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Antifreeze proteins (AFPs) evolved in many organisms, allowing them to survive in cold cli-
mates by controlling ice crystal growth. The specific interactions of AFPs with ice determine
their potential applications in agriculture, food preservation and medicine. AFPs control the
shapes of ice crystals in a manner characteristic of the particular AFP type. Moderately
active AFPs cause the formation of elongated bipyramidal crystals, often with seemingly
defined facets, while hyperactive AFPs produce more varied crystal shapes. These different mor-
phologies are generally considered to be growth shapes. In a series of bright light and fluorescent
microscopy observations of ice crystals in solutions containing different AFPs, we show that
crystal shaping also occurs during melting. In particular, the characteristic ice shapes observed
in solutions of most hyperactive AFPs are formed during melting. We relate these findings to the
affinities of the hyperactive AFPs for the basal plane of ice. Our results demonstrate the relation
between basal plane affinity and hyperactivity and show a clear difference in the ice-shaping
mechanisms of most moderate and hyperactive AFPs. This study provides key aspects
associated with the identification of hyperactive AFPs.
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1. INTRODUCTION

The adaptation of organisms to cold environments has
led to the evolution of a remarkable group of proteins
that facilitate survival at sub-zero temperatures.
These proteins have the ability to bind to ice crystals,
and are therefore named ice-binding proteins (IBPs)
[1] or ice-structuring proteins [2]. A subset of the IBPs
includes antifreeze proteins (AFPs) and glycoproteins
(AFGPs), which inhibit ice formation and growth.
These proteins are expressed in a variety of freeze-
avoidant organisms and contribute to their resistance
to freezing [3—5]. Other IBPs allow freeze-tolerant
organisms to survive in sub-freezing environments by
inhibiting the recrystallization of ice [6]. These activities
prevent formation of large intracellular ice crystals,
which have lethal effects on the organism [4,7].
In addition, ice nucleators are found in pathogenic bac-
teria that use them to penetrate plant cells [8,9], and in
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airborne micro-organisms that have a significant role in
cloud seeding [10].

By adsorption to a particular set of ice planes or
sites, AFPs inhibit crystal growth normal to the
bound surfaces. The crystals continue to grow on
unprotected planes, if such exist, and those planes are
minimized until they eventually vanish and growth
ceases in all directions [11]. The ability to arrest crystal
growth results in depression of the freezing temperature
(T¢) below the equilibrium melting temperature ( T},), a
non-colligative phenomenon termed thermal hysteresis
(TH) [12] that is widely used to detect, define and quan-
tify the activity of AFPs [13]. Ice crystals protected by
AFPs do not expand within the range of the hysteresis
gap. But when the temperature is dropped below T%, the
bound proteins are insufficient to contain the crystal,
and sudden, fast ice-growth occurs.

Since the first observation of AFGPs in the serum of
Antarctic fishes [14], many AFPs have been identified
and characterized in a variety of species, diverging
remarkably in their sequences, structures and TH activi-
ties [4,15—-17]. On the basis of differences in TH activity,
there are two sub-groups of AFPs: the moderately active
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AFPs with TH activities of approximately 0.5—1°C at
millimolar concentrations of purified proteins, and the
hyperactive AFPs (hypAFPs), which depress the freezing
point by several degrees at much lower concentra-
tions [13,18]. The three-dimensional structures of two
hypAFPs from insects: sbwAFP from spruce budworm
[19] and TmAFP from Tenebrio molitor [20], along
with an Antarctic bacterial AFP, MpAFP [21], and a
model of the hypAFP of an inchworm [22] reveal that
in spite of the independent evolutionary roots they all
have flat ice-binding faces with one or more arrays of
threonine side chains juxtaposed towards the solvent.
The hyperactive AFP from the snow flea (sfAFP) also
has a flat, two-dimensional, hydrophobic ice-binding
face, although without threonine residues [23]. Recently,
some of the moderately-active AFPs have emerged as a
new subset of IBPs [24]. This subgroup includes proteins
from plants that are associated with freeze tolerance
rather than with freeze resistance. These proteins have
generally lower TH activity relative to moderate fish
AFPs but they are more effective in inhibiting the recrys-
tallization of ice [24].

Directly connected with ice growth arrest is the abil-
ity of AFPs to modify ice growth habits. Adsorption to
particular ice planes results in distinct ice shapes
characteristic of the type of AFP. For instance, ice in
the presence of type I, IT or III AFPs forms bipyramidal
shapes with elongated c-axes that are similar but dis-
tinguishable [25]. The hyperactive TmAFP produces
ice crystals reminiscent of the shape of lemons, or ellip-
soids of revolution [26]. Specific ice morphologies and
growth modifications appear even when TH activity is
too low to detect, as seen with low AFP concentrations
[27] or AFP analogues with reduced activities [27-32].
A systematic study of the growth habits of ice in the
presence of various moderate and hypAFPs showed
that a gross difference between these two subgroups is
manifested in the ice growth habits at temperatures
below T [13]. The bipyramidal ice crystals obtained
with moderate AFPs grow rapidly (‘bursting’) along
the c-axis, suggesting low or no binding to the basal
planes. On the other hand, ice in solutions of hypAFPs
‘burst’ normal to the c-axis, and any growth by addition
of water molecules to the basal planes is considerably
slower than to the prism planes, suggesting an affinity
of the AFPs to the basal planes [13]. Differences between
the basal plane affinities of AFPs representative of the
hyperactive (sbwAFP) and moderate (eel pout type III)
AFP subgroups was also demonstrated by fluorescent
spectroscopy [33]. In these experiments, fluorescently
labelled sbwAFP was shown to accumulate on the
basal plane while the eel pout AFP did not. Basal plane
affinity has also been demonstrated for sfAFP labelled
with green fluorescent protein (GFP) using confocal
microscopy [34], and in the present study for
GFP-labelled TmAFP.

