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Abstract

Bunyaviruses (Negarnaviricota: Bunyavirales) are a large and diverse group of viruses that

include important human, veterinary, and plant pathogens. The rapid characterization of

known and new emerging pathogens depends on the availability of comprehensive refer-

ence sequence databases that can be used to match unknowns, infer evolutionary relation-

ships and pathogenic potential, and make response decisions in an evidence-based

manner. In this study, we determined the coding-complete genome sequences of 99 bunya-

viruses in the Centers for Disease Control and Prevention’s Arbovirus Reference Collection,

focusing on orthonairoviruses (family Nairoviridae), orthobunyaviruses (Peribunyaviridae),

and phleboviruses (Phenuiviridae) that either completely or partially lacked genome

sequences. These viruses had been collected over 66 years from 27 countries from verte-

brates and arthropods representing 37 genera. Many of the viruses had been characterized

serologically and through experimental infection of animals but were isolated in the pre-

sequencing era. We took advantage of our unusually large sample size to systematically

evaluate genomic characteristics of these viruses, including reassortment, and co-infection.

We corroborated our findings using several independent molecular and virologic

approaches, including Sanger sequencing of 197 genome segments, and plaque isolation

of viruses from putative co-infected virus stocks. This study contributes to the described

genetic diversity of bunyaviruses and will enhance the capacity to characterize emerging

human pathogenic bunyaviruses.

Author summary

Prior knowledge about families of pathogens can enhance efforts to prepare for and

respond to emerging disease threats. The CDC’s Arbovirus Reference Collection (ARC)
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comprises a world reference repository of arthropod-borne viruses that are either patho-

genic or are related to known pathogens. Many viruses in this collection were isolated

before genome sequencing was readily available, resulting in an incomplete understand-

ing of their potential relevance to human or animal health. In this study, we sequenced the

genomes of 99 bunyaviruses in the ARC. We performed detailed phylogenetic analyses,

described multiple well-supported instances of genome segment reassortment, and identi-

fied co-infection in several virus stocks. These sequences enhance the public database of

known bunyaviruses which can be interrogated to identify emerging viruses during an

outbreak, and contribute to a better understanding of bunyavirus evolution and patho-

genic potential.

Introduction

New pathogens continue to emerge and threaten human, animal, and plant health. For

humans alone, an average of two new disease-causing agents are reported each year [1–3].

These pathogens have primarily been viruses, have usually been associated with animal reser-

voirs, and many are vector-borne [2]. Bunyaviruses (Riboviria: Negarnaviricota: Bunyavirales)
rank among the most serious infectious threats to humans (e.g. Crimean Congo hemorrhagic

fever virus [4]), animals (e.g. Rift Valley fever virus [5]), and plants (e.g. tomato spotted wilt

virus [6]) [7,8]. Bunyaviruses accounted for approximately 20% of the 188 human pathogenic

viruses identified between 1901 and 2005 [3], and new pathogenic bunyaviruses continue to

emerge [9–13]. Traditionally bunyaviruses have been grouped according to their serological

cross-reactivity (i.e. they have been binned into serogroups), but molecular data and the dis-

covery of many new viruses has driven the reorganization of the order. The order Bunyavirales
now includes 12 families: Arenaviridae, Cruliviridae, Fimoviridae,Hantavirdae, Leishbuviri-
dae,Mypoviridae, Nairoviridae, Peribunyaviridae, Phasmaviridae, Phenuiviridae,Tospoviridae,
andWupedeviridae [14,15].

Bunyaviruses have segmented, negative-sense or ambisense RNA genomes. Many currently

characterized bunyavirus genomes are composed of three segments: a large (L) segment

encoding a protein that functions as an RNA-directed RNA polymerase (RdRp); a medium

(M) segment encoding glycoproteins (Gn and Gc); and a small (S) segment encoding a nucleo-

protein (NP) and, in some clades, a non-structural protein, NSs. Some bunyavirus lineages

have different numbers of genome segments. For instance, the majority of viruses in the Are-
naviridae family are bisegmented, and some plant-infecting emaraviruses (family Fimoviridae)
have 8 segments [16].

Like all viruses with segmented genomes, bunyaviruses are capable of reassortment, which

appears to have occurred commonly during bunyavirus evolution [17]. Reassortment has hap-

pened between relatively distantly related bunyaviruses (intertypic reassortment) and between

closely-related co-circulating strains (intratypic reassortment) [17,18], and can have epidemio-

logical significance. For example, Ngari virus is a reassortant bunyavirus associated with out-

breaks of hemorrhagic fever [19]. Iquitos and Itaya viruses are emerging reassortant viruses

(Peribunyaviridae: Orthobunyavirus) that have both been associated with human illness in

Peru [9,13]; an intra-lineage reassortant strain of Rift Valley fever virus (Phenuiviridae: Phlebo-
virus) was recently isolated from an ill traveler returning home to China [20]; and severe fever

with thrombocytopenia syndrome virus (SFTSV) is a newly-recognized, tick-borne phenui-

virus that causes severe human disease and for which reassortment has been recognized in

strains detected in human patients [21]. Given the emergence potential of bunyaviruses and
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the contribution of reassortment to the generation of new virus strains, having the capability

to recognize novel and reassortant viruses is paramount to public health preparedness.

The US Center for Disease Control and Prevention’s (CDC) Division of Vector-borne Dis-

eases (DVBD), Arboviral Diseases Branch (ADB), maintains an Arbovirus Reference Collec-

tion (ARC). The ARC contains viruses that were isolated from arthropod vectors and

vertebrate hosts, as well as from human clinical specimens. Isolates have been collected and

deposited into the ARC over a 90-year period. As one of the largest collections of arboviruses

in the world, the ARC is an invaluable resource for scientists and public health workers. The

ARC includes 2,766 unique isolates, of which 835 are bunyaviruses. Some of these viruses have

been genetically characterized, but many have not. Genetic characterization of the viruses in

the ARC would expand the value and impact of this collection even further as a scientific and

public health resource and infuse a significant amount of novel and important molecular data

into the public domain for actionable use. Therefore, the objective of this project was to gener-

ate additional and novel genome sequence and phylogenetic data for a large group of bunyavi-

ruses lacking genetic characterization to facilitate the rapid identification and characterization

of emerging bunyaviruses.

Methods

Sample collection

Viruses represented a subset of bunyaviruses catalogued within the ARC [22] (Tables 1–3)

that spanned most serogroups as well as ungrouped viruses. RNA was extracted from archived

tissue culture supernatants or suckling mouse brain preparations using the QIAamp Viral

RNA mini kit according to manufacturer’s instructions and eluted in 100μl AVE buffer (Qia-

gen). TURBO DNase was used to remove residual DNA (ThermoFisher), according to the

manufacturer’s protocol. RNA concentrations were measured fluorometrically using the

Qubit RNA HS Assay kit and a Qubit 3 fluorometer (Life Technologies).

Library preparation and sequencing

The KAPA RNA HyperPrep Kit was used to prepare sequencing libraries from total RNA

according to the manufacturer’s protocol using half-scale reactions and the Kapa Dual-indexed

Adapter Kit (Kapa Biosystems). Pooled libraries were length-selected for 375–500-bp frag-

ments using a BluePippin 2% cassette (Sage Biosciences). If the length-selected concentration

was less than 0.5 nM, additional PCR cycles were performed using the KAPA Library Amplifi-

cation Kit, until the fluorescence reached that of the kit’s internal standard #1. Amplified

libraries were cleaned using a 1:1.4 ratio of solid phase reversible immobilization (SPRI) beads

(Kapa biosystems). Final length-selected and amplified libraries were diluted to 4 nM and the

final concentration determined using the KAPA Library Quantification Kit. Paired-end

2x150bp sequencing was performed on an Illumina NextSeq, producing an average of 2.8 mil-

lion read pairs per dataset.

Sequence analysis

Reads were demultiplexed and assessed for quality using FastQC [23]. Cutadapt was used to

remove low quality and adapter-derived bases [24]. Read pairs with>96% pairwise nucleotide

(nt) identity were collapsed using cd-hit-est to remove likely PCR duplicates [25,26]. Host

sequences were filtered by mapping reads to the human (NCBI GCRh38) and/or the mouse

(UCSC mm10) genomes using the Bowtie2 aligner with parameters,—local—sensitive—score-

min C,60,0 using paired reads [27]. Host-filtered reads were assembled into contigs using
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Table 1. Sequenced genomes of 88 viruses belonging to Peribunyaviridae (Orthobunyavirus or Pacuvirus).

