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ABSTRACT Despite progress understanding microbial communities involved in ter-
restrial vertebrate decomposition, little is known about the microbial decomposition
of aquatic vertebrates from a functional and environmental context. Here, we ana-
lyzed temporal changes in the “necrobiome” of rainbow darters, which are common
North American fish that are sensitive indicators of water quality. By combining 16S
rRNA gene and shotgun metagenomic sequence data from four time points, we
studied the progression of decomposers from both taxonomic and functional per-
spectives. The 16S rRNA gene profiles revealed strong community succession, with
early decomposition stages associated with Aeromonas and Clostridium taxa and
later stages dominated by members of the Rikenellaceae (i.e., Alistipes/Acetobacte-
roides genera). These results were reproducible and independent of environmental
perturbation, given that exposure to wastewater treatment plant effluent did not
substantially influence the necrobiome composition of fish or the associated water
sample microbiota. Metagenomic analysis revealed significant changes throughout
decomposition in degradation pathways for amino acids, carbohydrates/glycans, and
other compounds, in addition to putrefaction pathways for production of putrescine,
cadaverine, and indole. Binning of contigs confirmed a predominance of Aeromonas
genome assemblies, including those from novel strains related to the pathogen
Aeromonas veronii. These bins of Aeromonas genes also encoded known hemolysin
toxins (e.g., aerolysin) that were particularly abundant early in the process, poten-
tially contributing to host cell lysis during decomposition. Overall, our results dem-
onstrate that wild-caught fish have a reproducible decomposer succession and that
the fish necrobiome serves as a potential source of putative pathogens and toxi-
genic bacteria.

IMPORTANCE The microbial decomposition of animal tissues is an important eco-
logical process that impacts nutrient cycling in natural environments. We studied
the microbial decomposition of a common North American fish (rainbow darters)
over four time points, combining 16S rRNA gene and shotgun metagenomic se-
quence data to obtain both taxonomic and functional perspectives. Our data re-
vealed a strong community succession that was reproduced across different fish and
environments. Decomposition time point was the main driver of community compo-
sition and functional potential; fish environmental origin (upstream or downstream
of a wastewater treatment plant) had a secondary effect. We also identified strains
related to the putative pathogen Aeromonas veronii as dominant members of the
decomposition community. These bacteria peaked early in decomposition and coin-
cided with the metagenomic abundance of hemolytic toxin genes. Our work reveals
a strong decomposer succession in wild-caught fish, providing functional and taxo-
nomic insights into the vertebrate necrobiome.
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The decomposition of animal tissues is a fundamental ecological process that
impacts nutrient cycling and species composition in terrestrial and aquatic ecosys-

tems. Vertebrate tissue decomposition creates a unique ecological niche supporting a
wide variety of specialized decomposer species, including insects, predators, and
microorganisms. These species form an interconnected community whose combined
activities lead to the decomposition of an organism from its initial death to the
complete degradation of its exterior and internal contents.

The microbial communities involved in decomposition, including bacteria derived
from the surrounding environment (e.g., water, soil) and the host (e.g., digestive tract
and lungs), are collectively referred to as the “necrobiome” (from nekrós, the Greek
word for dead body) (1), or alternatively, the “thanatomicrobiome” (from Thanatos, the
Greek god of death) (2). Studies of necrobiome structure and function in several model
systems (e.g., human, cow, pig, and mouse) have revealed strong microbial succession
with distinct taxonomic and functional shifts linked to the phases of tissue decompo-
sition (3–8). After cellular autolysis breaks down tissue following death, anaerobic
bacteria such as Clostridium spp. increase in relative abundance and metabolize avail-
able carbohydrates and proteins from the body, producing organic acids and gas (9).
Functional shifts occur; these shifts include increases in catabolic pathways, carbohy-
drate and energy metabolism, nitrogen cycling, and processes related to bacterial
invasion. Foul-smelling compounds associated with the process of putrefaction are also
produced as by-products of fermentation and amino acid decomposition, including
putrescine, cadaverine, and indole. Because putatively pathogenic bacteria proliferate
within vertebrate necrobiomes, such as Clostridium botulinum (10), it has been pro-
posed that bacterial toxins secreted by these bacteria may play roles in decomposition
by interfering with host cellular functions (11).