Here we report the differential effects of AFPs on the
growth and melting habits of ice. We include in this
study the IBP from ryegrass, Lolium perenne (LpIBP)
[35], which is the first representative of the expanding
group of IBPs that are associated with freeze tolerance
rather than with freeze resistance. We demonstrate that
the characteristic shapes of ice crystals in the presence
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of hypAFPs are obtained during melting and stay
intact in the hysteresis temperature gap. On the con-
trary, the bipyramidal shapes observed in moderate
AFP solutions are growth shapes. We suggest that the
melting processes in the presence of hypAFPs are
characteristic of ice basal plane affinity, in accordance
with the burst patterns. Our systematic study shows
that basal plane affinity is manifested by the effects of
AFPs not only on ice growth but also on melting. Ice
shaping is shown to be an excellent property for dis-
tinguishing between hyperactive and moderate AFPs.
We also show that the ryegrass LpIBP has different shap-
ing properties than other moderate or hyperactive AFPs
and propose an explanation for its behavior. On the basis
of these findings, the definition of hyperactivity can
be broadened.

2. MATERIAL AND METHODS
2.1. Protein preparation and purification

The proteins used in this study and listed below
were either prepared by recombinant methods or were
directly purified from the organism. Apart from the
TmAFP constructs and the AFGPs, all proteins were
prepared and/or purified in the Davies laboratory at
Queen’s University, Ontario, Canada. All proteins
were dissolved in 20—50 mM ammonium bicarbonate,
pH ~ 8.

Moderate AFPs:

— Type I AFP from Pseudopleuronectes americanus
(winter flounder), isoform HPLC6. The peptide
was prepared by solid-phase peptide synthesis that
included the C-terminal amidation of Arg37, and
was purified by reversed-phase HPLC [36].

— Recombinant type II AFP from Hemitripterus
americanus (sea raven). The protein was expressed
with a His-tag and a flanking tobacco etch virus
(TEV) cleavage site [37] in Drosophila melongaster
S2 cells. After Ni-NTA affinity chromatography, the
His-tag was removed by TEV protease digestion and
the AFP was recovered by ice-affinity purification [38].

— TypeIll AFP from Macrozoarces americanus (ocean
pout), isoform HPLC12. The protein was expressed
in Escherichia coli and purified and refolded from
inclusion bodies as previously described [39].

— Antifreeze AFGPs. The protein sample was a gift
from Dr Garth Fletcher. The sample contained pri-
marily the 2650 Da isoform consisting of four
glycotripeptide repeats. It was extracted from the
blood plasma of rock cod (Gadus ogac) [40].

— Lp IBP. The protein was expressed with a His-tag in
E. coli and purified by heat treatment followed by
ice-affinity purification [41] and Ni-NTA affinity
chromatography, as previously described [42].

Hyperactive AFPs:

— AFP from the beetle T. molitor, isoform 4-9
(TmAFP). We used both a GFP fusion of the
protein (GFP-TmAFP) and an untagged version
[43]. Both forms were expressed with a His-tag in
E. coli and purified on a Ni-NTA affinity column.
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The GFP-TmAFP was further purified by ice affinity
[41]. The untagged protein was obtained by Ni-NTA
affinity purification of the MBP-His-TEV-TmAFP
fusion followed by digestion with TEV protease [37],
a second cycle of Ni-NTA affinity chromatography,
and reversed-phase HPLC [43].

— AFP from Choristoneura fumiferana (spruce bud-
worm), linked to GFP (GFP-sbwAFP). The fusion
protein was expressed in FE. coli and recovered from
the insoluble fraction [44] by refolding and ice-affinity
purification [41], as previously described [33].

— AFP from the Antarctic bacterium Marinomonas
primoryensis, fused to GFP (GFP-MpAFP). The
calcium-dependent AFP domain fused to GFP was
expressed with a His-tag in E. coli and purified by
Ni-NTA affinity chromatography, as described [21].

— AFP from Hypogastrura harveyi (snow flea), fused
to GFP (GFP-sfAFP). The fusion protein was
expressed with a His-tag in E. coli and purified by
two cycles of adsorption to ice [41], as previously
described [34].