Sequence

Status �
Virus Abbreviation Strain (Passage��) Serogroup Collection

Date

Collection

Country���
Isolation

Source����
Original

Virus

Description

GenBank Accession

4 Abras ABRV 75V1183 (P4V1) Patois 1974 Ecuador Culexmosquito [46] MK896654 –MK896656

1 Acará ACAV BeAn 27639

(P2SM1)

Capim 1961 Brazil Mouse [47,48] MK896651 –MK896653

2 Aino AINOV JaNAr 28 (P9SM1) Simbu 1964 Japan Culexmosquito [49] MH484276 –MH484278

4 Ananindeua ANUV BeAn 109303

(P36SM1)

Guamá 1966 Brazil Opossum [50] MK896648 –MK896650

3 Anopheles B ANBV Original Anopheles B 1940 Colombia Anopheles
mosquito

[51] MK896642 –MK896644

1 Antequera ANTV AG80-226

(V2SM2V1)

Resistencia 1980 Argentina Culexmosquito [52,53] MK896639 –MK896641

4 Babahoyo BABV 75V2858 (P2SM2) Patois 1975 Ecuador Culexmosquito [46] MH484273 –MH484275

1 Bakau BAKV MM-2325 (P8SM1) Bakau 1956 Malaysia Culexmosquito [54] MK896633 –MK896635

1 Bangui BGIV DakHB 754 (P9SM1) Ungrouped 1970 Central African

Republic

Human [55,56] MK896630 –MK896632

1 Barranqueras BQSV AG80-381 (V1SM3) Resistencia 1980 Argentina Culexmosquito [52,53] MK896627 –MK896629

3 Batama BMAV DakAnB 1292

(P8SM2)

Tete 1970 Central African

Republic

Bird [57] MK896624 –MK896626

1 Belem BLMV BeAn 141106

(P11SM1)

Ungrouped 1968 Brazil Bird [58] MK896621 –MK896623

1 Benevides BVSV = BENV BeAr 153564 (P?

SM2V1)

Capim 1968 Brazil Mouse MK896618 –MK896620

1 Benfica BENV = BNFV 71U344 (P?SM6) Capim 1971 Peru Hamster [59] MK896615 –MK896617

1 Bertioga BERV 76V25643 (P?SM3) Guamá 1976 Brazil Culexmosquito [60,61] MK896612 –MK896614

4 Birao BIRV DakArB 2198 (P?

SM1)

Bunyamwera 1969 Central African

Republic

Anopheles
mosquito

[62] MH484282 –MH484284

1 Bobaya BOBV DakAnB 2208

(P9SM1)

Simbu 1971 Central African

Republic

Bird [56,57] MW415980-MW415982

3 Boracéia BORV SPAr 395 (P?SM2) Anopheles B 1962 Brazil Anopheles
mosquito

[63] MK896609—MK896611

2 Boracéia BORV SPAr 4080 (P?) Anopheles B 1965 Brazil Anopheles
mosquito

[63] MK896606 –MK896608

4 Bozo BOZOV DakArB 7343 (P?

SM2)

Bunyamwera 1975 Central African

Republic

Aedesmosquito [64] MH484285 –MH484287

2 Bruconha BRUV 77V14676 (P?

V1SM5)

C 1976 Brazil Culexmosquito [50] MK896603 –MK896605

2 Bunyamwera BUNV 46A-122 (V3) Bunyamwera 2006 Kenya Aedesmosquito [65] MH484288 –MH484290

1 Bushbush BSBV TRVL 26668 (P?

SM3)

Capim 1959 Trinidad &

Tobago

Culexmosquito [47,66] MK896597 –MK896599

3 Buttonwillow BUTV A 7956 (P?

SM3H1SM1)

Simbu 1961 USA Rabbit [67,68] MH484291 –MH484293

4 Caimito CAIV VP 488A (P8V2SM1) Ungrouped 1971 Panama Sand fly [69,70] MK896592 –MK896594

1 Cananéia CNAV SPAn 64962

(SM4V1)

Guamá 1976 Brazil Mouse [50] MK896589 –MK896591

4 Caraparú CARV BeAn 3994 (P?SM11) C 1956 Brazil Monkey [71] MK896586 –MK896588

2 Enseada ENSV 78V213 (P?V1SM2) Ungrouped 1976 Brazil Culexmosquito [50] MK896583 –MK896585

4 Fort

Sherman

FSV 86MSP18 (P2V1) Bunyamwera 1985 Panama Human [72] MH484294 –MH484296

2 Gamboa GAMV 75V20086 (P?

SM1V1)

Gamboa 1975 Ecuador Aedeomyia
squami-pennis

mosquito

[73,74] MK896574 –MK896576

2 Guajará GJAV 18315 (P?SM4) Capim 1975 Ecuador Hamster [46,60] MK896571 –MK896573

1 Guaratuba GTBV 76V25271 (P?SM3) Guamá 1976 Brazil Culexmosquito [50] MK896568 –MK896570

(Continued)

PLOS PATHOGENS Genome sequences of 99 bunyaviruses

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009315 March 1, 2021 4 / 36

https://doi.org/10.1371/journal.ppat.1009315


Table 1. (Continued)

Sequence

Status �
Virus Abbreviation Strain (Passage��) Serogroup Collection

Date

Collection

Country���
Isolation

Source����
Original

Virus

Description

GenBank Accession

3 Gumbo

Limbo

GLV FE3-71H (P4V1) C 1963 USA Culexmosquito [75] MK896565 –MK896567

4 Itaquı́ ITQV BeAn 12797 (P?

SM4V1SM2)

C 1959 Brazil Mouse [76,77] MK896558 –MK896560

1 Itimirim ITIV SPAn 47817 (SM6) Guamá 1976 Brazil Rat [50] MK896555 –MK896557

1 Juan Dı́az JDV MARU 8563 (P?

SM5ppfV2SM1)

Capim 1962 Panama Mouse [73] MK896552 –MK896554

3 Kaikalur KAIV VRC 713423–2

(P7SM1)

Simbu 1971 India Culexmosquito [78] MH484297 –MH484299

4 Kairi KRIV TRVL 8900

(P13SM1)

Bunyamwera 1955 Trinidad &

Tobago

Aedesmosquito [79,80] MH484300 –MH484302

1 Ketapang KETV MM 2549 (P5SM2) Bakau 1956 Malaysia Culexmosquito [54,60] MK896546 –MK896548

1 Las Maloyas LMV AG80-24 (P?V1SM4) Anopheles A 1980 Argentina Anopheles
mosquito

[52,53] MK896543 –MK896545

1 Lednice LEDV 6118 (P3SM2) Turlock 1980 Czechoslovakia Culexmosquito [81] MK896540 –MK896542

2 Lokern LOKV A 10391 (P?SM5) Bunyamwera NA NA NA [82] MH484303 –MH484305

2 Lukuni LUKV ColAn 57389 (P?

SM5)

Anopheles A 1976 Colombia Vertebrate [66,83] MK896537 –MK896539

4 Madrid MADV BT 4075 (P13SM2) C 1961 Panama Human [84,85] MK896531 –MK896533

2 Main Drain MDV R4680 (SM3V1) Bunyamwera 1974 USA Anopheles
mosquito

[86,87] MH484309 –MH484311

2 Main Drain MDV 72V2567

(V1SM1V2)

Bunyamwera 1972 USA Aedesmosquito [86,87] MH484306 –MH484308

4 Marituba MTBV BeAn 15

(SM3SH1V1SM2)

C 1954 Brazil Monkey [71,88] MK896528 –MK896530

1 Minatitlán MNTV M67U5 (P5SM1) Minatitlán 1967 Mexico Hamster [46] MK896525 –MK896527

4 Mirim MIRV BeAn 7722 (SM1V1) Guamá 1957 Brazil Monkey [89] MK896522 –MK896524

1 Moriche MORV TRVL 57896 (P?

SM2V1)

Capim 1964 Trinidad &

Tobago

Culexmosquito [60,90] MK896519 –MK896521

2, 3 M’Poko MPOV BA 365 (P?AM1) Turlock 1966 Central African

Republic

Culexmosquito [91] MK896534 –MK896536

4 Murutucú MURV BeAn 974 (P14SM2) C 1955 Brazil Monkey [71] MK896516 –MK896518

2 Nepuyo NEPV HB7-451 (P?SM6) C 1967 Honduras Bat [92,93] MK896513 –MK896515

3 Nola NOLAV DakAr B 2882

(P10SM2)

Bakau 1970 Central African

Republic

Culexmosquito [58] MK896510 –MK896512

4 Northway NORV 234 (P?SM1BHK(1)

SM4)

Bunyamwera 1971 USA Aedesmosquito [94,95] MH484312 –MH484314

1 Okola OKOV YM 50 (P9SM1) Tanga 1964 Cameroon Eretmapodites
mosquito

[58] MK896507 –MK896509

4 Oriboca ORIV BeAn 17

(P12V4ppf3V1SM1)