Although much knowledge of necrobiome community structure and function has
come from studies of terrestrial mammals, less is known about the structure, function,
and dynamics of decomposition in aquatic ecosystems. Previous studies of fish carcass
decomposition demonstrate that as in terrestrial systems, both macroinvertebrates and
microorganisms play important roles as aquatic decomposers (12, 13). Microbial anal-
ysis of forage fish (i.e., menhaden) carrion decomposing for 48 h in an estuary-like
environment revealed a necrobiome dominated by members of the Firmicutes, Bacte-
roidetes, and Gammaproteobacteria (14). Similarly, a freshwater study of salmon car-
casses reported that members of the Proteobacteria, Firmicutes, and Bacteroidetes
dominated carcass decomposition (15). Despite these previous studies characterizing
the taxonomic shifts associated with fish decomposition, much more work is needed to
explore the microbial communities and their functions within fish necrobiomes and
their associated aquatic ecosystems. Particularly important research questions include
the following. (i) What is the composition of aquatic vertebrate necrobiomes and how
does it change over time? (ii) How do changes in environmental parameters affect
necrobiome communities? (iii) What metabolic activities/functions are present in necro-
biome communities and how do they change over time?

In this study, to gain insights into these questions, we focused on the rainbow darter
(Etheostoma caeruleum) as a model organism to profile microbial decomposer commu-
nity succession from both taxonomic and functional perspectives. Rainbow darters are
a common North American fish found in streams and small- to medium-sized river, and
they have high site fidelity and sensitivity to changes in water quality (16–18). Thus,
they represent ideal targets for exploring the role of host-associated and location-
specific microbial communities present before and after death. Rainbow darters are
affected physiologically by disturbances of the river ecosystem, such as wastewater
treatment plant (WWTP) effluent inputs and urbanization (16–18). These anthropogenic
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factors affect rivers by introducing pollutants and altering the balance of available
nutrients (18–20), thus influencing fish physiology and their associated microbiomes.
Using 16S rRNA sequencing combined with metagenomics, we study both the taxo-
nomic and functional succession of the rainbow darter necrobiome community. We
also compare necrobiomes between two different locations in the Grand River (south-
western Ontario, Canada), upstream and downstream of a WWTP, allowing us to
analyze community members and their functional potential both spatially and tempo-
rally. Studying necrobiome-associated microbial communities provides a unique way to
better understand links to aquatic health, fish physiology, and ecosystem dynamics.

RESULTS AND DISCUSSION
Time series community profiling of fish necrobiomes. To examine the structure

and temporal succession of aquatic vertebrate necrobiomes, we performed a 16S
rRNA-based study of decomposing fish at different time points and locations. We
collected female rainbow darters (Etheostoma caeruleum) from the Grand River in
Waterloo, Ontario, Canada, both upstream and downstream of the Waterloo wastewa-
ter treatment plant (WWTP) (Fig. 1). Individual fish were subjected to decomposition
with river water and sediment at room temperature for 1, 4, 8, and 10 days in sterile
containers that acted as microcosms of a natural decomposition environment. Sample
16S rRNA gene profiles for fish decomposition microbiomes (“necrobiomes”) for these
four time points and two water/sediment sources revealed reproducible microbial
communities among independent replicates and also between environments (i.e., fish
and water source; Fig. 2 and 3). This microbial succession was apparent at the order
level of taxonomy (Fig. 2) and at the level of amplicon sequence variants (ASVs) (Fig. 3),
although variation in ASV composition was evident among fish samples and environ-
ments (Fig. 3).

FIG 1 Map showing sampling locations of Grand River fish for metagenomic analysis. The municipal
wastewater treatment plant (WWTP) for the city of Waterloo, Canada, and the two sampling locations,
upstream at West Montrose (WMR) and downstream at the Economic Insurance Trail (EIT), are displayed.
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Although infectious lesions began to form on fish sampled on day 1, “bloat-stage”
decomposition associated with anaerobic microbial decomposition was not visually
apparent until later time points (see Fig. S1b in the supplemental material). The day 1
decomposer communities were composed predominantly of taxa affiliated with Aero-
monas and Clostridium, and to a lesser extent by members of the Enterobacteriales. All
of these bacterial groups are commonly associated with fish gut microbial communities
(21–24), especially Aeromonas within freshwater fish microbiota (25, 26). Species of
Clostridium sensu stricto 1 have proteolytic activities and thus may be associated with
a more carnivorous diet (24), consistent with the predominantly insectivorous diets of
rainbow darters (27). The taxa that were abundant in day 1 fish (e.g., Clostridium
sensu stricto 1 sp. ASV 9 and 10, and Aeromonas sp. ASV 3 and 8) decreased in
relative abundance over the course of decomposition from 11 to 28% on day 1
to � 2% on day 10.