2.2. Ice crystal morphology observations

The morphologies of ice crystals during growth and
melting were monitored using a homemade nanolitre osm-
ometer, as previously described [45]. Briefly, a drop of
approximately 100 pm diameter (approx. 0.5 nl) protein
solution was injected into an oil-filled sample-well
placed on a custom-built temperature-controlled stage
and observed under a microscope. The system is con-
trolled using a LabVIEW interface developed mainly
by I.B., and the temperature close to the sample can be
determined with 0.002°C precision. The stage was
cooled until the drop was nucleated (usually between
—27 and —35°C) and frozen, and was then warmed
slowly to melt the sample such that a single ice crystal
was left. This crystal was then warmed and cooled to
any desired temperature several times to inspect the shap-
ing habits. Melting experiments were regularly done at
temperatures ranging from T, to 0.05°C above it. Each
experiment was repeated at least 10 times.

2.3. Fluorescent imaging of green fluorescent
protein labelled T. molitor antifreeze protein

We used confocal microscopes (Zeiss LSM 510, and
Nikon C1) to image ice crystals in GFP-conjugated
TmAFP solutions. The confocal microscope is equipped
with 488 and 633 nm illumination lines and filters for
the detection of GFP and Cyanine 5 (Cy5). The exper-
imental cell used in this apparatus is the same as the
one used in the nanolitre osmometer [45] but with a
different sample holder. The sample holder in the pre-
sent work was a copper plate with holes of either
125 pm or 1 mm in diameter, to reduce the temperature
gradients. Samples of approximately 4 wl were sand-
wiched in between two glass coverslips and sealed
with a non-cured silicone elastomer; polydimethylsilox-
ane (Slygard 184, Dow Corning Corp., Midland, MI,
USA). The sandwiched samples were placed on the
metal holder that was placed in our temperature con-
trolled cell. In order to observe the samples inside this
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apparatus, we used long working-distance air objectives
such as the Nikon LU Plan ELWD 50x/0.55 (WD =
10.1 mm). Samples contained a mixture of GFP-
TmAFP and Cy5-dUTP (PerkinElmer) as a free dye.
The Cyb dye was previously shown to have no interaction
with ice [33,45] and its addition allows efficient back-
ground subtraction. To image the signal coming from
the surface, we subtracted the image of non-conjugated
Cy5 dye from the GFP-TmAFP image, as explained in
detail by Pertaya et al. [45].

3. RESULTS

3.1. Moderate antifreeze proteins induce
bipyramaidal ice crystals during growth
in the hysteresis gap

At temperatures below T, but within the TH gap, crys-
tals in all solutions containing moderate AFPs tested
here developed facets and edges that readily turned
into truncated bipyramids with hexagonal symmetry
(figures 1 and 2). These truncated bipyramids then
grew in the direction of the c-axis, which is determined
according to its twofold axial symmetry. Growth con-
tinued until tips were formed, and the basal plane was
eliminated. The rate at which the tips formed was
dependent on the temperature, the protein concen-
tration and the area of the basal plane. Crystals in
concentrated protein samples kept at temperatures
close to T, were maintained for relatively long time-
periods (minutes) without apparent growth of the
truncated tips, but if the temperature was lowered to
close to the T}, the tips were rapidly sharpened to elimin-
ate the basal plane. For example, in solutions containing
approximately 20 WM AFP type III, the tips of 10 by
15 pm crystals (length versus width) grew along the
c-axis at a rate of approximately 1 pwm min~ " at 0.04°C
below T,,, but when the temperature was lowered
to 0.05°C or 0.06°C below T,, the growth rate increa-
sed to approximately 6 pm min ' or approximately
27 wm min~ ', respectively. These rates were substan-
tially reduced as the crystal lengthened and the basal
planes shrank.

Once the tips of the bipyramidal crystals have grown,
they appeared to remain intact as long as the tempera-
ture was kept within the TH gap. Occasionally, some
local growth was observed at temperatures within the
hysteresis regime close to the freezing point. This effect
was more pronounced in AFGP samples. The well-
known sudden rapid growth, or ‘burst’, usually initiated
from the tips of the bipyramids when the temperature
exceeded the TH point. Spicular ice growth was then
observed along the direction of the c-axis (see electronic
supplementary material, figure S1), as previously noted
[13]. In the case of type III AFP, the burst pattern
was less sharp relative to AFGPs, type I, and II
AFPs, and new bipyramid-shaped ice crystals rapidly
grew around the bursting crystal (see electronic sup-
plementary material, figure S1, panel C). In all the
earlier-mentioned cases, the growth in the direction of
the c-axis is due to effective protection of the prism
and/or pyramidal planes relative to the basal planes
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Figure 1. Ice growth patterns at temperatures within the TH
gap in solutions of moderately active AFPs, viewed normal to
the c-axis. Snapshots were taken during ice growth at tempera-
tures starting from Ty, (frame 1) t0 0.01-0.1°C below it (frames
2-5). (a) Type I AFP, (b) type II AFP (120 uM), (c¢) type III
AFP (20 pM), (d) AFGPs (500 M) and (e) IBP from ryegrass
(LpIBP) (50 wM). The arrow denotes the direction of the c-axis.
The time lapse between images 1 and 5 in (a—e) is 2 min,
3.5 min, 2 min, 40 s and 4 min, respectively.