C 1954 Brazil Monkey [71,88] MK896501 –MK896503

1 Pacora PCAV J19 (P31SM1) Ungrouped 1958 Panama Culexmosquito [58] MK896498 –MK896500

1 Pahayokee PAHV FE3-52F (P?BHK(1)

SM1)

Patois 1963 USA Culexmosquito [96] MK896495 –MK896497

2 Patois PATV BT 4971 (SM7V1) Patois 1961 Panama Rat [97,98] MK896489 –MK896491

4 Peaton PEAV CSIRO 110 (SM1) Simbu 1976 Australia Culicoides biting

midge

[99] MH484318 –MH484320

3 Potosi POTV 89–3380 (V3SM2) Bunyamwera 2005 USA Aedesmosquito [100] MH484321 –MH484323

2 Pueblo Viejo PVV E4-816 (V2) Gamboa 1974 Ecuador Aedeomyia
squami-pennis

mosquito

[74] MK896484 –MK896486

1 Resistencia RTAV AG80-504

(V1SM3V4SM3)

Resistencia 1980 Argentina Culexmosquito [52,53] MK896478 –MK896480

(Continued)
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Table 1. (Continued)

Sequence

Status �
Virus Abbreviation Strain (Passage��) Serogroup Collection

Date

Collection

Country���
Isolation

Source����
Original

Virus

Description

GenBank Accession

3 Restan RESV TRVL 51144

(SM2SH1SM2)

C 1963 Trinidad &

Tobago

Culexmosquito [101] MK896475 –MK896477

1 San Juan SJV 75V2374 (P?SM3) Gamboa 1975 Ecuador Aedeomyia
squami-pennis

mosquito

[74] MK896472 –MK896474

1 Santa Rosa SARV M2-1493 (SM5) Bunyamwera 1972 Mexico Aedesmosquito [83] MH484324 –MH484326

1 Santarém STMV BeAn 238758

(P6SM1)

Ungrouped 1973 Brazil Rat [58] MK896469 –MK896471

4 Sedlec SEDV Av 172

(P4SM1BHK2)

Simbu 1984 Czechoslovakia Bird [102] MH484327—

MH484329

3 Shokwe SHOV SAAr 4042

(P6SM2V1)

Bunyamwera 1962 South Africa Aedesmosquito [62,103,104] MH484330 –MH484332

2 Tacaiuma TCMV SpH 32580 (SM3) Anopheles A 1975 Brazil Human [84] MK896460 –MK896462

1 Tanga TANV MP 1329 (P7SM1) Tanga 1962 Tanzania Anopheles
mosquito

[105,106] MK896457 –MK896459

2 Tataguine TATV 79V1463 (SM2) Tanga 1979 Gambia Anopheles
mosquito

[107] MK896454 –MK896456

1 Telok Forest TFV MalP 72–4 (P?SM2) Bakau 1972 Malaysia Monkey [58] MK896451 –MK896453

2 Tensaw TENV A9-171B (P?SM5) Bunyamwera 1960 USA Anopheles
mosquito

[108] MH484333 –MH484335

1 Termeil TERV BP 8090 (P3SM2) Ungrouped 1972 Australia Aedesmosquito [109] MK896448 –MK896450

2 Thimiri THIV VRC 66414

(P15SM1)

Simbu 1963 India Bird [110] MH484336 –MH484338

1 Timboteua TBTV BeAn 116382

(SM2V1)

Guamá 1967 Brazil Mouse [111] MK896445 –MK896447

4 Tinaroo TINV CSIRO 153 (P?

BHK4SM2)

Simbu 1978 Australia Culicoidesmidge [112] MH484339 –MH484341

4 Tlacotalpan TLAV 61D240 (P9V1) Bunyamwera 2005 Mexico Mansonia
titillans

mosquito

[113] MH484342 –MH484344

2 Turlock TURV USA 847–32

(P4SM2V1)

Turlock 1954 USA Culexmosquito [114,115] MK896442-MK896444

2, 3 Vinces VINV 24188 (P?SM4) C 1976 Ecuador Hamster [46] MK896439 –MK896441

2, 3 Weldona WELV 77V5691 (P4V2) Tete 1976 USA midge (species

unknown)

[116] MK896433 –MK896435

1 Wongal WONV MRM 168 (P6SM1) Koongol 1960 Australia Culexmosquito [117,118] MK896430 –MK896432

1 Wyeomyia WYOV Original (P8SM1V1) Wyeomia 1940 Colombia Wyeomyia
melanocephala

mosquito

[51] MH484345 –MH484347

3 Yaba-7 Y7V Yaba 7 (P5SM1) Simbu 2005 Nigeria Mansonia
africana

mosquito

[119] MH484348 –MH484350

4 Zegla ZEGV BT 5012 (P?SM7) Patois 1961 Panama Rat [84,98] MK896421 –MK896423

� Sequence status as of October 3, 2019

1 = Completely new genome sequence

2 = New strain sequence information

3 = Addition of missing genome segments or coding complete segments

4 = Sequence information already existed. In almost all of these cases, sequences were deposited by other authors during the course of this study.

�� Passage number as defined in ARC metadata

��� Currently-recognized country names

���� Based on ARC metadata compiled by the CDC

https://doi.org/10.1371/journal.ppat.1009315.t001
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SPAdes genome assembler [28]. BLASTn was used to taxonomically assign contigs by nucleo-

tide similarity to the highest scoring sequence in the NCBI nt database with an expect (E)

value less than 1e-8 [29,30]. Contigs not taxonomically assigned using BLASTn were assigned

by protein-level similarity using DIAMOND aligner to query the NCBI protein database with

an expect value of 1e-3 [31]. Viral contigs were validated by inspecting alignment of mapped

reads to draft assemblies in Geneious v11.0.2 [32].

Draft bunyavirus genome assemblies were manually validated by aligning host-filtered

reads to contigs using Bowtie2 as described above and alignments were independently vali-

dated by two people. Bases at the ends of genomes with less than 4x coverage of the same base

were trimmed. After removing low quality data and duplicate and host reads, an average of

3.1% of read pairs remained. We performed de novo assembly to generate draft viral genome

segment sequences, which were validated manually by remapping reads to draft assemblies

and by Sanger sequencing. Viral reads accounted for an average of 88% of host filtered unique

reads, which produced 748-fold mean coverage depth across virus genomes (S1 Fig). In all

cases, sequences validated by Sanger sequencing matched NGS-generated sequences, confirm-

ing assemblies and ruling out sample mix-ups.

All genome sequences have been deposited into GenBank under accessions MH484273–

MH484350, MK896421–MK896656, MK965544, and MW415980-MW415982. All sequences

deposited in GenBank are coding-complete. Quality-filtered sequence reads have been depos-

ited in the sequence read archive (SRA) under Bioproject ID PRJNA543521.

Validation of assemblies by sanger sequencing

Independent Sanger sequence confirmation from re-extracted RNA was obtained from at least

one genome segment for 71 of 99 viruses (197 segments). This validation was performed to

ensure that the sequencing data were derived from the intended virus stocks, especially when

Table 2. Sequenced genomes of 6 viruses belonging to Phenuiviridae (Phlebovirus and Uukuvirus).

Sequence

Status�
Virus Abbreviation Strain (Passage��) Serogroup Collection

Date

Collection

Country���
Isolation

Source����
Original Virus

Description

GenBank

Accession

4 Bujaru BUJV BeAn 47693

(P10SM2)

Sandfly

fever

1962 Brazil Rat [83] MK896442 –

MK896444

2 Kaisodi KASDV G 14132 (P6SM1) Sandfly

fever

1957 India Ixodid tick [120,121] MK896549 –

MK896551

4 Palma PLMV PoTi 4.92 (P?SM3) Sandfly

fever

1992 Portugal Ixodid tick [122] MK896492 –

MK896494

2 Punta Toro PTV D-4021A (SM15) Sandfly

fever

1966 Panama Human [123] MK896481 –

MK896483

1 Sunday

Canyon

SCAV RML 52301–11

(SM5V1SM2)

Sandfly

fever

1969 USA Argasid tick [124] MK896463 –

MK896465

2 Zaliv

Terpeniya

ZTV LEIV 21C (P7SM2) Uukuniemi 1969 Russia Ixodid tick [125] MK896424 –

MK896426

� Sequence status as of October 3, 2019

1 = Completely new genome sequence

2 = New strain sequence information

3 = Addition of missing genome segments or coding complete segments

4 = Sequence information already existed. In almost all of these cases, sequences were deposited by other authors during the course of this study.

