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Methamphetamine induces endoplasmic reticulum stress
related gene CHOP/Gadd153/ddit3 in dopaminergic cells
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Abstract We examined the toxicity of methamphetamine
and dopamine in CATH.a cells, which were derived from
mouse dopamine-producing neural cells in the central
nervous system. Use of the quantitative real-time polymer-
ase chain reaction revealed that transcripts of the endoplas-
mic reticulum stress related gene (CHOP/Gadd153/ddit3)
were considerably induced at 24–48 h after methamphet-
amine administration (but only under apoptotic conditions),
whereas dopamine slightly induced CHOP/Gadd153/ddit3
transcripts at an early stage. We also found that dopamine

and methamphetamine weakly induced transcripts for the
glucose-regulated protein 78 gene (Grp78/Bip) at the early
stage. Analysis by immunofluorescence microscopy dem-
onstrated an increase of CHOP/Gadd153/ddit3 and
Grp78/Bip proteins at 24 h after methamphetamine admin-
istration. Treatment of CATH.a cells with methamphetamine
caused a re-distribution of dopamine inside the cells, which
mimicked the presynaptic activity of neurons with cell
bodies located in the ventral tegmental area or the
substantia nigra. Thus, we have demonstrated the existence
of endoplasmic reticulum stress in a model of presynaptic
dopaminergic neurons for the first time. Together with the
recent evidence suggesting the importance of presynaptic
toxicity, our findings provide new insights into the
mechanisms of dopamine toxicity, which might represent
one of the most important mechanisms of methamphet-
amine toxicity and addiction.
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Introduction

The problem of the drug abuse of methamphetamine
(METH) has recently spread over many countries of the
world. Acute application of this psychostimulant induces
euphoria, increased activity, and decreased appetite. Psy-
chostimulants might also induce anxiety, irritability, and
paranoid psychosis at a higher dose. Furthermore, chronic
administration of METH or cocaine can produce long-term
behavioral changes (Barnett et al. 1987; Gawin and
Ellinwood (1988); Klawans et al. 1975; Segal and
Mandell 1974). Unlike many other drugs, repetitive
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administration of these drugs progressively induces greater
behavioral effects such as behavioral sensitization (Robinson
et al. 1988; Sato et al. 1983). Eventually, chronic adminis-
tration of psychostimulants results in a profound state of
dependence.

Dependency on psychostimulants is established after
repetitive administration of drugs, and once this is established,
it lasts for a long period. These phenomena suggest that long-
term drug administration can play a critical role in the
alternation of gene expression (Berke and Hyman 2000;
Nestler 2005). METH is reported to induce many genes such
as Arc, an immediate-early gene, which contributes to the
maintenance of long-term potentiation and the consolidation
of long-term memory (Fosnaugh et al. 1995; Lyford et al.
1995; Yamagata et al. 2000). We have reported that Arc
interacts with Amida, which is involved in apoptosis and the
cell cycle (Gan et al. 2001, 2003; Irie et al. 2000), and we
speculate that the apoptotic mechanisms related to Amida
might be involved in the development of METH toxicity, as
for many other molecules (Cadet and Brannock 1998; Cadet
et al. 2003, 2005), and in the degeneration of dopaminergic
terminals (Kita et al. 2003).

Perturbation of endoplasmic reticulum (ER) homeostasis
is called ER stress (Welihinda et al. 1999). ER stress has
been implicated in a variety of diseases such as diabetes,
ischemia, and Parkinson’s disease (Oyadomari and Mori
2004), up-regulates chaperone genes such as glucose-
regulated protein 78 (Grp78/Bip), and induces the degra-
dation of unfolded proteins. However, when ER function is
severely impaired, the organelle elicits apoptotic signals.
This apoptotic event is mediated by a transcriptional
activation of the CCAAT/enhancer binding protein (C/
EBP) family member CHOP/Gadd153/ddit3 (hereinafter
referred to as CHOP) and by the activation of ER-
associated caspase-12 (Nakagawa et al. 2000; Oyadomari
and Mori 2004; Wang et al. 1996). Recently, Jayanthi et al.
(2004, 2009) have shown the involvement of ER stress in
METH toxicity, but the detailed mechanism of ER-stress-
mediated toxicity remains to be elucidated.