(@)

(b)

growing

Figure 2. Ice growth patterns at temperatures within the TH
gap in the presence of moderately active AFPs, viewed along
the c-axis. Snapshots were taken during ice growth at temp-
eratures starting from Ty, (frame 1) to 0.01-0.08°C below it
(frames 2-5). (a) Type I AFP and (b) LpIBP (50 uM). The
time lapse between frame 1 and 5 is 35s and 4 min for
(a) and (b), respectively.

[13]. An exception to this growth pattern is LpIBP, which
will be discussed in §3.4.

3.2. Moderate antifreeze proteins induce non-
bipyramidal-shaped (eye-like) ice crystals
during melting

The melting pattern of the bipyramidal-shaped ice
crystals obtained in moderate AFP solutions is in
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Figure 3. Melting of ice in solutions of moderate AFPs. The
melting sequences started from bipyramidal growth shapes
at temperatures within the TH gap. The temperature was
then raised up to 0.05 °C above T,,. The time lapse between
the first and the last frame is 15-50s. (a) Type I AFP,
(b) type II AFP (120 pM), (¢) type III AFP (20 uM),
(d) AFGPs (500 pM) and (e) LpIBP (50 pM). The arrow
denotes the direction of the c-axis.

accordance with their formation pattern. During melting,
all corners of the bipyramids disappear, and the longi-
tudinal tips of the bipyramids shrink along the c-axis
direction (see figure 3 and electronic supplementary
material, movie S1). This melting pattern usually gives
the crystals a typical shape resembling that of an eye,
with the longitudinal axis being normal to the c-axis
(figure 3, lanes 4-5). Melting in the direction of the
prism planes was apparent only when the length of the
c-axis was close to the length of the a-axis or even shorter
(figure 3). The seemingly faceted bipyramids were recov-
ered by lowering the temperature again (see electronic
supplementary material, movie S1). The AFP-covered
prism or pyramidal planes of the crystals were shielded
and melting occurred at the unprotected basal planes,
in accordance with the growth process.

3.3. The ice morphologies in the presence of
insect and bacterial hyperactive antifreeze
proteins are formed during melting

Figure 4 shows the progression of melting ice crystals in
solutions of hypAFP proteins in the concentration
range of 2—10 uM. For all hypAFPs tested, it is clear
that regular ice surfaces are attained during melting,
and once the crystal is small enough a definitive shape
is acquired. These shapes are repeatedly observed in
every experiment and are so consistent that one can
distinguish between the types of hypAFP solely by
observing the melting process. Notably, at high protein
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Figure 4. Ice melting in solutions of bacterial and insect
hypAFPs. The time lapse between the first and the last
frame is 15—120 s. The crystals melt in the a-axes direction
until the basal planes are very small before melting in the
direction of the c-axes is observed. (a—d) The c-axis is denoted
by an arrow. (e—h) The c-axis is along the viewer direction.
(a,e) GFP-MpAFP (6 uM), (b,f) GFP-sfAFP (2 pM), (c,9)
TmAFP (20 pm) and (d,h) GFP-sbwAFP (8 uM).

concentrations (several tens of micromolar), faceted
forms are not always obtained. Electronic supplemen-
tary material, movies S2A and S2B show that the
melting is significantly faster on the prismatic planes
relative to the basal planes. Macroscopically, when the
temperature was close to T,,, the crystals melt only
from the prism planes (figure 4a—d, left panels and
figure 4e—h) until they become elongated before melting
in the direction of the basal plane can be observed
(figure 4a—d, right panels). Ice crystals in the presence
of TmAFP melt in the prismatic direction and the basal
planes shrink until they are eliminated and become only
tips (see figure 4c¢,g and electronic supplementary
material, movie S2A). This process gives rise to the pre-
viously noted lemon shape [26]. Once the lemon
configuration is formed, it is maintained as long as
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the melting continues, from hundreds of micrometres
down to few micrometres in crystal length (figure 4c,
right panel). In GFP-MpAFP and GFP-sfAFP sol-
utions, the basal planes do not necessarily shrink
down to a tip, and the shapes obtained are not as
sharp and as symmetric as those observed with
TmAFP (and GFP-TmAFP) (see figure 4a,b,e,f and
electronic supplementary material, movie S2B). The
asymmetry along the direction of the c-axis commonly
observed in GFP-MpAFP and GFP-sfAFP solutions
may result from minor temperature gradients in the
samples. As it is difficult to maintain the location of
the sample droplet in the middle of the oil and to con-
trol the location of the crystal inside the sample, small
temperature changes of a few hundredths of a degree
within the sample are present. We note that despite
the temperature gradients along the sample area,
the temperature of the metal plate in which the sample
is held is controlled with an accuracy of 0.002°C. This
accuracy is the same for every position in the droplet.