Fish sampled on day 4 were associated with anaerobic bloat-stage decomposition
and advanced tissue degradation (Fig. S1b). Consistent with previous studies of de-
composition using other fish species (14, 15), dominant day 4 bacterial phyla detected
were Proteobacteria, Firmicutes, and Bacteroidetes (Fig. 2). Compared to day 1 samples,
there were considerable changes in degrader community composition for day 4
profiles, with substantial increases in Acetobacteroides ASVs (family Rikenellaceae, order
Bacteroidales) from � 2% on day 1 up to 21% for some ASVs (Fig. 2 and 3). The
Acetobacteroides genus was associated with 45 distinct ASVs across all samples, with 13
ASVs at a relative abundance of �2%. Characterized Acetobacteroides members are
fermentative, mesophilic, strictly anaerobic, and capable of metabolizing carbohydrates
and producing acetate, H2, and CO2 as end products (28). These bacteria also classify
under the “Blvii28 wastewater-sludge group” according to the SILVA database. Follow-
ing day 4, taxa affiliated with Acetobacteroides were the dominant decomposer group,
increasing to a relative abundance of as much as 87% in the decomposer community
by the final day 10 sampling. Distinct Acetobacteroides ASVs dominated the day 10
decomposer community for fish collected from each of the two river locations (Fig. 3).

FIG 2 Relative frequency of ASVs within each sample colored by taxonomic order. Samples are sorted by
decomposition time (1 day, 4 days, 8 days, and 10 days). The fish and water/sediment origin of the samples are
displayed at the bottom of the figure, with upstream referring to the WMR site and downstream referring to the
EIT site. Low-relative-abundance taxonomic orders are grouped into “other.”
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Acetobacteroides ASV 2 increased to a relative abundance 77% in the fish and water
pairing collected upstream of the Waterloo WWTP, whereas Acetobacteroides ASV 1
increased to a relative abundance of 51% in fish collected downstream of the WWTP
and left to decompose in water/sediment collected from upstream. These results
indicate an influence of the sampled environment on species- or strain-level variations
in decomposer communities. The day 4 decomposer communities were also associated
with an increase in taxa affiliated with the Selenomonadales order, including Pelosinus
and Anaerosinus genera (Fig. 3), which persisted throughout the decomposition process
but at low relative abundance. The relative abundance of Selenomonadales increased
from 0.0037% on day 1 to 3.8% on day 4, 3.5% on day 8, and 3.3% on day 10.

Influence of spatial location on fish necrobiome succession. Based on sample
ordination, necrobiome 16S rRNA gene profiles separated primarily by time point, with
distinct microbial communities associated with different stages of tissue decomposition
(Fig. 4). Necrobiomes also separated according to sample type, demonstrating distinct
profiles for fish that originated upstream versus downstream of the WWTP, but this
separation was less apparent than separation based on time. There was no strong effect
of water/sediment origin on sample separation. This pattern was found for samples in
which fish decomposed in water from the same location and in “swap” experiments in
which fish were transferred into sediment/water samples derived from different original
locations (e.g., upstream WWTP fish decomposing in downstream WWTP water). Even
when isolating the effect of decomposition time, no effect of water/sediment sample
origin was detected (Fig. S2). Thus, necrobiomes appear to be influenced primarily by
factors occurring prior to decomposition, such as the living fish microbiomes, physio-
logical states, or other fish-environment interactions.

In order to further investigate the influence of fish origin location on decomposer
microbial community differences, we calculated differentially abundant taxa (P � 0.05,
Mann-Whitney U test) among fish necrobiomes associated with upstream and down-
stream WWTP fish sources (Fig. 5; for additional ASVs, see Table S2 in the supplemental
material; for additional statistical methods, see Data Set S1B). Necrobiome-associated

FIG 3 Bubble-plot depicting the relative abundance (as a percentage) of ASVs in the fish necrobiome at four time points. Light gray boxes indicate shared
family level taxonomic affiliation. Bubbles are displayed only if the ASV taxonomic affiliation was �2%. For other ASVs, see Data Set S1A in the supplemental
material. Bubbles are colored by decomposition time (days).
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taxa with significantly increased relative abundances (P � 0.05 and fold changes of �3)
in fish collected upstream of the WWTP include species of Acetobacteroides (ASV 6) and
Pelosinus (ASV 130) (Fig. 5). Taxa with significantly increased relative abundances in
downstream fish samples include Anaerosinus (ASV 159), Peptostreptococcaceae (ASV
74), Arcobacter (ASV 62), and Pseudomonas (ASV 77). However, these ASVs were
low-abundance organisms with a relative abundance of less than 1%. Characterized
Peptostreptococcaceae species are anaerobic bacteria that include pathogens associ-
ated with tissue infections and antibiotic resistance (29). Known Arcobacter species are
aerotolerant and include human and animal pathogens that have been found in
groundwater and water reservoirs (30–32). An additional taxonomic group that in-
creased in relative abundance in necrobiomes originating from fish collected from

FIG 4 A nonmetric multidimensional scaling (NMDS) ordination of necrobiomes based on microbial community
composition, using Bray-Curtis distances generated from ASV frequency profiles. Stress is 0.098. Together, 99% of
the variance is represented based on the R2 value between distance in ordination space and distance in the original
matrix. Vectors with R2 values greater than 0.7 were shown on the plot. Ellipses are colored by decomposition time
(days).

