oxidative damage, due to its highly polyunsaturated-
fatty-acid-rich structure which, because of its labile allylic H atoms, represents a target for
lipid peroxidation. This event, in addition to producing damage to lipid structures, leads
to the generation of neurotoxic aldehydes such as 4-HNE [280,350] or dienals, which can
induce apoptosis [351]. Moreover, the brain uses high levels of Fe2+, which could play a
role in oxidative stress [352] and could induce autophagy [353]. Moreover, Ca2+ homeosta-
sis, which is important in signal transmission and action potential generation in neurons,
could have impact on oxidative stress, and vice versa [9,354]. Ca2+ induces neuronal nitric
oxide synthetase (nNOS), thus leading to NO synthesis [355], and NO is a free radical
that can combine with superoxide free radicals to form peroxynitrite, which can lead to
the nitration of key protein tyrosine residues, thereby interfering in important tyrosine
phosphorylation-based intracellular signaling that is damaging to cells [356–361]. Nitra-
tion of heat shock protein 90 induces apoptosis in neurodegenerative diseases [362]. The
interplay between Ca2+ and ROS also involves the regulation of mitochondria-associated
membrane (MAM) formation [363]. These structures regulate many mitochondrial func-
tions, and their dysregulation causes oxidative stress, associated with neurodegeneration
in AD and PD [364]. Moreover, Ca2+ can regulate apoptosis through mitochondrial perme-
ability transition pore (mPTP) opening [365]—a common mechanism in neurodegenerative
disorders [305,366,367]. AD brains are also more vulnerable to oxidative stress, because of
further decreased levels of antioxidant enzymes and small antioxidant molecules [368,369].

Finally, synaptic transmissions could trigger oxidative stress. Glutamatergic transmission—
involved in PD as excitotoxicity—leads to depletion of GSH, because glutamate inhibits
the cysteine transporter [370], which is essential for GSH synthesis [371]. Beyond GSH
depletion, glutamate excitotoxicity is linked to Ca2+/ROS interplay and, consequently,
could lead to apoptosis [305]. Glutamatergic transmission, through NMDAR, is also linked
to protective mechanisms involving NOX2 [372].

Amine neurotransmitters—such as dopamine, noradrenaline, tyramine, and others—
are metabolized by monoamine oxidases (MAOs)—mitochondrial enzymes that deaminate
their substrates in the presence of O2, producing the related aldehyde, H2O2, and NH3.
MAO catalysis requires flavin as a cofactor [373]. MAOs are present in two isoforms:
MAO-A and MAO-B, which differ based on substrate specificity [374,375] and affinity for
O2 [376]—an important feature, since their activities are influenced by oxygen’s availability.
Both isoforms can generate peroxide at high rates in the brain under conditions of saturated
O2. MAO-B is located in the mitochondrial intermembrane space, where the GPx4 isoform
is also present [377] and counteracts H2O2 generation. Through H2O2 production, MAOs
can also induce apoptosis, via a Ca2+-dependent mechanism [378]. Indeed, in AD and
PD, MAO activity is enhanced [379,380], and MAO inhibitors have been proposed as
therapeutic agents for AD [381] and are currently a therapeutic option for PD [382]. MAOs
can also keep ROS generation under control, preventing neurotransmitter oxidation; in
fact, while the MAO-catalyzed reaction produces a single hydrogen peroxide molecule,
the oxidation of amine neurotransmitters would generate peroxide at high rates [383].
The MAO reaction is coupled with aldehyde dehydrogenase (ADH), which converts the
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aldehydes to the corresponding acids, detoxifying them. The inhibition of ADH has been
related to PD [384].

As mentioned above, dopamine, along with adrenaline and serotonin, can auto-
oxidize, generating ROS and quinones [385,386]. In particular, it has been observed that
some metabolites of dopamine oxidation, such as 6-hydroxydopamine, play a role in
PD [387], e.g., through increased mitochondrial ROS and inhibition of glucocerebrosidase—
a lysosomal enzyme involved in the pathogenesis of PD [388,389].