With GFP-sbwAFP, the crystals usually float with
their basal planes oriented normal to our line of obser-
vation and it is therefore difficult to follow melting to
the direction of the basal planes. This orientation
implies that the crystals are relatively flat with large,
exposed basal planes. Nevertheless, formation of hexa-
gonal shapes is clearly observed as the crystals melt
(figure 4h). The tendency of the crystals to lie with
the c-axis horizontally (figures 1, 3 and 4a—d) or verti-
cally (figures 2 and 4e—h) depends on the c: a axial
length ratio. Elongated crystals lie horizontally while
flat crystals lie vertically due to gravity. Therefore,
the typical observed melting shapes of different
hypAFP consistently dictate the orientation of the crys-
tals. In many experiments, the initial crystal has a wide
basal plane before melting and therefore is oriented
vertically, but as the melting progresses, the area of
the basal plane diminishes, the axial ratio is inverted
and the crystal turns (see electronic supplementary
material, movie S2A).

The ice shapes obtained during melting are stable
within the TH range. When cooled below T, the
shapes do not change and the crystals do not grow, at
least at the level of resolution we can detect (around
a micrometre). The bottom limit of the growth arrest
is the freezing point, at which sudden fast growth
occurs normal to the c-axis. The twofold symmetry of
the crystal burst is observed when it is aligned along
the c-axis, as usually seen with GFP-MpAFP, GFP-
sfAFP and TmAFP (figure 5). The hexagonal sym-
metry is apparent when the crystals are oriented
normal to the c-axis (see electronic supplementary
material, figure S2). The growth morphologies are
dependent on the supercooling level and therefore on
the TH activity of the sample. Ice protected by highly
active protein samples is supercooled to several degrees
at the lower limit of the freezing hysteresis, and the
growth resembles a dendritic explosion (see electronic
supplementary material, figure S2). Diluted protein sol-
utions have low TH activity, and therefore, the degree
of supercooling is small. The growth pattern in these
cases is slower and smoother as expected from the
growth habit of ice in water [46].
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Figure 5. Ice growth below the freezing point (burst) in
hypAFPs solutions, viewed normal to the c-axis. The temp-
erature of the samples was lowered to the freezing point,
and images were taken before the burst (frame 1 counted
from the left) and after it (frames 2-4). (a) GFP-MpAFP
(6 uM), (b) GFP-sfAFP (2 uM), (¢) TmAFP (5 pM) and
(d) GFP-sbwAFP (8 uM). (e) The time lapse between
frame 1 and 2, 2 and 3, and between frames 3 and 4 is typically
8, 10-120 and 13-57 msec, respectively.

3.4. Lolium perenne ice-binding protein
has mixed ice-shaping properties
characteristic of moderate and
hyperactive antifreeze proteins

When an ice crystal is cooled in the presence of LpIBP,
it grows into a hexagonal bipyramid in a manner similar
to moderately active AFPs (figures 1e and 2b). Accord-
ingly, melting of these crystals commences from the tips
(figure 3e). Although the formation of the bipyramids
and their melting pattern is as expected for a moderate
AFP, the growth and melting rates seem to be slower
than those of the moderate fish AFPs. A major differ-
ence with this plant IBP is the burst pattern at
temperatures below Tt It commences with the flatten-
ing of the two bipyramidal tips into an expansion of
the basal planes. Growth continues in a stepwise
manner, mostly in the direction of the a-axes, while
maintaining the faceted morphology of the crystal in
the process (see electronic supplementary material,
figure S1-E and movie S3). This pattern suggests
that the protein has some affinity to both prismatic
and basal planes, which is in accordance with ice hemi-
sphere and growth experiments and the recently solved
crystal structure of the protein [24].

3.5. Direct visualization of fluorescently
tagged T. molitor antifreeze protein on
ice crystals

By using GFP-tagging, it is possible to directly visual-
ize the binding of AFPs to ice. This enables us to
observe where the protein is located on the ice crystal.
In the presence of GFP-TmAFP, the melting shape of
the ice crystal becomes lemon-like as the crystals
shrink in size and the basal plane becomes progressively
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Figure 6. Tenebrio molitor AFP bind to the basal planes of
ice. The fluorescently tagged AFPs visualized both on prism
planes and basal plane of ice. The lemon shape was formed
as the crystal size became smaller and the flat basal plane
slowly melted away (a,b). The arrows show the direction
of c-axis. In (¢), the c-axis is normal to the view direction.
In b,c, the melting was ceased before the basal plane shrank
down to a tip.

smaller. Fluorescence confocal microscopy images
confirm that hyperactive TmAFP has affinity to
both prismatic planes and basal plane of ice (figures 6
and 7b). The stronger fluorescence at the junctions
between the crystal faces and edges relative to the rest
of the crystal contour suggest that these junctions con-
tain exposed areas of primary prism planes onto which
the protein accumulates, as described in detail previously
by Pertaya et al. for shwAFP [33]. The fluorescence signal
on the ice surfaces was also used to record the melting
shapes within ice crystals that grew over their melting
shapes (figure 7a,b).