FIG 5 Differentially abundant ASVs between necrobiomes from upstream versus downstream WWTP fish samples. Differential relative abundance was
calculated based on pairwise rank sum tests of relative frequency (community proportion). The top ASVs with adjusted P values of less than 0.05 are shown.
Bars are colored by decomposition time (days), with opacity determined by water origin.
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downstream of the WWTP was Tolumonas (e.g., ASV 176), a genus with member species
associated with the production of toluene from phenol precursors, which are known
wastewater pollutants (33, 34). Further investigation into the contribution of wastewa-
ter effluent on fish decomposition would be helpful to confirm that these differences
were indeed linked to WWTP effluent, especially because these putative pathogenic
bacteria may contribute to a portion of the energetic costs of fish living downstream of
WWTPs (18).

In samples with both fish and water/sediment originating downstream of the
WWTP, we also observed higher relative abundance of ASVs associated with Plesiomo-
nas and Lautropia genera (Fig. 3). Again, these ASVs had low (�1%) relative abundance.
Known Plesiomonas species associate with aquatic habitats, cause human infections
associated with uncooked shellfish, and have been implicated in infectious out-
breaks in regions, including Canada (35, 36). Lautropia species have been isolated
from the oral cavities of immunocompromised individuals suffering from HIV and
cystic fibrosis (37, 38).

Metagenomic binning and analysis of decomposition pathways. To explore the
genomes and genome-encoded metabolic/functional potential of the necrobiomes, we
performed metagenomic sequencing on one replicate for each condition (14 total).
Subsequent assembly and binning resulted in four MAGs (metagenome-assembled
genomes) with �85% completion and �5% redundancy. We examined the taxonomic
composition of the MAGs using MetAnnotate (39). These MAGs included two genomes
affiliated with Alistipes (Rikenellaceae), a genome annotated as Aeromonas veronii, and
a Selenomonadaceae-associated genome (Table 1). The bins are consistent with ASVs
identified by 16S rRNA gene sequencing, corresponding to Acetobacteroides (Rikenel-
laceae), Aeromonas, and various members of the Selenomonadales (Fig. 2 and 3). Other
ASVs identified by 16S rRNA gene sequencing were also recovered in the lower-quality
MAGs (Table 1). One bin was affiliated with the genus Pseudomonas, and another bin
was affiliated with the family Rikenellaceae.

The relative abundance of Bin_4 (Aeromonas veronii) decreased throughout decom-
position from an average relative abundance of 3.7 (day 1) to an average relative
abundance of 0.14 (day 10), consistent with our 16S rRNA data (Fig. S3a). Because
Aeromonas has been associated with fish gut microbiomes (40–44), it is possible that
Bin_4 and other Aeromonas taxa were initially derived from the fish guts and were
important only for early stage decomposition. In contrast, Bin_3 (Rikenellaceae family)
may represent a late-stage decomposer because its relative abundance increased in
metagenomes from days 8 to 10 of decomposition (average relative abundance of 3.9
on day 8 to an average relative abundance 5.1 on day 10; Fig. S3a). In the downstream
fish-upstream sediment/water set, both Rikenellaceae-affiliated bins (Bin_3 and Bin_10)
were similar in relative abundance, implying site-specific influences on the relative

TABLE 1 Bins obtained from metagenomic sequencing of fish necrobiomes

Bin
name

Completion
(%)

Redundancy
(%)

GC
content
(%)

Total
length
(Mb)

Gene
count

Contig
count Taxonomic affiliation (predicted)

Bin_4 98.6 0.7 60.7 3.85 3,855 784 Bacteria, Proteobacteria, Gammaproteobacteria,
Aeromonadales, Aeromonadaceae, Aeromonas,
Aeromonas veronii

Bin_9 97.1 1.4 47.5 2.25 2,216 402 Bacteria, Firmicutes, Negativicutes, Selenomonadales,
Selenomonadaceae, Propionispira

Bin_3 87.1 2.2 47.0 2.64 2,467 801 Bacteria, Bacteroidetes, Bacteroidia, Bacteroidales,
Rikenellaceae, Alistipes

Bin_10 92.8 2.2 44.0 3.26 2,882 368 Bacteria, Bacteroidetes, Bacteroidia, Bacteroidales,
Rikenellaceae, Alistipes

Bin_7 38.8 7.9 61.4 0.78 1,187 628 Bacteria, Proteobacteria, Gammaproteobacteria,
Pseudomonadales, Pseudomonadaceae, Pseudomonas

Bin_2 25.2 1.4 48.2 1.71 1,872 960 Bacteria, Bacteroidetes, Bacteroidia, Bacteroidales,
Rikenellaceae
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abundance of different Rikenellaceae-affiliated taxa, consistent with 16S rRNA gene data
for Acetobacteroides ASVs (Fig. 3). Phylogenetic analysis of the two Rikenellaceae-
associated bins revealed that Bin_3 was more closely related to Acetobacteroides
hydrogenigenes RL-C and Bin_10 was more closely related to Alistipes sp. strain ZOR0009
(Fig. S3b). Bin_9 (Propionispira) was present at low (0.0 to 0.54 average on days 1 to 10;
Fig. S3a) relative abundance, close to the sample’s mean coverage across the entire
course of decomposition, consistent with the abundance patterns seen for Selenom-
onadales based on 16S rRNA gene data (Fig. 2).