In this study, we have investigated whether ER stress is
involved in the mechanism underlying the dopaminergic
toxicity induced byMETH.We have examined the expression
of CHOP and Grp78/Bip in METH-treated CATH.a cells
derived frommouse dopamine (DA)-producing neural cells of
the central nervous system (Suri et al. 1993).

Materials and methods

Materials

CellTiter-Glo Luminescent Cell Viability assay reagent was
from Promega (Madison, Wis., USA). ABsolute SYBR

Green Mixes was from ABgene (Surrey, UK). Oligonucle-
otide primers were synthesized by Greiner (Frickenhausen,
Germany). TRIzol reagent, SuperScript III, and horse serum
was from Invitrogen (Carlsbad, Calif., USA). Fetal calf
serum was from Hyclone Laboratories (Logan, Utah, USA).
RPMI 1640 medium was from Sigma (St. Louis, Mo.,
USA). Rabbit anti-Grp78/Bip antibody was purchased from
Stressgen (Victoria, BC, Canada). Rabbit anti-procaspase-
12 antibody was from Calbiochem (La Jolla, Calif., USA).
Anti-CHOP/Gadd153/ddit3 (R-20) antibody and anti-
Grp78/Bip antibody were purchased from Santa Cruz. A
secondary antibody conjugated with Alexa Fluor 488 was
from Molecular Probes (Eugene, Ore., USA). Methamphet-
amine HCl (METH) was purchased from Dainippon
Pharmaceutical (Osaka, Japan). Throughout the study, the
Student t-test was used for statistical analysis.

Cell culture and treatments

CATH.a cells (ATCC no. CRL-11179) were maintained in
RPMI 1640 supplemented with 8% horse serum, 5% fetal
calf serum. Cells were treated with METH dissolved in
dimethylsulfoxide (DMSO) or DA dissolved in phosphate-
buffered saline for 24 h, unless otherwise described. The
final concentration of DMSO did not exceed 0.1%, a dose
that had no apparent effect on these cells.

Drug cytotoxicity in vitro

For the measurement of cell toxicity, cells were seeded in 96-
well culture plates (Nunc, Roskilde, Denmark). The effect of
the studied compounds on cell toxicity was determined by
using a CellTiter-Glo Luminescent Cell Viability assay
according to the manufacturer’s protocol, as based on
quantification of the ATP level (Lovborg et al. 2002).
Luminescent signals were measured in LB96P, a microplate
luminometer. Each point represents the mean±SD (bars) of
eight values from one representative experiment.

Reverse transcription and quantitative real-time polymerase
chain reaction

Cells were harvested in TRIzol. Then, total RNA was
isolated and subjected to reverse transcription by using
SuperScript III. cDNAs were amplified by quantitative real-
time polymerase chain reaction (RT-PCR) by using ABso-
lute SYBR Green Mixes according to manufacturer's
protocols. A 7900HT thermal cycler (Applied Biosystems,
Foster City, Calif., USA) was utilized to detect amplifica-
tion. Oligonucleotide pairs used to amplify mouse cDNA
sequences were as follows: chop/gadd153 forward primer,
5′-GGAAGTGCATCTTCATACACCACC and reverse
primer, 5′-TGACTGGAATCTGGAGAGCGAGGGC;
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Grp78/Bip forward primer, 5′-CAGAGACCCTTACTCG,
and reverse primer, 5′-GTTTATGCCACGGGAT; Hprt1 for-
ward primer, 5′-GCCTAAGATGAGCGCAAGTTGAA, and
reverse primer, 5′-ACTAGGCAGATGGCCACAGGAC, as
previously described (Jayanthi et al. 2004). To ensure the
amplification of a single product, a dissociation curve was
produced for each amplification. The relative concentration
of CHOP or Grp78 in the samples was determined by
normalizing the level of expression to that of Hprt1
(hypoxanthine guanine phosphoribosyl transferase 1) in each
of the samples by using standard curves for the respective
amplifications (SYBR Green PCR mix and quantitative RT-
PCR protocol, Applied Biosystems).

Immunofluorescent and immunoblotting analysis

CATH.a cells were seeded on gelatin-coated coverslips. On
the next day, 1 mM METH or the same concentration of
vehicle (0.1% DMSO) was used to treat the cells. After 24 h,
the cells were fixed in 4% paraformaldehyde and visualized by

either an anti-CHOP/GADD153 (R-20) antibody or an anti-
Grp78/Bip antibody and a secondary antibody conjugated with
Alexa Fluor 488. The morphology of the nuclei was visualized
with 4,6-diamidino-2-phenylindole nuclear counter-staining.
Immunoblotting was performed according to methods de-
scribed previously (Irie et al. 2003). Immunoblot results were
developed on X-ray film and scanned into image files; relative
band intensities were determined with ImageJ software.