4. DISCUSSION

The modifications of ice growth patterns induced by
AFPs have been studied for decades in order to under-
stand the activity of AFPs and the differences between
them [13,27,28,31]. Scotter et al. [13] have shown that
when the hysteresis gap is exceeded, ice grows in the
direction of the c-axis in the presence of moderate
AFPs and normal to the c-axis with hypAFPs. That
study established an underlying observable difference
between the moderate and the hyperactive AFPs and
suggested that in addition to binding to prism or pyra-
midal planes, hypAFPs bind to the basal planes of ice, a
hypothesis that was derived primarily from the crystal
structures of sbwAFP and TmAFP [19,20]. Etching of
a single ice crystal hemisphere grown in a solution of
GFP-labelled sbwAFP revealed traces of protein on
both primary prism and basal plains, giving the first
experimental evidence for basal plane affinity [19]. Simi-
lar results were also obtained for sfAFP [34]. Ice etching
studies of type I [47,48], type III [49] and AFGPs [50]
gave no evidence of basal plane affinity by these pro-
teins. However, the etching patterns produced by
TmAFP [13] are more complex and it is difficult to
deduce in this method to which ice surfaces the protein
adheres. The direct visualization of ice covered with
GFP-TmAFP presented here clearly demonstrates
that the basal planes, as well as some other planes,
are covered by the protein (figures 6 and 7b). Basal
plane affinity was directly demonstrated previously for
GFP-labelled sbwAFP by a series of experimental
observations [33,45]. In accordance with the ice etching
results, direct fluorescent studies of GFP-type III AFP
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Figure 7. Melting versus growth shape comparison. (a,b) Fluor-
escent images of ice grown in AFP solutions in the presence of
Cy5 for background subtraction. A frozen sample was melted
until single crystals were formed, and then the temperature
was dropped until growth was detected. The arrows designate
the crystallographic c-axis. (a) GFP-type III AFP. The bipyra-
mid shapes developed during growth from the eye-shaped
crystal. The temperature at which the image was taken is in
the TH gap. (b) GFP-TmAFP. The crystal obtained the
lemon shape during melting. The growth occurred along
the basal direction when the freezing temperature was excee-
ded. (¢) A diagram illustrating the crystallographic directions
of the melting shapes of ice in solutions of moderate and
hyperactive AFPs.

demonstrated that this protein does not accumulate on
the basal planes of ice [33]. We note that conjugation of
AFPs to GFP does not affect the ice planes to which the
proteins adhere. Partial sublimation (etching) of a
single ice crystal hemisphere grown in solution of type
IIT AFP with and without GFP conjugation [51] as
well as sbwAFP [19] and GFP-conjugated sbwAFP
revealed that the very same ice surfaces are bound by
the two protein forms. The GFP conjugation does not
affect the shaping habits of the proteins and does
not reduce the TH activity. Conjugation of bulky
molecules to either moderate AFPs (type III) [52] or
hyperactive (TmAFP [53]) actually increases the TH
activity, most likely due to their increased size.

Our study of the characteristics of ice growth and
melting at temperatures above T further supports the
concept that hypAFPs protect the basal planes of ice
while moderate AFPs do not. The ability of hypAFPs
to cover ice from the basal plane and at least one
more orientation with a significant component orthog-
onal to the basal plane prevents ice crystals from
growing and precludes the possibility of controlling
crystal shape during growth within the TH gap. This
concept is shared among all hypAFPs studied here
regardless of the hypothesis that different hypAFPs
types bind ice from different crystallographic
orientations. Moderate AFPs do not prevent ice
growth in the ¢ direction, and therefore growth along
the c-axis occurs within the TH gap. Elongated bipyra-
midal shapes are then formed, as previously noted in
TH measurements [18,54] and growth modification
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studies [27,31]. The dependence of the growth rate of
the bipyramid tips (along the c-axis direction) on the
c: a ratio may be related to the layer-by-layer growth
mechanism of the basal planes, which requires step-
nucleation events. As the surface area of the basal
planes becomes smaller, the probability for a two-
dimensional nucleation event is reduced, and a lower
temperature or a longer time period is required to
evoke such events.

It is evident that for the formation of distinct shapes,
the proteins interact with ice from some crystallo-
graphic planes more than others. This concept is true
for both growth and melting, although it might be
more difficult to envision the fact that defined shapes
can form during melting, at a time when molecules
are leaving the ice front. Nevertheless, both moderate
and hyperactive AFP molecules interact with ice and
form unique shapes during melting. In moderate AFP
solutions, the ice protection on planes parallel to or
inclined to the crystallographic c-direction gives rise
to the eye-shaped melting habit. These eye-shaped crys-
tals have exposed unprotected planes and are therefore
unstable, leading to either complete melting of the
crystal or formation of the bipyramidal growth shape,
if the temperature is lowered at the right moment.
On the contrary, the melting shapes obtained by
hypAFPs are stabilized by AFP protection from all
directions, and therefore can supercool throughout the
TH gap or superheat for a certain range of temperatures
(approx. 0.4°C for MpAFP) [55] without a change of
the crystal shape.