Using a KEGG analysis of assembled contigs and binned metagenomes, we exam-
ined metabolic pathway potentials associated with decomposition samples. The result-
ing functional profiles had a highly similar grouping in ordination space compared to
the 16S rRNA gene community profiles, whereby samples grouped primarily based on
decomposition time point (Fig. S4). Analysis of specific KEGG pathways revealed
patterns consistent with a functional succession, mirroring the taxonomic succession
described earlier (Fig. 6). Pollutant degradation pathways for polyaromatic hydrocar-
bons such as naphthalene, styrene, and nitrotoluene showed increased relative abun-
dances on day 1 (13% on average) compared to subsequent time points (6.2% on

FIG 6 Selected KEGG pathways displaying significant differential relative abundance across the course of decomposition. Pathways were selected that had an
unadjusted P value of �0.03 after a Kruskall-Wallis test comparing decomposition time (1, 4, 8 , and 10 days). Shown is the log10 value of the fractional coverage
of the pathway with respect to the total coverage across all the pathways in the sample. Total pathway coverage is also proportionally normalized across every
sample. Note that some pathways are based on a few representative genes. For example, coverage of the photosynthesis pathway is mainly derived from genes
encoding sodium ion pumps.
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average). The initial fish bacterial community may have been enriched for microorgan-
isms that could degrade river water contaminants, which can originate from both
anthropogenic and natural sources and bioaccumulate in fish (45–47). Naphthalene
degradation in polluted sediment-water systems can be accomplished through several
bacterial pathways, and bioremediation of this toxic molecule by native organisms is
currently being studied (48–50). Various biofilm formation pathways were also propor-
tionally abundant (13%) within day 1 metagenomes (Fig. 6), possibly reflecting skin and
gut community functions originating prior to decomposition. Degrading river water
contaminants and skin and gut biofilm formation may be functions that are more
important for the bacterial communities living with their fish host and dealing with
possibly contaminated river water than for the necrobiome that formed in our closed
system after the fish’s death.

Glycan metabolism generally increased in coverage from early stages (2.4% on day
1) to later stages of decomposition (10%). Glycan degradation pathways (e.g., glycos-
aminoglycans) increased in coverage by days 8 and 10, which may be involved in
decomposition of fish skin and intestinal mucins. Late-stage increases in streptomycin,
phenylpropanoid, novobiocin, neomycin, kanamycin, and gentamicin biosynthesis
pathways (2.4-fold change from day 1 to 10) were also detected, implying that the
remaining microorganisms by day 10 possess increased potential for antibiotic synthe-
sis.

These metagenome-wide functional patterns closely matched the functional poten-
tials of individual Aeromonas (early stage) and Rikenellaceae (late stage) bins, when
taking into consideration their shifts in relative abundance through the time course
(Fig. S5). Genes belonging to pollutant degradation pathways were present in the
Aeromonas bin yet mostly absent from other MAGs with lower relative abundance from
days 1 and 4 metagenomes. Likewise, biofilm formation pathway genes had a 6.2-fold-
higher frequency in the Aeromonas bin compared to the Acetobacteroides/Alistipes bins.
In contrast, antibiotic biosynthesis pathway genes had a 2.5-fold-higher frequency in
the Rikenellaceae-associated bins, in addition to multiple key glycan degradation genes.
Thus, the detected shifts in functional profiles were in part due to the hand-off
microbial community dominance from Aeromonas to Rikenellaceae. It is important to
note that these apparent late-stage functional shifts could also be important for earlier
phases when Rikenellaceae initially began to increase in relative abundance.

Our data suggest strong Acetobacteroides dominance in late-stage rainbow darter
necrobiomes (Fig. 2 and 3). Because related species have been implicated in anaerobic
sugar fermentation (28), we investigated the two MAGs affiliated with these bacteria for
glycolytic enzymes. Both Bin_3 and Bin_10 possess a complete glycolysis pathway as
well as L-lactate dehydrogenase for anaerobic fermentation (Fig. S6). Bin 3 genes also
encode pyruvate dehydrogenase, aldehyde dehydrogenase, and enzymes for conver-
sion of D-fructose, D-fructose-1-phosphate (D-fructose-1P), and D-mannose-6P to glyco-
lysis precursors. Based on a previous analysis of decomposition pathways (51), Bin_3
and Bin_10 genes also encode components of potential pathways for production of
indole (EC 4.1.99.1), putrescine (EC 3.5.3.11), and spermidine (EC 2.5.1.6 and 2.5.1.16), in
addition to histidine degradation (EC 4.3.1.3, 4.2.1.49, and 3.5.3.8, Bin_10 only).