Results

Toxicity analysis for CATH.a cells

CATH.a cells are reported to undergo apoptosis when treated
with METH or DA (Choi et al. 2002; Masserano et al. 1996).
To determine a condition for analyzing METH toxicity, cells
were treated with several concentrations of METH or DA for
24 h, and their viability was assessed (Fig. 1). Almost half of
the cells died in 1 mM METH, whereas few cells died in

Fig. 1 Cell toxicity of metham-
phetamine (METH) or dopamine
(DA). a Viability of CATH.a
cells treated with various con-
centrations of METH. After 24 h
of treatment, the ATP content of
each culture (a value propor-
tional to the extent of cell
viability) was measured by lu-
minescence. b Viability of
CATH.a cells treated with vari-
ous concentration of DA. The
same assay was employed as for
the METH-treated cells. Data
shown in a, b are mean±SE of
eight experiments (#P<0.01).
Similar sets of experiments were
repeated at least three times
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0.2 mM METH. Nearly half of cells died when treated with
4 μM DA, whereas only a limited number of the cells died in
2 μM DA. We decided to employ these concentrations to
assess gene expression in cells killed by METH, since we
assumed that 0.2 mM METH caused METH-related
changes, whereas 1 mM METH additionally induced
apoptosis-specific changes. The same was considered to
apply at 2 μM DA and 4.5 μM DA, respectively.

METH causes CHOP induction in dose-dependent manner

To investigate whether ER stress is involved in METH-
induced apoptosis of CATH.a cells, the expression of
CHOP and Grp78/Bip mRNAwere assessed by quantitative
RT-PCR. By using primers specific for each mRNA, the
signals from PCR products showed a dissociation curve
with a single peak, which assured the proper and reliable
condition for PCR-based quantification. Housekeeping
Hprt1 mRNA was used as an internal control. All genes
showed sufficient correlation between the quantity of
cDNA and cycles threshold (Ct). All of the resultant Ct
values fell into the range of standard curves.

We found that CHOP mRNA was induced by 24 h of
METH treatment in a dose-dependent manner (Fig. 2a).
Notably, 1 mM METH induced CHOP expression at a
significance level (P<0.01), whereas 0.2 mM METH did
not. In contrast, DA induced a slight induction of CHOP
mRNA at the lower concentration than the IC50. Mean-
while, at 24 h after treatment, Grp78/Bip mRNAwas not
significantly induced under any conditions that we
examined.

METH induces CHOP in the later phase

We examined the time course of METH and DA effects on
the expression of CHOP and Grp78/Bip in CATH.a cells,
because METH injection was reported to cause rapid
induction of CHOP transcript in the mouse striatum by
Jayanthi et al. (2004); in their experiment, the peak of
CHOP expression occurred within 2 h after METH
treatment, and the maximum expression level was about
two-fold compared with the untreated striatum. We found
that METH treatment of CATH.a cells caused a robust
induction of CHOP expression at 48 h after METH

Fig. 2 Expression of endoplas-
mic reticulum stress related gene
(CHOP) and glucose-regulated
protein 78 gene (Grp78) in
CATH.a cells treated with
METH or DA. CATH.a cells
were treated with the indicated
concentrations of METH or DA
for 24 h. Total RNAwas isolated
from each sample and subse-
quently reverse-transcribed. The
resultant cDNA samples were
subjected to quantitative real-
time polymerase chain reaction
(RT-PCR) to quantify CHOP (a)
or Grp78 (b) gene expression.
Results are expressed as relative
amount (fold) of transcripts to
control samples treated with
solvent, normalized to Hprt1
transcripts. The entire set of
experiments was repeated at
least three times with RNA
samples obtained independently
from separate cultures. Each
value represents the mean of
four measurements of the sam-
ple from a representative exper-
iment (error bars standard
deviations; #P<0.01)
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treatment. On the other hand, weak induction was observed
in response to DA treatment in the early phase (Fig. 3a). We
noted that Grp78/Bip, another marker gene related to ER
stress, was only modestly induced by either METH or DA
at 6 h after treatment (Fig. 3b).