At the metabolic level, all of the cell types in the brain (i.e., neurons, glia, astrocytes,
endothelial cells), with all their differences, cooperate in the correct function of the whole
tissue, thus performing a “metabolic coupling” [390]. Neurons obtain their energy mainly
from oxidative phosphorylation (OXPHOS), whereas astrocytes obtain most of their energy
from glycolysis, and the lactate generated can be used by neurons as an energy source.
This cooperation also involves antioxidant defense [391]; astrocytes, when higher levels
of mitochondrial ROS are produced, play a pivotal role in the antioxidant protection
of neurons [392]. Indeed, the higher mitochondrial ROS production in astrocytes can
induce the formation of nuclear factor erythroid 2-related factor 2 (Nrf2)—a transcription
factor controlling the basal and induced expression of an array of constitutively active
antioxidant responses [393], thus reducing the release of ROS by suppressing NOX1 and
NOX2 expression. The induction of Nrf2 also contributes to high extracellular GSH levels,
further contributing to the maintenance of the proper redox balance in neurons [394,395].

Some metabolism-related therapeutic treatments for Alzheimer’s disease and Parkin-
son’s disease are listed in Table 2.

Table 2. Therapeutic treatments for Alzheimer’s disease (AD) and Parkinson’s disease (PD), with
impacts on metabolism.

Agent Mechanism of Action Status Pathologies

Valproate
Inhibition of tau phosphorylation by

targeting glycogen
synthase kinase 3 (GSK3β)

Phase II clinical trials AD [396]

Metformin Insulin-sensitizing agent Pilot randomized placebo
controlled clinical trial AD [397]

Intranasal insulin Increasing the availability of insulin
at the brain level Phase III clinical trials AD [398]

Monoamine oxidase B
(MAOB) inhibitors

Inhibiting the MAO type B, thus
enhancing dopamine levels
Decreasing oxidative stress

Currently available PD [399]

Terazosin

Enhancing the activity of
phosphoglycerate kinase 1 (PGK1),
thereby increasing cellular ATP and

dopamine levels

Phase II clinical trials PD [174]

Nucleotinamide riboside
supplementation Enhancing NAD+ biosynthesis Clinical trials, phase

not applicable PD [400]

Nutritional ketosis
Non-pharmacological treatment

Enhancing PPP, GSH levels, and ATP
production

Clinical trials, phase
not applicable PD [401]

Mediterranean diet Non-pharmacological treatment Observational studies AD, PD [402]

4. Conclusions

The content of this review article indicates that cerebral energy metabolism involving
glucose, ketone body, and amino acid metabolism is dysfunctional in the brains of persons
with AD and PD—conditions that in AD happen early in the progress of the disease,
well before dementia presents in patients [9,403]. In each type of brain metabolism, the
involvement of mitochondria and oxidative and/or nitrosative stress iscritical to these
altered metabolic processes in both AD and PD.

Because so many different aspects of brain metabolism are altered in AD and PD, we
predict that targeting a single metabolic process will be insufficient to curb the progression
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of both disorders. Rather, targeting the common processes associated with both AD and
PD—i.e., mitochondrial alterations and oxidative and/or nitrosative stress—may be a
more promising therapeutic approach [248]. Brain-permeable, cell-membrane-passable,
mitochondrially targeted antioxidant agents, such as Mn(III) meso-tetrakis(N-n-butoxyethyl-
pyridinium-2yl)porphyrin, MnTnBuOE-2-PyP5+—also known as BMX-001 or MnP (an
MnSOD mimetic) [404]—and mito-Tempol (a mitochondrially directed antioxidant), have
shown promise in attacking certain ROS-associated cancers and other disorders [405]. It will
be interesting to see whether future studies with these agents in AD and PD models, leading
ultimately into clinical application for both disorders, prove to have disease-modifying
properties. Attention would need to be paid to the baseline level of antioxidant potential,
as well as the baseline level of oxidative stress already present in each participant in the
clinical trials, which could otherwise confound any conclusions reached.

Since both Ab42 oligomers and a-Syn oligomers are associated with oxidative damage
to mitochondria [7,9,248,406–408], in addition to the agents listed in Table 2, therapeutic
molecules designed to specifically block both oligomeric types offer the strong possibility
to halt—or at least slow—the progression of both disorders in the brain; future studies will
determine whether this prediction is validated.
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regulates the expression and subcellular localization of carbohydrate metabolism enzymes. Glia 2015, 63, 328–340. [CrossRef]
[PubMed]