Previous research showed that Acetobacteroides hydrogenigenes RL-C can produce
acetate and carbon dioxide from glucose fermentation (28). Because these metabolites
could potentially be converted to methane by methanogenic archaea (52), we analyzed
the assembled metagenomic data for archaea-associated contigs. Contigs taxonomi-
cally affiliated with methanogenic archaea were identified from almost all samples,
including species of the classes Methanobacteria, Methanococci, and Methanomicrobia
(Fig. S7a). A 1.7-fold-higher relative abundance of these contigs was observed after day
1 (Fig. S7a), indicating that methanogenic archaea may have increased in relative
abundance early in decomposition, coinciding with anoxic conditions and the gener-
ation of acetate or carbon dioxide by Rikenellaceae bacteria. However, no archaeal taxa
were identified in the 16S rRNA. This potentially reflects an increased ability to detect

Time Series Metagenomic Analysis of a Fish Necrobiome

March/April 2020 Volume 5 Issue 2 e00145-20 msystems.asm.org 9

https://msystems.asm.org


low-abundance archaeal organisms in our metagenomic data set, perhaps due to the
availability of more taxonomic markers and/or lower archaeal 16S copy numbers (53).

A toxigenic strain of Aeromonas veronii is a dominant member of the necro-
biome. Because Bin_4 affiliated with A. veronii, a well-established pathogen of fish and
humans (36, 54–60), and a common inhabitant of the fish gut microbiome (40–43), we
explored its phylogenetic position, functional profile, and virulence repertoire. A max-
imum likelihood phylogeny of A. veronii and other related Aeromonas genomes from
the NCBI was constructed based on a concatenated alignment of conserved ribosomal
marker genes (Fig. 7a). Within this phylogeny, Bin_4 grouped with a clade of A. veronii
genomes but as a basal lineage outgrouping all A. veronii species except AMC34.

We used the VFanalyzer from the Virulence Factor Database (VFDB) to detect
virulence factors within Bin_4 and compared it to a reference Aeromonas strain, A.
veronii B565. This bin contained virulence-related genes for adherence, iron uptake, and
secretion systems (Data Set S1C). Indeed, a total of 54 genes that were associated with

FIG 7 A toxigenic Aeromonas veronii-like strain is a dominant species in early decomposition. (a) RAxML tree using the GTR�GAMMA model made from
concatenated single-copy core gene nucleotide sequences detected with Anvi’o (Campbell et al. set [70]). The tree was outgrouped on Aeromonas hydrophila.
Gray circles are scaled to bootstrap support of �85, with the largest size representing 100. Aeromonas species outside Aeromonas veronii are highlighted in
gray. Representative Aeromonas veronii strains from the NCBI Genome Tree report were chosen to display here (not highlighted), and only their strain name
is shown. This tree was visualized with iTOL (69). (b) Bin_4’s predicted toxin repertoire from VFDB. (c) Relative abundance (mean gene coverage/mean sample
coverage) of Aeromonas hemolysin toxin genes. Decomposition time is shown in days.
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secretion systems were identified, compared to only 15 in A. veronii B565. In addition,
we identified 13 genes associated with endotoxin production. Like A. veronii B565,
Bin_4 genes encoded hemolysin III, hemolysin HlyA, and a thermostable hemolysin
gene (Fig. 7b). We also recovered a relatively small incomplete bin (Bin_11, 0.64 Mb, 717
coding sequences [CDSs], 321 contigs) that correlated with Bin_4 in relative abundance
(Fig. S7b). This small bin affiliated with Aeromonas veronii and also included a gene
encoding aerolysin toxin production (Data Set S1D). Based on metagenomic mapped
read coverage, the relative abundance of genes encoding Aeromonas toxins increased
on day 4 of decomposition (Fig. 7c), indicating an enrichment in Aeromonas strains
carrying hemolytic proteins. A possible explanation for this is that lytic toxins, including
those from Aeromonas, may function in host cell lysis during decomposition and
therefore peak in relative abundance during earlier stages of decomposition. Bin_4 also
possessed genomic potential for decomposition-related pathways, including histidine
degradation (contains EC 4.3.1.3, 4.2.1.49, 3.5.2.7, and 3.5.3.8) and the production of
putrescine (EC 4.1.1.19, 3.5.3.12, and 3.5.1.53), indole (EC 4.1.99.1), and cadaverine (EC
4.1.1.18).