�� Passage number as defined in ARC metadata

��� Currently-recognized country names

���� Based on ARC metadata compiled by the CDC

https://doi.org/10.1371/journal.ppat.1009315.t002
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working with such a large sample set. For 54 viruses, sequences from all three genome seg-

ments were independently confirmed. Primers for each segment of each virus were designed

from multiple sequence alignments of Illumina-generated sequences for viruses in each ser-

ogroup, using Geneious v11.0.2 [32]. Previously-published consensus primers were used when

available, such as for viruses in the genus Orthonairovirus and in the genus Orthobunyavirus,
phlebotomus fever serogroup [33], Bunyamwera serogroup, and Simbu serogroup [34] (S1

Table). Viral RNA was re-extracted from a separate vial of the same lot as the original isolate

in a 96-well plate format using a Qiagen Biorobot 9604 (Qiagen, Valencia, CA, USA) according

to manufacturer’s instructions. Nucleic acids were eluted in 100 μl AVE elution buffer supplied

with the extraction kit, and stored at -20˚C. Amplification of viral RNA was performed in both

forward and reverse directions using the Qiagen OneStep RT-PCR kit (Qiagen, Valencia, CA,

USA) according to manufacturer’s instructions and using the appropriate primer pair listed in

S1 Table. Amplicons were purified using either the column-based QIAquick PCR Purification

Kit (Qiagen) for individual samples or in a 96-well plate format using the Mag-Bind Viral

DNA/RNA 96 Kit (Omega Bio-tek, Norcross, GA) on a KingFisher Flex System (Thermo-

Fisher Scientific, Waltham, MA) according to the manufacturer’s instructions. Sanger

sequencing services were provided by GeneWiz (South Plainfield, NJ, USA). Sequence files

were imported into Geneious v11.0.2 for end-trimming and generation of consensus

sequences and aligned to the Illumina-generated sequences in either Geneious v11.0.2 or Mul-

tiAlign (Corpet 1988) software.

Sequence alignments and phylogenetic analyses

To optimally align sequences, different strategies were used specific to the segment and bunya-

viral genus. The open reading frame (ORF) encoding the RdRp protein on the L segment was

used for all genera. The ORF of the M segment encoding the Gn/Gc glycoproteins was also

used for all genera. The NSm ORF was removed from the alignment because outgroups con-

tained a different genomic organization. Additionally, coding regions for the mucin and GP38

Table 3. Sequenced genomes of 5 viruses belonging to Nairoviridae (Orthonairovirus).

Sequence

status�
Virus Abbreviation Strain

(Passage��)

Serogroup Collection

Date

Collection

Country���
Isolation

Source����
Original Virus

Description

GenBank

Accession

4 Estero

Real

ERV K 329 (P3SM1) Ungrouped 1980 Cuba Argasid tick [126] MK896577 –

MK896579

2 Hughes HUGV Dry Tortugas

(P15SM2)

Hughes 1962 USA Argasid tick [127] MK896561 –

MK896563

4 Sapphire

II

SAPV 75V8196

(P4SM1)

Hughes 1975 USA Argasid tick [128] MK896466 –

MK896468

1 Wanowrie WANV Ig 700 (P7SM1) Ungrouped 1954 India Ixodid tick [58,60] MK896436 –

MK896438

4 Yogue YOGV DakAnD 5634

(P7SM1)

Yogue 1968 Senegal Bat [58] MK896427 –

MK896429

� Sequence status as of October 3, 2019

1 = Completely new genome sequence

2 = New strain sequence information

3 = Addition of missing genome segments or coding complete segments

4 = Sequence information already existed. In almost all of these cases, sequences were deposited by other authors during the course of this study.

�� Passage number as defined in ARC metadata

��� Currently-recognized country names

���� Based on ARC metadata compiled by the CDC

https://doi.org/10.1371/journal.ppat.1009315.t003
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domains were removed from the orthonairovirus sequence alignment. S segments were

aligned using the ORF encoding the nucleoprotein. Outgroups were used to root and provide

polarity characteristics to the phylogenetic trees. Outgroups were chosen so as to not provide

excessive gaps and disturbances in the alignments. Orthotospovirus sequences were used as

the outgroups for orthobunyavirus and phlebovirus analyses. Orthohantavirus sequences were

used as the outgroup for orthonairovirus analyses. All available reference sequences for each

genus were pulled from GenBank’s RefSeq database and included in phylogenetic analyses.

Alignments were performed on amino acid sequences using the Muscle algorithm and manu-

ally inspected afterwards using Seaview v4.1 [35,36]. After alignment, sequences were then

converted back to their original nucleotide sequences for phylogenetic analysis. Poorly aligned,

divergent positions characterized by excessive gaps in the alignment were removed using the

Gblocks server under less strict conditions [37]. A coalescent phylogenetic analysis of the L, M,

and S segments was conducted for orthonairoviruses, orthobunyaviruses, and phleboviruses:

the L segment of pacuviruses was also executed. The analysis was conducted in MrBayes run

once for 10 million steps, sampling every 5,000 steps and discarding the first 10% as burn-in

[38,39]. The general time-reversible substitution model (GTR+I+Γ4) was used after determin-

ing this model to be optimal using ModelTest [40]. Convergence was assessed by examining

the stationary ln-likelihood and effective sample size (ESS, >200) parameters using Tracer

v1.4 (http://tree.bio.ed.ac.uk/software/tracer). All phylogenies were executed on the phylo.org

server [41]. Output tree files were analyzed using FigTree v.1.3.1 (http://tree.bio.ed.ac.uk/

software/figtree/).

Co-phylogenies were generated using these trees and a co-phylogeny visualization tool,

available at https://github.com/stenglein-lab/TreeTangler, and were rooted using the out-

groups described above. Prior to generation of co-phylogenies, nodes with support values

lower than 0.95 were collapsed to polytomies using TreeGraph2 software [42].

To place the sequences in the context of all available related sequences, we downloaded all

full-length L protein sequences annotated under the genera Orthobunyavirus (NCBI taxo-

nomic ID [taxid] 11572) and Phlebovirus (taxid 11584), and the family Nairoviridae (taxid

1980415). We aligned these sequences using the MAFFT aligner, and, because of the large

number of sequences, inferred maximum likelihood trees using FastTree software using model

parameters -lg -gamma [43,44].

Co-infection analysis

To search for evidence of possible co-infections, we determined the ratio of the number of

reads in each dataset that aligned to a given virus (virus self-mapping reads) to the number of

reads that mapped to any bunyavirus protein sequence in the NCBI nr database, including

bunyaviruses sequenced in this study. Self-mapping reads were quantified by aligning host-fil-

tered reads to the corresponding assembled genomes using Bowtie2 as described above. Total

bunyavirus reads were quantified by aligning host-filtered reads to a database composed of all

the protein sequences for bunyavirus-annotated sequences in the NCBI database and from

newly assembled genomes in this report, using DIAMOND as above. When the ratio of these

two values was less than 0.95, we manually inspected contigs from the dataset to identify

sequences of possible co-infecting viruses.

Candidate coinfections were validated using PCR and independent cell cultures. Specifi-

cally, PCR primers were designed that would discriminate between putative co-infecting

viruses and the primary virus in each isolate. The originally sequenced stock virus from the

ARC was also inoculated onto grivet (Chlorocebus aethiops) Vero cell (ATCC CCL-81) cultures

for virus isolation, and supernatant was collected when cultures exhibited cytopathic effects
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(CPE). Approximately 1x106 cells were pelleted by centrifugation at 23 x g for 10 min at room

temperature and then frozen at -80˚C. RNA was extracted from cell pellets by adding 1 ml of

Trizol (ThermoFisher) to pellets, pipetting to lyse, and incubating at room temperature for 5

minutes, following the Trizol protocol. cDNA was made using our standard reverse transcrip-

tion protocol. Specifically, 500 ng of RNA or 5.5 μl of RNA was incubated at 65˚C for 5 min-

utes and immediately placed on ice. Random 15-mer at 25 μM, 2 μl of 1X Superscript III

buffer, 5 mM dithiothreitol, 1 mM each dNTPs (ThermoFisher), and 100 U Superscript III

Reverse Transcriptase (Invitrogen) was added to this solution. Reaction mixtures were then

incubated at 25˚C for 5 minutes then at 42˚C for 45 minutes, and finally at 70˚C for 15 minutes

with a 4˚C hold. The resulting cDNA was then diluted 1:10 in water. Using segment-specific

primers (S1 Table), qPCR was performed using LUNA Universal qPCR Master Mix (NEB

M3003L) according to the manufacturer’s protocol.

In an attempt to separate and isolate the individual co-infecting viruses (see results), the

original Abras isolate was plaqued on Vero cells. Ninety individual plaques were picked for

RNA extraction and PCR-confirmation using segment-specific primers (S1 Table). Single

virus stocks were cultured from plaques that were Sanger sequence-confirmed to have only

one of the infecting genotypes present.