METH increases ER stress marker proteins

In order to verify the ER stress to these proteins, we
examined the effect of METH administration on CHOP
and Grp78/Bip expression by using immunofluorescence
microscopy. Vehicle-treated CATH.a cells were negative
for CHOP expression, whereas treatment with 1 mM
METH resulted in fluorescence signals located in the
nucleus, indicating that CHOP expression was induced
by ER stress (Fig. 4). At the time points of 24 h or 48
h after METH treatment, dying CHOP-positive cells with

fragmented nuclei were observed (Fig. 4b). The expression
of Grp78/Bip was similarly induced by treatment with
METH (Fig. 4c). These results parallel the findings from
the RNA analysis, i.e., that ER stress was induced by
METH treatment.

Furthermore, we analyzed ER stress marker proteins by
immunoblotting. The expression of Grp78/Bip protein was
induced by treatment with METH (Fig. 5a, c). Concomi-
tantly, the cleavage of caspase-12 (Wootz et al. 2004) was
shown by the reduction in procaspase-12 levels (Fig. 5b, d).

Discussion

In the present study, we have shown that METH causes the
induction of CHOP transcripts in CATH.a cells around 24–
48 h after treatment. This induction has been observed

Fig. 3 Time course analysis of
CHOP or Grp78 expression in
CATH.a cells treated by METH
or DA. CATH.a cells were trea-
ted with 0.2 mM METH, 1 mM
METH, 2.0 μM DA, or 4.5 μM
DA and harvested at the indi-
cated time after treatment. Total
RNAwas isolated from each
sample and subsequently
reverse-transcribed. The resul-
tant cDNA samples were sub-
jected to quantitative RT-PCR to
quantify CHOP (a) or Grp78 (b)
gene expression. Results are
expressed as relative amount
(fold) of transcripts to control
samples treated with solvent,
normalized to Hprt1 tran-
scripts. The entire set of
experiments was repeated at
least three times with RNA
samples obtained independently
from separate cultures. Each
value represents the mean of
four measurements of the sam-
ple from a representative exper-
iment (error bars standard
deviations; #P<0.01)
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Fig. 4 METH–induced expres-
sion of ER stress marker pro-
teins in CATH.a cells. CATH a
cells were treated by 1 mM
METH for 24 h unless indicated
(DMSO dimethylsulfoxide).
Subsequently, the cells were
fixed and immunostained for
CHOP or Grp78 followed by
counter-staining with 4,6-diami-
dino-2-phenylindole (DAPI).
Representative microphoto-
graphs showing the induction of
CHOP (b, d–f) or Grp78 (h, j)
in CATH.a cells treated with
1 mM METH. Note that dying
cells expressed CHOP proteins
(e, f). Bar 20 μm (a–d), (g–j),
10 μm (e, f)
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under conditions that cause cell death in a dose-dependent
manner. Moreover, the amounts of both CHOP and Grp78/
Bip proteins also increase after METH treatment. These
findings suggested ER stress in CATH.a cells is caused by
METH administration.

METH induces the release of DA from synaptic vesicles
in the dopaminergic neuron in the brain (Fig. 6a). Dopa-
mine excessively released in the synaptic cleft is oxidized
outside the neuron. This oxidized DA causes the dysfunc-
tion of postsynaptic neurons. At the same time, METH
causes a leakage of DA from synaptic vesicles, thereby
eliciting a redistribution inside the neuron. Ectopically
leaked DA is also quickly oxidized and triggers toxicity
in the DA terminal, causing a dysfunction of presynaptic
neurons. These two mechanisms, namely the presynaptic
dysfunction and the postsynaptic dysfunction, eventually
lead to a rise in the loss of DA synapses, which is currently
recognized as one of the most important mechanisms of
METH dependency.

We have also compared CATH.a cells treated with
METH or DA (Fig. 6b). METH induces the release of
DA from vesicles into the culture medium and causes the

dysfunction of the CATH.a cells. This process serves as a
model for the disturbance of the postsynaptic neuron. At the
same time, the intracellularly leaked DA is also quickly
oxidized and triggers toxicity in the CATH.a cells. This
process mimics METH-induced disturbance of the presyn-
aptic neuron. Therefore, METH treatment of CATH.a cells
represents a complex model for the disturbance of the
presynaptic and postsynaptic neurons. On the other hand,
DA treatment of CATH.a cells causes a dysfunction of the
cells via extracellularly oxidized DA. This represents a
simple model for the disturbance of postsynaptic neurons.
Consequently, a comparison of METH and DA treatment
provides insights into the respective mechanisms of
presynaptic and postsynaptic dysfunction in the process of
METH addiction.