Conclusion. Overall, our microcosm study of rainbow darter fish decomposition

revealed a highly reproducible microbial succession throughout the time course, even
across different fish and water/sediment sources. The location of the fish when sampled
(upstream or downstream of the WWTP) also affected its decomposition profile,
suggesting that necrobiomes may be influenced by prior fish-environment interactions.
Together, our data suggest that environmental interactions may shape the initial gut
community and/or the physiological state of the fish, which then seeds or impacts the
later necrobiome community and its succession.

Both 16S and metagenomic analysis revealed a strong succession in which initial
time points were dominated by Clostridiaceae and Aeromonas, with Rikenellaceae
species appearing by day 4 and becoming major community members by day 10.
Analysis of functional profiles inferred from the metagenomic data revealed common
decomposition pathways, as well as temporal shifts in function that mirrored taxonomic
succession. Notably, pollutant degradation pathways and biofilm formation pathways
were enriched in the early stages of decomposition and associated with Clostridiaceae
and Aeromonas, and glycan metabolism and antibiotic synthesis increased in later
stages and associated with Rikenellaceae. Last, we identified a toxigenic Aeromonas
strain that was a dominant member of the necrobiome community. The presence of
numerous hemolytic toxin genes in this organism suggests a potential role for toxins
in the decomposition of host tissues as proposed previously (11). Further work inves-
tigating the prevalence and function of toxigenic bacterial species in decomposer
communities will be important to explore their broader ecological roles and niches
within natural ecosystems.

MATERIALS AND METHODS
Fish collection. On 24 October 2016, female rainbow darters (Etheostoma caeruleum) were collected

from the Grand River (Fig. 1), both upstream (Westmontrose [WMR]; 43°35=08==N; 80°28=53==W) and
downstream (Economic Insurance Trail [EIT]; 43°28=24==N; 80°28=22==W) of the Waterloo wastewater
treatment plant (WWTP) (43°29=16==N; 80°30=25==W). Forty-two fish (21 from each site) were collected
using a backpack electrofisher (Smith Root, LR-20) and euthanized quickly with a sharp blow to the head.
Then each fish was placed in an autoclaved 250-ml mason jar microcosm that contained a mixture of
water and river substrate (see Table S1 for river water quality metadata and Fig. S1a for an example
mason jar setup). The lids were closed, but not sealed, in order to ensure oxic conditions that would
accompany natural in-river decay events. The jars were then left to decay in a fume hood at room
temperature. Three samples containing both fish and water/sediment from the same site were left to
decompose for 1 day (24 h), 4 days, 8 days, and 10 days for both the WMR and EIT sites, totaling 24 fish.
For additional treatments to assess differences in water quality and aquatic microorganisms, three
samples containing fish and water/sediment from different sites (i.e., WMR fish in EIT conditions and EIT
fish in WMR conditions) were allowed to decay for 4, 8, and 10 days, totaling 18 fish. At each time point,
decay was documented (Fig. S1b), and fish were removed from the replicate jars, then rinsed with sterile
water, and ground with liquid nitrogen using a clean mortar and pestle. The powdered tissue was stored
at – 80°C prior to genomic DNA extraction.
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Experimental procedures and the use of animals in this study were approved by the University of
Waterloo Animal Care Committee and within Canadian Council on Animal Care (CCAC) guidelines (AUPP
40318).

DNA extraction. Unless noted, all chemicals and reagents were purchased from Sigma-Aldrich
(Mississauga, Ontario, Canada). For DNA extraction, 100 mg of ground tissue was added to 1.2 ml of TE
buffer (10 mM Tris-HCl, 1 mM EDTA [pH 8.0]), 100 �l of 10% sodium dodecyl sulfate (SDS), 20 �l of
proteinase K, 8 �l of RNase A, and 200 �l of 5 M NaCl. This mixture was vortexed quickly and incubated
at 55°C for 30 min. Then 160 �l of CTAB extraction solution (2% cetrimonium bromide, 100 mM Tris,
20 mM EDTA, 1.4 M NaCl [pH 8.0]) was added, and the samples were further incubated at 65°C for 1.5 h.
Following this lysis incubation, 700 �l of the lysate was extracted with an equal volume of phenol and
centrifuged at 10,000 � g for 5 min. The aqueous phase was retained and twice extracted with equal
volumes of phenol-chloroform-isoamyl alcohol (25:24:1), followed each time with centrifugation at
10,000 � g for 5 min. One volume of isopropanol was used to precipitate aqueous phase DNA in a new
ultracentrifuge tube, followed by centrifugation at 13,000 � g for 10 min at room temperature. The
resulting pellet was washed twice with 70% ethanol, dried, and then dissolved in 50 �l of DNase- and
RNase-free H2O (Sigma) at 50°C for 15 min. The quantity and quality of DNA were determined with a
SpectraDrop (Molecular Devices) and stored at –20°C prior to sequencing.