Results

Samples and sequencing

Coding-complete genomes were generated for 99 bunyaviruses [45]. We focused on viruses

classified in the Peribunyaviridae (orthobunyaviruses), Nairoviridae (orthonairoviruses), and

Phenuiviridae (banyangviruses and phleboviruses). These viruses constituted a globally and

phylogenetically diverse set. The isolates were originally collected from vertebrate and arthro-

pod hosts from 27 countries on six continents over the span of seven decades, from 1940 to

2005; Fig 1 and Tables 1–3). Most samples were collected during the 1950s, 60s, and 70s, and

67% of samples originated from North and South America (Fig 1B and 1C). Isolates originated

from a variety of invertebrate and vertebrate hosts, though Aedes, Anopheles, and Culexmos-

quitoes were the predominant source of samples (Fig 1D). We focused on viruses for which

there was limited existing sequence information at the initiation of this project (Fig 1E and

Tables 1–3). Viruses had diverse passage histories. Some viruses were passaged through grivet

(Chlorocebus aethiops) Vero or hamster (Mesocricetus auratus) BHK-21 cell cultures, others

were passaged in suckling laboratory mice. Passage histories have been noted in Tables 1–3.

More information on these viruses can be accessed through the Arbovirus Catalog (https://

www.cdc.gov/arbocat) or the ARC website (https://www.cdc.gov/ncezid/dvbd/specimensub/

arc/index.html), however taxonomy may vary between these sources and ICTV as taxonomic

updates are instituted.

At the time of submission, 203 of the genome segment sequences we generated shared less

than 97% pairwise nucleotide identity with existing sequences in the NCBI nucleotide data-

base, as measured by blastn (Fig 1E). For 35 of the viruses, all 3 segments shared<85% nucleo-

tide identity with existing sequences by blastn alignment. These 35 viruses represent

previously unsequenced viruses (category 1 viruses in Tables 1–3 and Fig 1E). For 37 of the

viruses, different strains of the same viruses had been previously sequenced or existing

sequences were not complete (e.g., only one segment had been sequenced; categories 2 and 3

in Tables 1–3). For 26 of the viruses, coding complete genomes already existed (category 4 in

Tables 1–3). In almost all of these 26 cases, sequences had been deposited by other groups dur-

ing the course of our study.
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Fig 1. Characteristics of sequenced bunyavirus isolates. Bunyavirus isolates were collected from around the world over the span of 7 decades from a variety of

vertebrate and arthropod hosts. (A) Map showing original collection location of isolates, color-coded by host type, NK (not known); (B) histogram showing the

number of isolates collected each year; (C) histogram showing the number of isolates from the indicated countries, for countries with 2 or more isolates; (D)

histogram showing the number of isolates from the indicated host type. (E) histograms showing the pairwise percent nucleotide identity for the highest scoring

BLASTn alignments to existing sequences in the NCBI nucleotide database for the sequenced S, M, and L segments.

https://doi.org/10.1371/journal.ppat.1009315.g001
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Several viruses with nearly identical sequences had been given different names and, con-

versely, some viruses with the same name had quite different sequences. For instance, wongal

virus had previously been classified with koongol virus in the species Koongol orthobunyavirus,
but no sequence information for wongal virus was available [14]. Both viruses were isolated

from Culex annulirostrismosquitoes several days apart from the same location in Australia

[117]. We found that these viruses shared>99.7% pairwise nucleotide identity across all three

segments. Thus, koongol and wongal viruses are the same virus. Similarly, all three segments

of the Santa Rosa and Lokern (strain A 10391) viruses that we sequenced shared >98.5%

identity.

In contrast, the Lukuni virus isolate that we sequenced (strain ColAn 57389) was unexpect-

edly different from the previously sequenced Lukuni virus (strain TRVL 10076)[129]. These

two viruses shared<70% pairwise nucleotide identity across all three segments. Instead, the L

and S segments of Lukuni virus strain ColAn 57389 were more similar to those of the Las Mal-

oyas virus isolate that we sequenced (85% and 87% pairwise nucleotide identity). Likewise, the

Guajará virus that we sequenced (strain 18315) and the previously sequenced Guajará virus

(strain BeAn 10615) shared less than 78% pairwise nucleotide identity over all three segments

[129]. These unexpected differences highlight the utility of sequencing additional strains of

already-sequenced viruses.

Phylogenetic analyses

We performed a coalescent phylogenetic analysis of the L, M, and S segments (Figs 2–6). Trees

included all of the viruses that we sequenced and all of the bunyavirus sequences from the gen-

era in question in the NCBI RefSeq database as phylogenetic landmarks. We also created trees

containing all available sequences annotated under the relevant taxa in the NCBI taxonomy

database S2–S4 Figs). New orthobunyavirus genome sequences fell throughout the Orthobu-
nyavirus genus (Figs 2–4 and S2–S4). The numbers of genome sequences sequenced in this

study from the orthobunyavirus serogroups included: Anopheles A (3), Anopheles B (3),

Bakau (4), Bunyamwera (16), Capim (7), Wyeomyia (1), Turlock (3), Koongol (1), Gamboa

(3), Guama (7), Minatitlán (1), Group C (11), Patois (5), Simbu (9). Additionally, 5 viruses

sequenced fell within the family Nairoviridae, 7 in the family Phenuiviridae and 2 in the genus

Pacuvirus (Figs 5 and 6 and S5).

Several virus genomes that were sequenced as part of this study had not been assigned to

serogroups. We compared the phylogenetic placement of these viruses to that of viruses that

had been categorized into established serogroups (Tables 1–3). Bangui virus was placed in L

and S segment trees within an undesignated clade just prior to the divergence of the Anopheles

A and B serogroup (Figs 2–4). The Belem, Pacora, and Brazoran viruses formed a monophy-

letic clade on all three orthobunyavirus trees (Figs 2–4), indicating a common ancestor

between the three viruses. However, this clade was placed in different locations on the phyloge-

nies for the different segments. On L and M segment trees, these three viruses branched basally

to the Patois, Guama, Minatitlán, Group C, and Capim serogroups with strong posterior prob-

ability support (Figs 2 and 3). The S segment phylogeny showed this clade diverging from all

other orthobunyaviruses with posterior probability support of 1.0 (Fig 4).

Enseada virus exhibited a similar discrepant placement in the 3 orthobunyavirus trees. The

L segment of Enseada virus diverged off of the Patios serogroup (Fig 2). The M segment of

Enseada virus diverged prior to the bifurcation of the Guama, Capim, Patois, and Minatitlan

serogroups (Fig 3). Finally, the S segment of Enseada diverged just prior to the Group C ser-

ogroup (Fig 4). All of these placements were well-supported, with posterior support of 1.
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Across all segments, Termeil virus branched basal to the California encephalitis and

Bwamba serogroups. On the S segment phylogeny, Termeil virus grouped with Murrumbidgee

virus (aka Trubanaman virus [130,131]), though posterior probability support was low (Fig 4).

The placement of two viruses in our trees diverged from their expected placements based

on assigned serogroup classification. Tacaiuma virus has been assigned to the Anopheles A

group. However, in the L, M, and S segment phylogenies, Tacaiuma virus instead clustered

with high support with viruses in the Anopheles B serogroup (Figs 2–4). Guaroa virus has

been assigned to the California serogroup, but did not cluster with La Crosse virus as this

would suggest. Instead, across all segments, Guaroa virus branched basally to the Wyeomyia

serogroup (Figs 2–4).

Caimito virus and Santarem virus grouped together with viruses in the genus Pacuvirus (S5

Fig). Our results coincide with the recent proposal to reclassify Caimito virus as belonging to

the genus Pacuvirus (Peribunyaviridae) [132]. Our phylogenies consistently placed Santarem

virus with Caimito virus. We propose Santarem be classified in the Pacuvirus genus along with

Caimito virus.

Among the nairoviruses, Wanowrie consistently fell within the Qalyub serogroup of the

Orthonairovirus genus, most closely related to Tǎchéng tick virus, though there was insuffi-

cient support in the S segment tree to group these two viruses with the rest of those in the

Qalyub serogroup (Fig 5). Estero Real virus was consistently placed within the Hughes ser-

ogroup for all three segments with strong posterior probability support (Fig 5).

In phenuivirus trees, Bujaru and Punta Toro viruses consistently grouped within the Sand-

fly fever serogroup, as expected (Fig 6). Also, expectedly, Zaliv Terpeniya and Sunday Canyon

grouped within the Uukuniemi serogroup and Palma grouped with Bhanja serogroup across

all segments (Fig 6). One deviation of note within the phenuivirus trees is the divergent place-

ment of Arumowot virus S segment (Fig 6).