23. Baik, S.H.; Kang, S.; Lee, W.; Choi, H.; Chung, S.; Kim, J.-I.; Mook-Jung, I. A Breakdown in Metabolic Reprogramming Causes
Microglia Dysfunction in Alzheimer’s Disease. Cell Metab. 2019, 30, 493–507.e6. [CrossRef] [PubMed]

24. Bowen, C.; Childers, G.; Perry, C.; Martin, N.; McPherson, C.A.; Lauten, T.; Santos, J.; Harry, G.J. Mitochondrial-related effects of
pentabromophenol, tetrabromobisphenol A, and triphenyl phosphate on murine BV-2 microglia cells. Chemosphere 2020, 255,
126919. [CrossRef] [PubMed]

25. Wamelink, M.M.C.; Struys, E.A.; Jakobs, C. The biochemistry, metabolism and inherited defects of the pentose phosphate pathway:
A review. J. Inherit. Metab. Dis. 2008, 31, 703–717. [CrossRef] [PubMed]

26. Cenini, G.; Lloret, A.; Cascella, R. Oxidative stress in neurodegenerative diseases: From a mitochondrial point of view. Oxid. Med.
Cell. Longev. 2019, 2019, 2105607. [CrossRef] [PubMed]

27. Bouzier-Sore, A.K.; Bolaños, J.P. Uncertainties in pentose-phosphate pathway flux assessment underestimate its contribution to
neuronal glucose consumption: Relevance for neurodegeneration and aging. Front. Aging Neurosci. 2015, 7, 89. [CrossRef]

28. Gaitonde, M.K.; Murray, E.; Cunningham, V.J. Effect of 6-Phosphogluconate on Phosphoglucose Isomerase in Rat Brain In Vitro
and In Vivo. J. Neurochem. 1989, 52, 1348–1352. [CrossRef]

29. Martínez-Reyes, I.; Chandel, N.S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 2020,
11, 1–11. [CrossRef]

30. Bak, L.K.; Schousboe, A.; Waagepetersen, H.S. The glutamate/GABA-glutamine cycle: Aspects of transport, neurotransmitter
homeostasis and ammonia transfer. J. Neurochem. 2006, 98, 641–653. [CrossRef]

31. Cruz, F.; Scott, S.R.; Barroso, I.; Santisteban, P.; Cerdán, S. Ontogeny and Cellular Localization of the Pyruvate Recycling System
in Rat Brain. J. Neurochem. 1998, 70, 2613–2619. [CrossRef]

32. Vogel, R.; Jennemann, G.; Seitz, J.; Wiesinger, H.; Hamprecht, B. Mitochondrial Malic Enzyme: Purification from Bovine Brain,
Generation of an Antiserum, and Immunocytochemical Localization in Neurons of Rat Brain. J. Neurochem. 1998, 71, 844–852.
[CrossRef] [PubMed]

33. McKenna, M.C.; Stevenson, J.H.; Huang, X.; Tildon, J.T.; Zielke, C.L.; Hopkins, I.B. Mitochondrial malic enzyme activity is much
higher in mitochondria from cortical synaptic terminals compared with mitochondria from primary cultures of cortical neurons
or cerebellar granule cells. Neurochem. Int. 2000, 36, 451–459. [CrossRef]

34. Metherell, L.A.; Guerra-Assunção, J.A.; Sternberg, M.J.; David, A. Three-Dimensional Model of Human Nicotinamide Nucleotide
Transhydrogenase (NNT) and Sequence-Structure Analysis of its Disease-Causing Variations. Hum. Mutat. 2016, 37, 1074–1084.
[CrossRef] [PubMed]

35. Navarro, C.D.C.; Figueira, T.R.; Francisco, A.; Dal’Bó, G.A.; Ronchi, J.A.; Rovani, J.C.; Escanhoela, C.A.F.; Oliveira, H.C.F.;
Castilho, R.F.; Vercesi, A.E. Redox imbalance due to the loss of mitochondrial NAD(P)-transhydrogenase markedly aggravates
high fat diet-induced fatty liver disease in mice. Free Radic. Biol. Med. 2017, 113, 190–202. [CrossRef] [PubMed]

36. Reed, T.; Perluigi, M.; Sultana, R.; Pierce, W.M.; Klein, J.B.; Turner, D.M.; Coccia, R.; Markesbery, W.R.; Butterfield, D.A. Redox
proteomic identification of 4-Hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: Insight into
the role of lipid peroxidation in the progression and pathogenesis of Alzheimer’s disease. Neurobiol. Dis. 2008, 30, 107–120.
[CrossRef] [PubMed]