16S rRNA gene and metagenomic sequencing. Extracted DNA was amplified in triplicate using
Pro341F and Pro805R universal prokaryotic primers (61). Triplicate amplicons were pooled, gel quantified,
and sequenced to a depth of at least 30,000 paired-end reads per sample using the MiSeq reagent kit
v3 (2 � 300 cycles; Illumina).

For metagenomic sequencing, genomic DNA (1 ng) was fragmented and individually barcoded using
the Nextera XT DNA Library Prep kit (Illumina) following the supplier’s guidelines. Small fragments of
library DNA were removed by adding 0.6 volumes of AMPure XP beads (Beckman Coulter). After washing
twice with 80% ethanol and air drying for 10 min, DNA was eluted from the beads with 10 mM Tris-HCl
(pH 8.5). Purified library DNA was quantified with the Qubit dsDNA (double-stranded DNA) HS (high-
sensitivity) assay kit, diluted to 4 nM with the Tris-HCl buffer and then pooled in an equal volume. Library
DNA was denatured with equal volumes of 0.2 N NaOH, diluted to 7 pM with hybridization buffer HT1,
and sequenced with MiSeq reagent kit v2 (2 � 250 cycles; Illumina).

16S rRNA gene analysis. Demultiplexed sequences were processed using DADA2 v1.4 (62), man-
aged through QIIME2 v.2017.10 (63). Briefly, forward and reverse reads were truncated with decreasing
quality metrics while maintaining sequence overlap (�250 bases). Primers were removed, and paired
reads were assembled after error modeling and correction, creating amplicon sequence variants (ASVs).
Chimeric ASVs were removed by reconstruction against more abundant parent ASVs. The resulting ASV
table was constructed for downstream analysis (see Data Set S1A in the supplemental material).

Taxonomy was assigned to representative sequence variants using a naive Bayesian classifier
implemented in QIIME2 with scikit-learn (v.0.19.0), trained against SILVA release 128 (64), clustered at
99% identity, and trimmed to the amplified region. Assignments were accepted above a 0.7 confidence
threshold.

For ordination, we used a proportion matrix of ASVs across each sample with a sparsity cutoff (i.e.,
ASV detected in at least 3 of 42 samples). The metaMDS() and envfit() scripts from vegan package v2.4-2
in R were used to calculate ordination coordinates and data vectors. A stress or Shepard diagram was
generated with stressplot() from the vegan package to determine the nonmetric fit. The ASVs with
significant rank sum differences in sample proportion were calculated with the Mann-Whitney test in R.
Multiple hypothesis correction of P values was performed using the p.adjust() function in R with the
Benjamini-Hochberg model. We also calculated differential taxon relative abundance using a variety of
methods (metagenomeSeq, edgeR, DESeq2, and LEfSe) as implemented in the Marker Data Profiling
pipeline from MicrobiomeAnalyst (65) with default settings on 20 March 2020.

Metagenomic data analysis. Raw reads were processed with TrimGalore v0.5.0, coassembled with
metaSPAdes (SPAdes v3.12.0), and eukaryotic contigs were identified with Centrifuge v1.0.4 using their
NCBI nr preindexed database (last updated 3 March 2018) and subsequently removed. Reads were
mapped with Bowtie 2 v2.3.4.3 using default settings and binned using CONCOCT with Anvi’o v5.2
(minimum 1-kb contig cutoff). Mean coverage data for the metagenomic functional analyses and for the
methanogen analysis were extracted from Anvi’o (66) using all contigs (no contig length cutoff).

For metagenomic and bin functional analysis, KEGG (Kyoto Encyclopedia of Genes and Genomes)
annotations were identified with GhostKOALA (67). The average coverage for each gene (per base pair),
normalized by dividing by the average sample coverage (per base pair), was summed to give a total
coverage value for each KEGG pathway. The decostand() function from the vegan package v2.4-2 in R
was used to determine the fractional value of each pathway with respect to the total summed coverage
across all KEGG pathways detected in the sample. A Kruskall-Wallis test was done in R to identify KEGG
pathways with significantly different distributions by day of decomposition. The decostand() function
was also used to proportionally normalize each pathway value across every sample for plotting. For the
bin functional analysis, the frequency of each KEGG orthology (KO) annotation in each MAG bin was
counted. These counts were summed for each KEGG pathway, and fractional values were calculated
across all KEGG pathways detected in the bins as before.

The VFanalyzer software from the Virulence Factor Database (VFDB) (68) identified virulence factors
in the predicted coding sequences of Bin_4 using Aeromonas veronii B565 as a representative genome.
We also used the domain architecture from the Aeromonas toxin gene set from the VFDB to identify
Aeromonas toxin genes in the coassembly. Putative toxins longer than 150 amino acids were assessed
with BLASTp for Aeromonas taxonomy and gene annotation.
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Data availability. All 16S rRNA gene and metagenomic sequencing data for this project were
deposited into the NCBI Short Read Archive (SRA) under BioProject accession no. PRJNA604775.
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