Reassortment

To further evaluate reassortment among the viruses we sequenced, we created co-phylogenies

(tanglegrams) of L, M, and S segments (Figs 7–11). Prior to generation of these co-phyloge-

nies, we collapsed interior nodes with support values< 0.95 so that poorly supported branch-

ing patterns would not produce false signals of reassortment. We also performed all possible

pairwise global alignments of the coding regions of the segments to identify pairs of viruses

with differential nucleotide identities between segments, for instance, pairs of viruses with

closely related L and S segments but relatively divergent M segments (S2 Table). Numerous

local topological incongruencies were apparent in the trees, but here we focus on the clearest

examples of reassortment that were well supported by both phylogenetic discordance and

large discrepancies in pairwise genetic distances.

These analyses identified evidence of widespread reassortment among the orthobunya-

viruses (Figs 7–9). In some cases, these corresponded to reassortment events that had been

previously identified, but in other cases these were newly described. Most, but not all, well sup-

ported instances of reassortment involved viruses with similar L and S segments but relatively

different M segments. This was evident in the relatively similar topologies of the L and S seg-

ment trees and the increased degree of crossing-over in the L-M and M-S tanglegrams. This

corresponds to reassortant progeny that comprise the L and S segment of one co-infecting

Fig 2. L segment phylogeny for viruses in Orthobunyavirus. Bayesian phylogenetic tree using the ORF on the L segment. Numbers at nodes indicate posterior

probability values. Reference sequences (sequences present in the NCBI RefSeq database) are included as phylogenetic landmarks and colored blue. Sequences from

this study are colored black. Classical serogroup distinctions are indicated. Scale bars represent substitutions per site.

https://doi.org/10.1371/journal.ppat.1009315.g002
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parent virus and the M segment of the second parent. In contrast, the differential placement of

Brazoran, Belem and Pacora viruses on the L and M as opposed to the S segment phylogenies

supports the hypothesis that this group of viruses resulted from an ancestral reassortment

event involving the replacement of an S segment [12].

Consistent with previous reports, there was evidence of extensive reassortment involving all

3 segments in the Bunyamwera serogroup [19,133,134]. The Fort Sherman and Anadyr virus

isolates sequenced in this study have S segments with 90% pairwise nucleotide identity but rel-

atively different L and M segments that shared<75% pairwise nucleotide identity. This is one

of the few examples we identified of viruses with closely related S segments but relatively differ-

ent L and M segments. The S and L segments of Potosi virus were most closely related to those

of Tlacotalpan virus, but the M segment was more related to Kairi and Main Drain viruses

(Figs 2–4 and 7–9 and S2 Table). Both Main Drain isolates that we sequenced had S and L

segments that were>95% identical to those of Santa Rosa and Lokern viruses. But the Main

Drain M segments clustered instead with those of Potosi and Kairi viruses. Shokwe and

Bunyamwera viruses L and S segments grouped together, but their M segments did not form a

monophyletic cluster.

In the Bakau serogroup, Ketapang and Bakau viruses had similar L and S segments (81 and

88% identical) but relatively different M segments (66% identical). The M segment of Bakau

virus was instead more closely related to that of Telok Forest virus, with which it shared 70%

pairwise nucleotide identity.

The two Boracéia virus strains that we sequenced (SPAr 395 and SPAr 4080) were isolated

from Anopheles cruziimosquitoes in São Paulo, Brazil in 1962 and 1965, respectively

(Table 1). These isolates had closely related L and S segments with>91% pairwise nucleotide

identity but M segments that shared only 63% identity (Fig 7 and S2 Table). The Bangui virus

L and S segments branched basally to the viruses in the Anopheles A and B groups in the L

and S segment trees, but in the M segment tree, Bangu virus fell on a well-supported branch

with Tacaiuma virus nested within these groups. Patois and Zegla viruses had nearly identical

L and S segments with 97% and 99.7% pairwise nucleotide identity, but their M segments

shared only 73% identity.

In the Simbu group viruses, Aino, Kaikalur and Peaton viruses formed a well-supported

cluster on L and S segment trees, but the M segment of Peaton virus was at the end of a long,

separately placed branch. The Tinaroo and Akabane virus L and S segments were 87 and 95%

identical, but the M segments shared only 65% pairwise nucleotide identity. A similar pattern

was evident for Athuperi and Shamonda viruses.

Antequera, Barrenqueras, and Resistencia viruses exhibited patterns of sequence related-

ness indicative of multiple past reassortment events. The S segments of these three viruses

were all�99% identical. The L segments of Antequera and Barrenqueras were also nearly

identical (99%), but these were both only�90% identical to the L segment of Resistencia virus.

The M segments of the three viruses all shared<71% pairwise nucleotide identity.

In the Guama and Capim group viruses, there were several examples of apparent M seg-

ment reassortment. Bertioga and Cananeia viruses had highly related L and S segments but M

segments that were only 67% identical. The same pattern was evident for Itimirim and Guara-

tuba viruses, for Moriche and Bushbush viruses, for Acara and Benevides viruses, for Guajara

and Juan Diaz viruses, and for the trio of Bimiti, Guama and Catu viruses.

Fig 3. M segment phylogeny for viruses in Orthobunyavirus. Bayesian phylogenetic tree using the ORF encoding Gn/Gc on the M segment. Numbers at nodes indicate

posterior probability values. Reference sequences are colored blue and sequences generated in this project are colored black. Classical serogroup distinctions are indicated.

Scale bars represent substitutions per site.

https://doi.org/10.1371/journal.ppat.1009315.g003
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Reassortment has also clearly shaped the evolution of the Group C orthobunyaviruses, as

has been previously noted [17,135,136]. Caraparu and Itaqui viruses had nearly identical L and

S segments but quite different M segments. The M segment of Itaqui virus was instead much

more similar to that of Oriboca virus. The L and S segments of Vinces virus clustered with

those of Madrid virus, but the Vinces virus M segment was more closely related to that of Car-

aparu virus. Restan, Murutucu, and Oriboca virus formed a well-supported cluster on L and S

segment trees, but on the M segment tree, Restan amd Murutucu viruses remained clustered

together while the Oriboca virus M segment was on a branch basal to the other Group C

viruses with Itaqui virus.

There was little evidence for reassortment among the orthonairoviruses in our analysis. The

only instance of possible reassortment was for Hughes virus. Despite similar pairwise nucleo-

tide identities between the three segments of Hughes, Sapphire II, and Estero Real viruses,

these three viruses had different branching patterns on the three segment trees, albeit with

Fig 4. S segment phylogeny for viruses in Orthobunyavirus. Bayesian phylogenetic tree using the ORF encoding NP on the S segment. Numbers at nodes indicate

posterior probability values. Reference sequences are colored blue and sequences generated as part of this study are colored black. Classical serogroup distinctions are

indicated. Scale bars represent substitutions per site.

https://doi.org/10.1371/journal.ppat.1009315.g004

Fig 5. Phylogenetic analysis of viruses in Nairoviridae. Bayesian phylogenetic tree using (A) the ORF encoding the RdRp on the L segment, (B) the ORF encoding

Gn/NSm/Gc on the M segment, and (C) the ORF encoding NP on the S segment. Numbers at nodes indicate posterior probability values. Reference sequences are

included as phylogenetic landmarks and colored blue. Sequences generated in this study are colored black. Classical serogroup distinctions are indicated. Scale bars

represent substitutions per site.

https://doi.org/10.1371/journal.ppat.1009315.g005
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long branch lengths and support values<1 (Fig 10 and S2 Table). In phlebovirus tanglegrams,

Aguacate and Tapara viruses showed evidence of reassortment, but there was no strong evi-

dence for reassortment among the phleboviruses sequenced in this study (Fig 11).

Co-infection

We identified evidence of co-infection (i.e. RNA from more than one virus) in four virus

stocks: Abras virus, Guaratuba virus, Hughes virus, and one of the two Main Drain virus iso-

lates. The initial indication that there might be co-infection in these stocks was the assembly of

more than the expected three bunyavirus contigs from the corresponding datasets, and was fol-

lowed up with additional computational and molecular tests to validate possible co-infections.