37. Garcia, J.; Han, D.; Sancheti, H.; Yap, L.P.; Kaplowitz, N.; Cadenas, E. Regulation of Mitochondrial Glutathione Redox Status and
Protein Glutathionylation by Respiratory Substrates. J. Biol. Chem. 2010, 285, 39646. [CrossRef] [PubMed]

http://doi.org/10.1007/s007020050068
http://www.ncbi.nlm.nih.gov/pubmed/9720972
http://doi.org/10.1677/JOE-07-0097
http://doi.org/10.1016/j.tem.2011.12.004
http://doi.org/10.3389/fnmol.2014.00028
http://www.ncbi.nlm.nih.gov/pubmed/24795562
http://doi.org/10.1152/physrev.00038.2014
http://doi.org/10.1016/j.coph.2009.07.004
http://doi.org/10.1152/ajpendo.90437.2008
http://doi.org/10.1016/j.freeradbiomed.2015.12.012
http://doi.org/10.1016/j.tibs.2009.10.006
http://www.ncbi.nlm.nih.gov/pubmed/20006513
http://doi.org/10.1002/glia.22753
http://www.ncbi.nlm.nih.gov/pubmed/25257920
http://doi.org/10.1016/J.CMET.2019.06.005
http://www.ncbi.nlm.nih.gov/pubmed/31257151
http://doi.org/10.1016/J.CHEMOSPHERE.2020.126919
http://www.ncbi.nlm.nih.gov/pubmed/32402876
http://doi.org/10.1007/s10545-008-1015-6
http://www.ncbi.nlm.nih.gov/pubmed/18987987
http://doi.org/10.1155/2019/2105607
http://www.ncbi.nlm.nih.gov/pubmed/31210837
http://doi.org/10.3389/fnagi.2015.00089
http://doi.org/10.1111/j.1471-4159.1989.tb09178.x
http://doi.org/10.1038/s41467-019-13668-3
http://doi.org/10.1111/j.1471-4159.2006.03913.x
http://doi.org/10.1046/j.1471-4159.1998.70062613.x
http://doi.org/10.1046/j.1471-4159.1998.71020844.x
http://www.ncbi.nlm.nih.gov/pubmed/9681477
http://doi.org/10.1016/S0197-0186(99)00148-5
http://doi.org/10.1002/humu.23046
http://www.ncbi.nlm.nih.gov/pubmed/27459240
http://doi.org/10.1016/j.freeradbiomed.2017.09.026
http://www.ncbi.nlm.nih.gov/pubmed/28964917
http://doi.org/10.1016/j.nbd.2007.12.007
http://www.ncbi.nlm.nih.gov/pubmed/18325775
http://doi.org/10.1074/jbc.M110.164160
http://www.ncbi.nlm.nih.gov/pubmed/20937819


Molecules 2022, 27, 951 26 of 40

38. Cortés-Rojo, C.; Vargas-Vargas, M.A.; Olmos-Orizaba, B.E.; Rodríguez-Orozco, A.R.; Calderón-Cortés, E. Interplay between
NADH oxidation by complex I, glutathione redox state and sirtuin-3, and its role in the development of insulin resistance. Biochim.
Biophys. Acta Mol. Basis Dis. 2020, 1866, 165801. [CrossRef]

39. Kramer, P.A.; Duan, J.; Gaffrey, M.J.; Shukla, A.K.; Wang, L.; Bammler, T.K.; Qian, W.J.; Marcinek, D.J. Fatiguing contractions
increase protein S-glutathionylation occupancy in mouse skeletal muscle. Redox Biol. 2018, 17, 367–376. [CrossRef]

40. Owen, O.E.; Morgan, A.P.; Kemp, H.G.; Sullivan, J.M.; Herrera, M.G.; Cahill, G.F. Brain Metabolism during Fasting. J. Clin.
Investig. 1967, 46, 1589–1595. [CrossRef]

41. Courchesne-Loyer, A.; Croteau, E.; Castellano, C.A.; St-Pierre, V.; Hennebelle, M.; Cunnane, S.C. Inverse relationship between
brain glucose and ketone metabolism in adults during short-term moderate dietary ketosis: A dual tracer quantitative positron
emission tomography study. J. Cereb. Blood Flow Metab. 2017, 37, 2485–2493. [CrossRef] [PubMed]