To emphasize the differences between the growth
and melting shapes, we introduced fluorescent images
of crystals that contain contours of both types of
shape. Ice grown from the melt in GFP-type III AFP
solutions has a strong fluorescent signal inside the eye-
shaped melting forms and around the bipyramidal
growth shapes (figure 7a). The eye-shaped region in
the centre of the crystals is the area of the original crys-
tal before it grew to form the bipyramid. The strong
fluorescent signal in this region is due to protein present
inside, originating from the fast freezing process
at approximately —20°C of the sample before it was
melted to obtain single crystals. At these low tempera-
tures, fine crystals are grown and GFP-AFP type III is
accumulated typically on prismatic planes and some
other planes slightly tilted from them [49]. The high flu-
orescence remains at the unmelted portion of the ice
crystals. When these crystals were allowed to grow at
temperatures within the TH gap, protein was excluded
from the ice front. This area of the crystals has a corre-
spondingly low fluorescence signal. A fluorescent layer
of protein appears on the outer region of the bipyrami-
dal crystal, where the planes to which the protein
adsorbs are exposed. The observation of the strong flu-
orescent area inside the crystals is consistently observed
in our experiments and was noted previously, although
the phenomenon was not explained [33,45]. For com-
parison, crystals obtained in the same process in
solutions of GFP-labelled sbwAFP and TmAFP
remain in their melting shapes and have strong fluor-
escent layers around them ([56]; figures 6 and 7b).
This protein layer protects these crystals from both
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growth (within the TH range) and melting [55], and the
crystals are therefore stable in their melting forms.
Nevertheless, the interior areas of these crystals have
weak fluorescent signals relative to the crystals in mod-
erate AFP solutions, which may be due to slower
absorption kinetics of the hypAFPs relative to the mod-
erate proteins [55]. Further work is needed to quantify
the protein present on the surfaces of the crystals and
inside them to directly evaluate the effectiveness of ice
coverage by hypAFPs relative to moderate AFPs.

In comparison with the bipyramidal growth shapes
obtained with moderate AFPs within the TH gap, the
growth shape of ice in hypAFP solutions is observed
only when the TH gap is exceeded (see figures 5, 7b,
and electronic supplementary material, S2). In figure
7b, the melting shape of the crystal after burst is clearly
observed by the fluorescent layer surrounding it. The
directionalities of the melting shapes of crystals in mod-
erate AFPs solutions are compared with the melting
shapes observed with hypAFPs in figure 7c¢. Owing to
basal plane affinity of hypAFPs, the crystals grown in
hypAFP solutions melt normal to the c-axis and the
basal planes shrink without change of the distance
between the two basal faces. This is in contrast to the
melting habits in solutions of moderate AFPs. There-
fore, the longitudinal axis of the melting shapes
obtained with hypAFPs is the crystallographic c-axis,
while the longitudinal direction of the melting shapes
obtained in moderate AFP solutions is normal to the
crystallographic c-axis.

The morphology of the bipyramids observed in
hypAFP solutions is dependent on the particular crys-
tallographic orientations to which the protein binds
and on the kinetics of the binding. Different binding
rates to the various crystallographic directions evoke
differences in the melting velocities of these directions,
which gives rise to a typical crystal shape. Indeed, the
melting velocities of crystals in the presence of
hypAFP were measured and correlations between the
type of AFP to the velocity at a given superheating
level were found [55]. This scenario is consistent with
the observations that each protein type consistently
produces characteristic, distinguished shapes in many
experiments, such as the lemon shape obtained with
TmAFP (figure 6). In a recent work on ice growth pat-
terns with AFGPs and AFGP analogues, the authors
suggest that the modifications observed in crystal mor-
phologies and axis ratios are related to the adsorption
kinetics of the AFP to particular ice faces [28]. The
adsorption rates are presumably the key factor in the
determination of the shape of the crystal, whether it
was obtained during growth or melting [57]. A different
explanation for ice shaping may rely on different affi-
nities to particular ice surfaces, which is reflected by
different desorption rates and not only adsorption
rates. This explanation is ruled out by the claim for
irreversible binding of AFPs with ice [33,58,59].

The concept of shape formation during melting
due to different melting velocities along the crystallo-
graphic directions has recently been supported by a
theoretical simulation in three dimensions [60]. The
three-dimensional simulation was an extension of a
two-dimensional geometric model for crystal growth
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that relates the growth velocity to each direction to
the final shape obtained [61]. A drum-shaped structure
was allowed to ‘melt’ by applying a velocity profile
with a twofold symmetry in the z direction and a six-
fold symmetry in the orthogonal plane. To reflect the
basal plane affinity of the hypAFPs, the velocity in the
z direction was considerably smaller than in the x—y
directions. This simulation resulted in a crystal with a
lemon-like shape, strikingly similar to the ice shapes
experimentally observed in TmAFP. This result relates
slow melting rate in the direction of the basal plane to
the observed melting shapes. Further development of
this approach is necessary to obtain other melting
shapes, which may aid in explaining the differences
between the melting processes of the various hypAFPs
and the hyperactivity phenomenon altogether.