The excessively secreted DA into the synaptic cleft is
thought to be oxidized and to cause toxicity in vivo, since
the systemic administration of METH is reported to induce
the apoptosis of striatum postsynaptic neurons (Cadet et al.
2005; Jayanthi et al. 2005). METH might cause the
excessive secretion of DA in the stratum, and the secreted
DA will be oxidized, producing reactive oxygen species

Fig. 5 METH–induced expression of Grp78/Bip and activation of
caspase-12 in CATH.a cells. Immunoblotting of ER-stress-related
proteins. Similar sets of experiments were repeated at least three times,
and representative data are shown. a CATH.a cells were treated with
1 mM METH for the indicated times and analyzed by immunoblotting
for Grp78/Bip. b CATH.a cells were treated with either 4.5 μM
dopamine or 1 mM METH for the indicated times and analyzed by
immunoblotting for procaspase-12 (stars reduction of procaspase-12

band representing the activation of caspase-12). c To monitor protein
loading, the same amount of samples as in a, b were analyzed by
immunoblotting for glyceraldehyde-3-phosphate dehydrogenase
(GAPDH). d, e Relative band intensities were determined with ImageJ
software. The quantified signals for Grp78/Bip (d) or caspase-12 (e)
were normalized to that for GAPDH. A statistical analysis was
performed; significant changes are marked (#P<0.01)
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(ROS) and other toxic materials. This might be the reason
that METH induces the apoptosis of striatum neurons.

On the other hand, CATH.a cells treated with METH
cause a redistribution of DA storage inside the cells,
thereby mimicking presynaptic neurons (Fumagalli et al.

1999; LaVoie and Hastings 1999; Sulzer et al. 2005).
Notably, the gene expression in response to DA redistribu-
tion occurs in the presynaptic neurons whose cell bodies are
located in the ventral tegmental area (VTA) or the
substantia nigra. In the present study, although both DA

Fig. 6 Schematic model for dopamine (DA) terminal toxicity. a
Represented model for METH toxicity on a DA terminal. METH
induces the release of DA from synaptic vesicles (purple circles) in the
dopaminergic neuron (DA neuron). Excessively released DA in the
synaptic cleft (purple stars) is readily oxidized outside the neuron
(yellow stars outside neuron). This oxidized DA causes the dysfunc-
tion of postsynaptic neurons. At the same time, METH encourages
leakage of DA from synaptic vesicles eliciting redistribution inside the
neuron (small red arrow). The ectopically leaked DA is also quickly
oxidized and triggers ER stress in the DA neurons (yellow stars inside
neuron) leadinng to the dysfunction of presynaptic neurons (DA
neuron). These two mechanisms, namely the presynaptic dysfunction
and the postsynaptic dysfunction, gradually increase the loss of DA
synapses, one of the most important mechanisms of METH addiction.
b Overview of current study as a comparison of METH and DA

treatment. METH induces the release of DA from vesicles (red circles)
in CATH.a cells. Excessively released DA in the culture medium (red
stars) is readily oxidized outside the cell (yellow stars). This oxidized
DA causes the dysfunction of the CATH.a cells (model for disturbance
of postsynaptic neuron). At the same time, METH leads to the leakage
of DA from synaptic vesicles eliciting redistribution inside the cell.
The ectopically leaked DA is also quickly oxidized and triggers ER
stress in the CATH.a cells causing the dysfunction of the cell (model
for disturbance of presynaptic neuron). Therefore, METH treatment
represents a complex model for disturbance of presynaptic and
postsynaptic neurons. On the other hand, DA treatment of CATH.a
cells causes the dysfunction of the cell via extracellularly oxidized DA
(yellow stars). This represents a simple model for the disturbance of
the postsynaptic neuron
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and METH induce CHOP transcripts at the concentration of
IC50, the time course and the magnitude of induction are
different. The peak of CHOP induction occurs later than
24 h when CATH.a cells are treated by METH, whereas DA
causes an earlier induction with a peak at 6 h after
treatment. The magnitude of the induction by METH
compared to that of a vehicle is more than six times,
whereas it is no more than two-fold on treatment with DA
(Fig. 3a). As the concentrations of DA and METH are their
respective IC50s, METH probably causes apoptosis in the
CATH.a cells via ER stress, and the cell death induced by
DA might contain other mechanism of cytotoxicity in
parallel. Collectively, our pivotal finding is that we have
clearly shown the existence of ER stress in the model of
dopaminergic presynaptic neurons for the first time (Fig. 6).
Moreover, we have found that the CHOP protein is also up-
regulated in CATH.a cells treated by METH and with
Grp78/Bip protein (Figs. 4, 6). Furthermore, METH
treatment causes the activation of Caspase-12 in CATH.a
cells (Fig. 5). These findings also imply the generation of
ER stress in CATH.a cells after METH administration.
Although the effects of CHOP and Grp78/Bip on apoptotic
cells are contradictory, the effect of CHOP seems predom-
inant at higher concentrations than 1 mM as observed,
because 1 mM METH caused 50% of CATH.a cells to die
(Fig. 1a), and the CHOP-positive dying cells are observed
after 24 h of treatment with 1 mM METH.