42. Pierre, K.; Pellerin, L. Monocarboxylate transporters in the central nervous system: Distribution, regulation and function. J.
Neurochem. 2005, 94, 1–14. [CrossRef] [PubMed]

43. Achanta, L.B.; Rae, C.D. β-Hydroxybutyrate in the Brain: One Molecule, Multiple Mechanisms. Neurochem. Res. 2017, 42, 35–49.
[CrossRef] [PubMed]

44. Chiry, O.; Fishbein, W.N.; Merezhinskaya, N.; Clarke, S.; Galuske, R.; Magistretti, P.J.; Pellerin, L. Distribution of the monocar-
boxylate transporter MCT2 in human cerebral cortex: An immunohistochemical study. Brain Res. 2008, 1226, 61–69. [CrossRef]
[PubMed]

45. Chiry, O.; Pellerin, L.; Monnet-Tschudi, F.; Fishbein, W.N.; Merezhinskaya, N.; Magistretti, P.J.; Clarke, S. Expression of the
monocarboxylate transporter MCT1 in the adult human brain cortex. Brain Res. 2006, 1070, 65–70. [CrossRef]

46. Cunnane, S.C.; Courchesne-Loyer, A.; Vandenberghe, C.; St-Pierre, V.; Fortier, M.; Hennebelle, M.; Croteau, E.; Bocti, C.; Fulop, T.;
Castellano, C.A. Can ketones help rescue brain fuel supply in later life? Implications for cognitive health during aging and the
treatment of alzheimer’s disease. Front. Mol. Neurosci. 2016, 9, 53. [CrossRef]

47. Gjedde, A.; Crone, C. Induction processes in blood-brain transfer of ketone bodies during starvation. Am. J. Physiol. Leg. Content
1975, 229, 1165–1169. [CrossRef]

48. Leino, R.L.; Gerhart, D.Z.; Duelli, R.; Enerson, B.E.; Drewes, L.R. Diet-induced ketosis increases monocarboxylate transporter
(MCT1) levels in rat brain. Neurochem. Int. 2001, 38, 519–527. [CrossRef]

49. Koppel, S.J.; Swerdlow, R.H. Neuroketotherapeutics: A modern review of a century-old therapy. Neurochem. Int. 2018, 117,
114–125. [CrossRef]

50. Takahashi, S. Metabolic compartmentalization between astroglia and neurons in physiological and pathophysiological conditions
of the neurovascular unit. Neuropathology 2020, 40, 121–137. [CrossRef]

51. Blázquez, C.; Woods, A.; De Ceballos, M.L.; Carling, D.; Guzmán, M. The AMP-Activated Protein Kinase is Involved in the
Regulation of Ketone Body Production by Astrocytes. J. Neurochem. 1999, 73, 1674–1682. [CrossRef] [PubMed]

52. Aubert, A.; Costalat, R.; Magistretti, P.J.; Pellerin, L. Brain lactate kinetics: Modeling evidence for neuronal lactate uptake upon
activation. Proc. Natl. Acad. Sci. USA 2005, 102, 16448–16453. [CrossRef] [PubMed]

53. Oldendorf, W.H. Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am. J. Physiol. Leg.
Content 1971, 221, 1629–1639. [CrossRef] [PubMed]

54. Ruderisch, N. Amino Acid Transport Across the Murine Blood-Brain Barrier. Ph.D. Thesis, University of Zurich, Zurich,
Switzerland, 2010. [CrossRef]

55. Odessey, R.; Goldberg, A.L. Oxidation of leucine by rat skeletal muscle. Am. J. Physiol. Leg. Content 1972, 223, 1376–1383.
[CrossRef]

56. Fernstrom, J.D. Branched-Chain Amino Acids and Brain Function. J. Nutr. 2005, 135, 1539S–1546S. [CrossRef]
57. Killian, D.M.; Chikhale, P.J. Predominant functional activity of the large, neutral amino acid transporter (LAT1) isoform at the

cerebrovasculature. Neurosci. Lett. 2001, 306, 1–4. [CrossRef]
58. Wang, Q.; Holst, J. L-type amino acid transport and cancer: Targeting the mTORC1 pathway to inhibit neoplasia. Am. J. Cancer

Res. 2015, 5, 1281.
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