An explanation for the hexagonal symmetry normal
to the c-axis of the melting crystals was previously
given in the study of Pertaya et al. [56]. They showed
that the prismatic planes protected by AFPs are not
the same planes observed during melting. Prismatic-
protected planes were obtained during growth in
dilute solutions of GFP-labelled sbwAFP, and melting
was shown to be induced at the corners of those pro-
tected planes, resulting in a new set of planes, rotated
by 30° relative to the growth planes, similar to the
growth-melt asymmetry found in pure ice under high
pressure [62]. The newly formed planes are those
observed during melting, and the junctions between
these planes, where the original growth planes are
exposed, are shown to be protected more efficiently by
AFPs relative to the melting planes. Furthermore, it is
reasonable to assume that the corners of the bipyramids
expose several crystallographic planes onto which the
proteins may accumulate, leading to the strong fluor-
escence signal at the corners relative to the edges.
A similar phenomenon is observed in GFP-labelled
TmAFP (figure 6), but with less profound accumulation
on the corners in comparison with GFP-sbwAFP.

The moderate ryegrass LpIBP exhibits ice bursts per-
pendicular to the c-axis, contrary to other moderate
AFPs. This finding implies that there is some affinity
of this protein for the basal plane of ice, in accordance
with ice hemisphere studies [24]. The recently solved
structure [24] and ice-binding face [42] of this protein
provides an explanation for the phenomenon of basal
plane affinity despite low TH activity. The ice-binding
face of LpIBP is reminiscent of the orderly array of
threonines observed on the ice-binding faces of several
hypAFPs [19-22]. Nevertheless, this array of exposed
side chains is considerably less repetitive than in the
hypAFPs, and contains only a few threonines [24,42].
This composition of residues may result in the reduction
of the binding rates or even binding affinities of LpIBP
to both prism and basal planes, yielding the low TH
activity of this protein [24,35,63]. In comparison, a
mutant of TmAFP with four out of the 10 threonine
residues constituting the ice-binding face replaced by
valines had TH activity comparable to LpIBP [29].
This mutant could not block ice growth completely,
suggesting that it has a reduced affinity to ice. Despite
its low TH activity, LpIBP has high ice recrystallization
inhibition and ice restructuring properties [64] relative
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to other AFPs. This set of properties of LpIBP, and pre-
sumably other plant AFPs (or IBPs), aides in the
protection of the plants from ice damage and from
excessive supercooling.

The differences in the ice-shaping patterns between
hypAFPs and moderate AFPs demonstrated here
have significant implications for the utility of AFPs in
a variety of fields such as cryopreservation and cryo-
surgery. For example, it was shown that although
type I AFP increased the viability of red blood cells
after a freeze—thaw cycle, lethal effects were observed
at high concentrations of this AFP owing to extensive
growth of extracellular ice [65,66]. Cellular membranes
might have been damaged by the needle-like ice crystals
produced by type I AFP. In fact, the use of moderately
active AFPs in cryopreservation procedures might be
limited by these spicular structures obtained in their
presence when the hysteresis freezing point is exceeded.
HypAFPs do not lead to the formation of such sharp ice
crystal shapes and may therefore be better candida-
tes for cryopreservation. Nevertheless, in cryosurgery
studies, lethal effects associated with moderate AFPs
have been shown to be advantageous [67]. In this
case, using hypAFPs may be less effective. Thus, the
ice-shaping properties of the various AFPs may be a
critical factor when selecting an AFP for a particular
task. In this respect, it would be interesting to examine
the ice-shaping habits of other cryogenic substances and
antifreeze agents such as xylomannan [68] and zirco-
nium acetate [69] and compare them with the proteins
studied here.

5. CONCLUSIONS

Although the ice-shaping properties of hypAFPs have
been studied, they have been uniformly referred to as
growth shapes, analogous to those formed by moderate
AFPs. The fact that these shapes are formed during
melting has been generally ignored. Our work demon-
strates that the crystal shapes obtained with
hypAFPs are obtained during melting and not during
growth. This phenomenon is directly related to the abil-
ity of hypAFPs to protect the basal plane of ice crystals
in addition to other planes. Therefore, in hypAFPs sol-
utions, changes in ice morphology do not occur in the
TH regime, and the shaping occurs during melting
owing to the influence of the proteins on interfacial
melting rates. In agreement with these observations,
melting simulation results show that a lemon-like
shape can be obtained during melting if the basal
planes of the crystals are covered and melting in this
direction is suppressed [60]. For moderate AFPs, which
do not block the basal plane growth, the observed bipyr-
amidal shapes are obtained during growth within the TH
regime. The exception of LpIBP to the generalization
that relates basal plane affinity with hyperactivity and
sharply divides AFPs between ‘hyperactive’ and ‘moder-
ate’ hints that perhaps this classification needs to be
broadened. The findings of this study, particularly that
ice reshaping occurs during melting, may enable the con-
struction of better models to describe the interactions of
AFPs and ice.
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