The probable trigger for ER stress generation by
METH might be the redistribution of DA from vesicles
to the cytoplasm. Auto-oxidation of cytoplasmic DA and
the consequent generation of ROS have been reported to
be involved in METH-induced neurotoxicity in dopami-
nergic neurons (Cadet and Brannock 1998; Kita et al.
2003). Recently, Miyazaki et al. (2006) have demonstrated
that protein-bound quinone is increased in CATH.a cells
after METH treatment, and that this phenomenon is
correlated with cell death. This finding suggests the
possibility that quinoprotein formation is one of the factors
contributing to a generation of ER stress. Other factors
might also trigger the formation of improperly folded
proteins, such as the nitration of tyrosine residues
increases after METH administration (Imam et al. 1999,
2001). This modification causes the alteration of protein
function, enzymatic activity, and accordingly physiologi-
cal process (Adewuya et al. 2003; Kuhn et al. 2004;
Marcondes et al. 2001, 2006; Turko et al. 2001). Although
the existence of activity to remove this potentially
hazardous protein modification has been suggested, the
accumulation of nitrated protein causes the death of
dopaminergic neurons under certain conditions (Giasson
et al. 2000; Irie et al. 2003; Kamisaki et al. 1998). Indeed,
a powerful nitrating agent (peroxynitrite) is reported to
cause ER stress (Dickhout et al. 2005).

Several genes mutated in familial Parkinson’s disease have
been shown to have functions linked to the ubiquitin–
proteasomal pathway. For example, Parkin is one of the
ubiquitinating enzymes (E3), whereas UchL1 is a deubiquiti-
nating enzyme (Dawson and Dawson 2003). Furthermore, an
increase of the ER stress response can promote the
aggregation of wild-type α-synuclein, which forms inclu-
sions that reproduce many morphological and biochemical
characteristics of Lewy bodies (Jiang et al. 2010). Many
previous studies (Wang and Takahashi 2007) suggest that ER
stress induced by aberrant protein degradation is involved in
Parkinson’s disease. Yamamuro et al. (2006) have shown the
involvement of ER stress in the cell death of SH-SY5Y
neuroblastoma cells induced by 6-hydroxydopamine, an
oxidized derivative of DA, which has been extensively used
for the preparation of animal models of Parkinson’s disease.
Meanwhile, METH has been utilized to prepare animal
models of Parkinson’s disease (Betarbet et al. 2002). These
studies suggest that CATH.a cells treated by METH will
provide an in vitro model of Parkinson’s disease.

At present, studies of METH toxicity are mainly focused
on the apoptotic mechanism of post-synaptic neurons.
However, we can assume that the degradation of the
postsynaptic neuron precedes the degradation of the DA
terminal on the basis of our present study and also of other
recent evidence suggesting the importance of presynaptic
toxicity, which consists of the auto-oxidation of cytosolic
DA and the consequent generation of ROS (Cadet and
Brannock 1998; Fumagalli et al. 1999; Kita et al. 2003;
LaVoie and Hastings 1999); the degradation of the
presynaptic terminal of the dopaminergic synapse might
be the principal event of DA toxicity.

In conclusion, the present study has explicitly demon-
strated the existence of ER stress in the model of
dopaminergic presynaptic neurons for the first time. This
finding should provide a new insight into the mechanisms
of DA toxicity, which is currently accepted as being one of
the most important mechanisms of methamphetamine
toxicity and addiction.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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