In the Abras virus dataset, six coding-complete sequences assembled, including 2 L, 2 M,

and 2 S segments. Three of the segments matched the previously sequenced Abras virus isolate

75V1183 (the same isolate that we sequenced) with 99–100% nucleotide identity [137]. The

other three segments belonged to a previously unsequenced bunyavirus in the Guama

Fig 6. Phylogenetic analysis of viruses in Phenuiviridae. Bayesian phylogenetic tree using (A) the ORF encoding the RdRp on the L segment, (B) the ORF

encoding Gn/Gc on the M segment, and (C) the ORF encoding NP on the S segment. Numbers at nodes indicate posterior probability values. Reference sequences

are included as phylogenetic landmarks and colored blue. Sequences generated in this study are colored black Classical serogroup distinctions are indicated. Scale

bars represent substitutions per site.

https://doi.org/10.1371/journal.ppat.1009315.g006
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Fig 7. Co-phylogenies of Orthobunyavirus L and S segment trees. Branches with support values< 0.95 were converted to polytomies. All other

branch support values were 1 unless indicated. Trees were rooted with outgroups as in Figs 2–4.

https://doi.org/10.1371/journal.ppat.1009315.g007
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Fig 8. Co-phylogenies of Orthobunyavirus L and M segment trees. Branches with support values< 0.95 were converted to polytomies. All other

branch support values were 1 unless indicated. Trees were rooted with outgroups as in Figs 2–4.

https://doi.org/10.1371/journal.ppat.1009315.g008
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Fig 9. Co-phylogenies of Orthobunyavirus S and M segment trees. Branches with support values< 0.95 were converted to polytomies. All other branch

support values were 1 unless indicated. Trees were rooted with outgroups as in Figs 2–4.

https://doi.org/10.1371/journal.ppat.1009315.g009
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serogroup most closely related to Mirim virus, with which it shared 77–81% pairwise nucleo-

tide identity. Abras virus was present at a much higher abundance: 33,462 reads mapped to the

three Abras virus segments, whereas only 2,091 reads mapped to the Mirim-like segments.

Using RT-PCR with segment-specific primers (S1 Table), and RNA re-extracted from another

vial of the isolate, we successfully amplified all six segments to confirm the coinfection. Addi-

tionally, we attempted to plaque-purify both viruses from the original isolate by Vero cell pla-

que assay. However, among the 90 viral plaques screened, none purely represented the co-

infecting Guama serogroup virus, and passage of the co-infecting virus on Vero cells in an

attempt to isolate it repeatedly failed. Additional preparations of Abras virus in the ARC that

had been passaged in suckling mouse brain did not contain this co-infecting virus, leading us

to suspect that the contaminant was introduced during original preparation of this particular

virus stock that was sequenced during this study. Notably, Aguilar et al. (2018) did not report a

co-infecting virus after also sequencing Abras isolate 75V1183 [137].

The Guaratuba virus dataset also produced 6 coding complete or partial bunyavirus seg-

ment sequences. Coding-complete sequences were assembled for all three segments of Guara-

tuba virus, as inferred based on their phylogenetic placement with other Guama serogroup

viruses. An additional L, M, and S segment were assembled, but only the S segment was

Fig 10. Co-phylogenies of Nairoviridae L, M, and S segment trees. Branches with support values< 0.95 were converted to polytomies. All other branch support

values were 1 unless indicated. Trees were rooted with outgroups as in Fig 5.

https://doi.org/10.1371/journal.ppat.1009315.g010

PLOS PATHOGENS Genome sequences of 99 bunyaviruses

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009315 March 1, 2021 23 / 36

https://doi.org/10.1371/journal.ppat.1009315.g010
https://doi.org/10.1371/journal.ppat.1009315


Fig 11. Co-phylogenies of Phenuiviridae L, M, and S segment trees. Branches with support values< 0.95 were converted to polytomies. All other

branch support values were 1 unless indicated. Trees were rooted with outgroups as in Fig 6.

https://doi.org/10.1371/journal.ppat.1009315.g011
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coding-complete. The additional partial L, M, and S sequences were�98% identical at the

nucleotide level to strain 76V-25880 of Enseada virus [50,138]. The Guaratuba virus sequences

had�7x more mapping reads (3,164) than the coinfecting Enseada-like virus (457). The

Enseada virus-like sequences from the Guaratuba datasets were only 85–93% identical to the

Enseada virus isolate strain 78V-213 genome that we sequenced for this project, indicating

that these sequences were not attributable to cross-contamination during sample processing

and library preparation. We used RT-qPCR to confirm the presence of all six segments in the

original RNA from which the sequencing library was made. An independent RNA extract

from Vero cells infected with Guaratuba virus from a second vial from the same lot was also

positive for all 6 segments by RT-qPCR.

The Hughes virus dataset produced 4 bunyavirus contigs corresponding to a complete L,

M, and S segment, and a partial M segment of about 1.2 kb. This partial M segment was nearly

identical to a previously published Hughes virus M segment sequence (99.4% identical to

strain DT-1, accession KP792739.1) The full length M sequence was only 81% identical to

Hughes virus strain DT-1 and 72% identical to Hughes virus strain G2126 (accession

KU925471). The partial M sequence had a coverage level of 2.4% relative to the full-length M

sequence.

For Main Drain virus strain 72V2567, we assembled coding complete sequences for the L,

M, and S segments with 452,386 mapping reads. In addition, 90 reads mapped to Cache Valley

virus strain 6V633. We were able to corroborate the detection of the Cache Valley virus-like

sequences using RT-qPCR with discriminating primers (S1 Table). The L, M, and S partial

sequences were 98.5%, 95.9%, and 99% identical to Cache Valley virus respectively

(MH166879.1, MH166878.1, MH166877.1).

Discussion

Bunyaviruses comprise one of the largest viral orders, and some bunyaviruses pose substantial

threats to humans, animals, and plants (3). We generated complete genome sequences for 99

bunyaviruses belonging to the families Nairoviridae, Peribunyaviridae, and Phenuiviridae, and

analyzed them phylogenetically. Our results were consistent with recently published phyloge-

nies on the Patois serogroup viruses [137] and a diversity of orthobunyaviruses in the Anophe-

les A, Capim, Guamá, koongol, Mapputta, Tete, and Turlock serogroups [129], but difficult to

compare entirely given the inclusion of different viruses in each published analysis. Given the

large number of viruses sequenced in this study, we elected to limit additional sequences in

our phylogenies to new sequences plus those in NCBI RefSeq.

The phylogenies recapitulated assigned serogroups relatively well, however there were sev-

eral points of inconsistency between the two. It is not that surprising that the determined phy-

logenetic relationships did not completely recapitulate established serogroups. Serology is

based on similarities/dissimilarities in the surface proteins of the virion particle (encoded

exclusively by M segments), whereas phylogenetic analysis can assess the relationships between

any genes of any viral genome segment. Although one might expect the M segment to recapit-

ulate the classical serogroup distinctions, this was not the case (Figs 3, 5B, and 6B). The L seg-

ment is the most conserved segment among all three families and most closely recapitulates

the classical serogroup distinctions (Figs 2, 5A, and 6A). However, we found that several ser-

ogroups were not monophyletic in L segment phylogenies. For example, the Guama serogroup

consisted of polyphyletic clades on all segments (Figs 2–4). Capim and Patois serogroups were

also polyphyletic in the S segment tree (Figs 4, 5C, and 6C). Additionally, we were unable to

resolve several ancestral branches which resulted in several polytomies, particularly in ortho-

bunyavirus trees (Fig 4).

PLOS PATHOGENS Genome sequences of 99 bunyaviruses

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009315 March 1, 2021 25 / 36

https://doi.org/10.1371/journal.ppat.1009315


Many human pathogenic viruses in the genus Orthobunyavirus are found within the Cali-

fornia, Bunyamwera, Simbu, and Group C serogroups. To these serogroups we have collec-

tively added 33 coding-complete genome sequences. Although the pathogenic potential

remains to be determined for many of the viruses sequenced in this study, viruses falling

within serogroups for which there were previously no genomic data available will facilitate the

identification and prioritization of novel potentially pathogenic strains for further study.

Reassortment

These new sequences also contribute to a richer database with which to resolve the origins of

reassortant viruses. Briese et al. [17] proposed that many, if not all, currently recognized bun-

yaviruses are the product of recent or ancient reassortants between known and/or possibly

extinct viruses. High-level analysis for evidence of reassortment supported this hypothesis, and

the conclusion that reassortment is a major factor driving bunyavirus genetic variability partic-

ularly in the Bunyamwera, Capim, and Group C serogroups (Figs 7–9). Reassortment among

bunyaviruses has the potential to result in the emergence of novel human pathogens, as has

been the case with Iquitos virus [9], Itaya virus [13], and Ngari virus [139].

L and S segment trees were largely concordant, and reassortment was, in almost all cases,

evident as pairs or groups of viruses that had similar L and S segments but different M seg-

ments. Previous studies have reported that reassortant bunyaviruses tend to combine the S and

L segments from one parent with the M segment from the other parent, making this a seem-

ingly common phenomenon [19,139–141], although this is not always the case [17]. Linkage

disequilibrium analysis of LACV isolates from field-collected mosquitoes showed evidence of

frequent reassortment among strains in the field, and among all three genome segments [130].

Among the viruses we analyzed, there were several examples of pairs of viruses that had nearly

identical S segments but relatively different L and M segments, suggesting recent reassortment

events that may have involved the joining of the S segment of one parental virus with the L and

M segment of the second parent. The reassortment that has happened frequently throughout

bunyavirus evolution has introduced phylogenetic scrambling that makes it difficult to tease

apart exact relationships. Sequencing and analysis of larger numbers of bunyaviruses will con-

tinue to shed light on the reassortment that has driven and continues to shape bunyavirus

evolution.

Co-infection of viral stocks

We also uncovered evidence of co-infections present in four virus stocks. It is possible that

multiple viruses could be co-isolates from pools of mosquitoes containing multiple viruses.

Overlapping ranges of the co-infecting viruses could provide support for this hypothesis. For

instance, we detected Cache Valley virus reads in the Main Drain strain 72V2567 isolate. This

Main Drain virus stock was derived from Aedes vexansmosquitoes collected in New Mexico,

USA, in 1972, and Cache Valley virus is broadly distributed in Northern and Central America

[142]. Similarly, there was evidence of an Enseada virus co-infection in the Guaratuba virus

isolate that we sequenced. Guaratuba and Enseada virus have both been isolated from pools of

Culexmosquitoes collected in 1976 in Brazil [50,138].

Ultimately, however, the true origins of these apparent co-infections are not knowable from

our data alone. It is possible that cross-contamination may have occurred during isolation or

passage. The failure to identify the co-infecting Mirim-like virus in an independent stock of

Abras virus supports this alternative in that case. We can exclude cross-contamination during

RNA extraction, library preparation, and sequencing because the co-infecting viruses were not

identical to any of the other viruses we sequenced, and we confirmed the presence of co-
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infecting RNAs in separate vials of a stock for the Abras, Hughes, and Guaratuba virus isolates.

Testing of the original samples and resequencing earlier passages of a virus could resolve ambi-

guity about the origin of co-infections, but it is likely that the source material for most of these

isolates is no longer available. Continuing surveillance and direct sequencing of virus genomes

in field samples without virus passage in cell culture will provide additional insight into the

extent to which individual vectors or vector populations harbor bunyavirus co-infections, and

the extent to which this impacts reassortment potential.

Taxonomic implications

The recent expansion in sequenced bunyaviral genomes–and of RNA virus genomes in gen-

eral–has led to a restructuring of bunyavirus taxonomy [14,15,143–146]. Some of the viruses

sequenced in this study will undoubtedly lead to the establishment of new genera and species,

particularly within the Orthobunyavirus genus. Our data highlight some unresolved issues

with bunyavirus taxonomy that are attributable to pervasive reassortment. For instance, the

question of how should pairs of viruses that are nearly identical in 2 of the 3 genome segments

but highly divergent in the 3rd, like Bertioga and Cananéia viruses, or Santa Rosa and Main

Drain viruses, be classified?

Conclusions

This study contributed 35 totally new bunyavirus genome sequences to the public domain.

These sequences further enrich the reference data available for the identification of emerging

bunyaviruses, facilitate the resolution of phylogenetic relationships among known and newly-

described viruses, and provide additional context towards the identification of reassortant

strains. In addition, the generation of such a large dataset permitted expanded analyses of co-

infection and reassortment. Each of these analyses provided foundational data which will sup-

port future investigations on the genetic diversity, reassortment, and virus-vector-host interac-

tions in this important group of emerging human pathogens.
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136. Castillo Oré RM, Caceda RE, Huaman AA, Williams M, Hang J, Juarez DE, et al. Molecular and anti-

genic characterization of group C orthobunyaviruses isolated in Peru. PLoS ONE. 2018; 13:

e0200576. https://doi.org/10.1371/journal.pone.0200576 PMID: 30024910

137. Aguilar PV. Genetic Characterization of the Patois Serogroup (Genus Orthobunyavirus; Family Peri-

bunyaviridae) and Evidence That Estero Real Virus is a Member of the Genus Orthonairovirus. Am J

Trip Med Hyg. 2018; 99(2): 451–457. https://doi.org/10.4269/ajtmh.18-0201 PMID: 29893199

138. de Souza WM, Acrani GO, Romeiro MF, Reis O, Tolardo AL, da Silva SP, et al. Molecular characteri-

zation of Capim and Enseada orthobunyaviruses. Infection, Genetics and Evolution. 2016; 40: 47–53.

https://doi.org/10.1016/j.meegid.2016.02.024 PMID: 26921797

139. Briese T, Bird B, Kapoor V, Nichol ST, Lipkin WI. Batai and Ngari viruses: M segment reassortment

and association with severe febrile disease outbreaks in East Africa. J Virol. 2006; 80: 5627–5630.

https://doi.org/10.1128/JVI.02448-05 PMID: 16699043

140. Yanase T, Aizawa M, Kato T, Yamakawa M, Shirafuji H, Tsuda T. Genetic characterization of Aino

and Peaton virus field isolates reveals a genetic reassortment between these viruses in nature. Virus

Res. 2010; 153: 1–7. https://doi.org/10.1016/j.virusres.2010.06.020 PMID: 20600386

141. Yanase T, Kato T, Aizawa M, Shuto Y, Shirafuji H, Yamakawa M, et al. Genetic reassortment between

Sathuperi and Shamonda viruses of the genus Orthobunyavirus in nature: implications for their genetic

relationship to Schmallenberg virus. Arch Virol. 2012; 157: 1611–1616. https://doi.org/10.1007/

s00705-012-1341-8 PMID: 22588368

142. Calisher CH, Francy DB, Smith GC, Muth DJ, Lazuick JS, Karabatsos N, et al. Distribution of Bunyam-

wera serogroup viruses in North America, 1956–1984. Am J Trop Med Hyg. 1986; 35: 429–443.

https://doi.org/10.4269/ajtmh.1986.35.429 PMID: 2869708

143. Adams MJ, Lefkowitz EJ, King AMQ, Harrach B, Harrison RL, Knowles NJ, et al. Changes to taxon-

omy and the International Code of Virus Classification and Nomenclature ratified by the International

Committee on Taxonomy of Viruses (2017). Archives of Virology. 2017; 162: 2505–2538. https://doi.

org/10.1007/s00705-017-3358-5 PMID: 28434098

PLOS PATHOGENS Genome sequences of 99 bunyaviruses

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009315 March 1, 2021 35 / 36

https://doi.org/10.1007/BF01252761
http://www.ncbi.nlm.nih.gov/pubmed/4727778
http://www.ncbi.nlm.nih.gov/pubmed/2864827
http://www.ncbi.nlm.nih.gov/pubmed/14275217
http://www.ncbi.nlm.nih.gov/pubmed/4404099
https://doi.org/10.3390/v7112918
http://www.ncbi.nlm.nih.gov/pubmed/26610546
https://doi.org/10.3201/eid2205.151566
http://www.ncbi.nlm.nih.gov/pubmed/27088588
https://doi.org/10.1371/journal.pone.0116561
https://doi.org/10.1371/journal.pone.0116561
http://www.ncbi.nlm.nih.gov/pubmed/25588016
https://doi.org/10.3201/eid2308.161254
http://www.ncbi.nlm.nih.gov/pubmed/28726602
https://doi.org/10.1186/s12985-018-1031-6
http://www.ncbi.nlm.nih.gov/pubmed/30081908
https://doi.org/10.1128/JVI.79.16.10561-10570.2005
http://www.ncbi.nlm.nih.gov/pubmed/16051848
https://doi.org/10.1371/journal.pone.0200576
http://www.ncbi.nlm.nih.gov/pubmed/30024910
https://doi.org/10.4269/ajtmh.18-0201
http://www.ncbi.nlm.nih.gov/pubmed/29893199
https://doi.org/10.1016/j.meegid.2016.02.024
http://www.ncbi.nlm.nih.gov/pubmed/26921797
https://doi.org/10.1128/JVI.02448-05
http://www.ncbi.nlm.nih.gov/pubmed/16699043
https://doi.org/10.1016/j.virusres.2010.06.020
http://www.ncbi.nlm.nih.gov/pubmed/20600386
https://doi.org/10.1007/s00705-012-1341-8
https://doi.org/10.1007/s00705-012-1341-8
http://www.ncbi.nlm.nih.gov/pubmed/22588368
https://doi.org/10.4269/ajtmh.1986.35.429
http://www.ncbi.nlm.nih.gov/pubmed/2869708
https://doi.org/10.1007/s00705-017-3358-5
https://doi.org/10.1007/s00705-017-3358-5
http://www.ncbi.nlm.nih.gov/pubmed/28434098
https://doi.org/10.1371/journal.ppat.1009315


144. Marklewitz M, Palacios G, Ebihara H, Kuhn J, Junglen S. Create six new genera, create eight-five new

species, rename/move ten species and abolish two species in the family Phenuiviridae, order Bunya-

virales. ICTV [International Committee for Taxonomy of Viruses]. 2019;Proposal (Taxoprop) No.

2019.026M.
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