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Technological advances in imaging and data acquisition are leading to the development

of petabyte-scale neuroscience image datasets. These large-scale volumetric datasets

pose unique challenges since analyses often span the entire volume, requiring a unified

platform to access it. In this paper, we describe the Brain Observatory Storage Service

and Database (BossDB), a cloud-based solution for storing and accessing petascale

image datasets. BossDB provides support for data ingest, storage, visualization, and

sharing through a RESTful Application Programming Interface (API). A key feature is the

scalable indexing of spatial data and automatic and manual annotations to facilitate data

discovery. Our project is open source and can be easily and cost effectively used for a

variety of modalities and applications, and has effectively worked with datasets over a

petabyte in size.
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1. INTRODUCTION

Mapping the brain to better understand cognitive processes and the biological basis for disease
is a fundamental challenge of the BRAIN Initiative. Technological advances in neuroimaging
have grown rapidly over the last ten years, making it almost routine to image high-resolution
(sub-micron) brain volumes in many laboratories around the world using Electron Microscopy
(EM) and X-Ray Microtomography (XRM), among other imaging modalities (Bock et al., 2011;
Helmstaedter et al., 2013; Kasthuri et al., 2015; Lee et al., 2016; Dupre and Yuste, 2017; Witvliet
et al., 2021). These datasets, which provide the means to resolve individual neurons and the
individual connections (synapses) between them, are highly valuable for providing key insights into
neural connectivity and neuroanatomical features. As these high resolution neuroimaging volumes
grow in extent, however, substantial challenges have emerged, including efficient data storage, the
computational and financial cost of indexing and querying, and the technical difficulty of big-data
visualization (Helmstaedter et al., 2013; Lichtman et al., 2014).

As new tools for interrogating neuroimaging datasets at high resolutions advance and become
more common, a centralized data-access and data-processing paradigm is needed in order to take
advantage of economies of scale when operating at the tera- to petascale level. While research
groups are beginning to embrace data archives, most treat the system as simply a place to
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deposit finalized data, with raw datasets generated and stored in a
custom format and analyzed and inspected with custom software.
At increasing data scale, it is quickly becoming impossible for
researchers to characterize many of the underlying properties.
For many recently-generated image volumes approaching the
petascale, it is likely that most of the dataset is never viewed
in detail by a human. Additionally, conventional approaches
for automatically or semi-automatically reconstructing neuronal
maps focus on building methods for small volumes, and scaling
these tools to operate onmulti-terabyte or petabyte data volumes,
is often significantly beyond the capabilities and budgets of a
single research group.

Large datasets are incredibly rich in scientific content which
should be shared with others to best leverage the investment of
time and resources, and to fully exploit the value of the data. Due
to the challenges in collection, storage, and analysis of terascale
and petascale data volumes, few public datasets of this size are
routinely shared, even though many such volumes exist on local,
private storage, and many petabytes of new data are anticipated
in the future from programs like the BRAIN Initiative and other
future large scale programming (Mikula, 2016; Dorkenwald et al.,
2019; Wilson et al., 2019; Morgan and Lichtman, 2020; Scheffer
et al., 2020; Phelps et al., 2021; Witvliet et al., 2021).

We considered use cases such as the first fully-automated
pipelines for processing and assessing XRM (Dyer et al., 2017)
and EM datasets (Bock et al., 2011; Kasthuri et al., 2015; Lee et al.,
2016) and work by many academic laboratories around the world
to understand state-of-the-art approaches and their limitations.
We emphasize that high-performance and scalable data storage
is an essential component of any modern connectomics effort,
due to the need for rapid, multi-user data access. In designing
our Brain Observatory Storage Service and Database (BossDB),
we researched several related efforts, including DVID1 (Katz
and Plaza, 2019) which excels in versioned terascale storage;
CATMAID and Knossos (Saalfeld et al., 2009; Helmstaedter et al.,
2011) which provide a mature manual annotation platform. We
previously worked with NeuroData to develop ndstore (Burns
et al., 2013), which originated and implemented many of the
design principles necessary to store and access high-dimensional
imaging datasets. These principles include (1) an efficient internal
data representation and associated spatial indexing scheme; (2)
an API to remotely access services; and (3) MATLAB and Python
toolkits to facilitate usability. Based on this prior research and an
understanding of the evolving requirements driven by new and
maturing imaging modalities, we created a robust, cloud-native
petascale datastore with a number of services and support tools
(Figure 1).

2. METHODS

To enable large-scale, collaborative research we developed and
deployed a cloud-native data archive to support the storage,
analysis, and sharing of large spatial datasets. Service-oriented
architectures have continued to grow in popularity and possess

1Distributed, Versioned, Image-Oriented Dataservice. Available online at: https://

github.com/janelia-flyem/dvid (accessed October 10, 2017).

many appealing properties when designing a cloud-based data
archive (Vogelstein et al., 2016). Our solution, BossDB, is
deployed within the Amazon Web Services (AWS) ecosystem
and has been robustly designed to leverage cloud capabilities
and ensure a highly-available, scalable, and cost-efficient system.
Other research teams have previously deployed their own
instantiations of BossDB (Vogelstein et al., 2016; Dyer et al.,
2017).

2.1. Spatial Database
The spatial database is the foundation of BossDB, and uses the
strengths of the cloud to efficiently store and indexmassivemulti-
dimensional image and annotation datasets (i.e., multi-channel
3D image volumes). A core concept is our managed storage
hierarchy, which automatically migrates data between affordable,
durable object storage (i.e., Amazon Simple Storage Service or
S3) and an in-memory data store (i.e., Redis), which operates as
read and write cache database for faster IO performance with a
tradeoff of higher cost. The BossDB cache manages a lookup
index to determine the fastest way to return data to the user,
taking advantage of data stored in the hierarchy. While this
requires the use of provisioned (non-serverless) resources, this
allows for storage of large volumes at a low cost, while providing
low latency to commonly accessed regions. We utilize AWS
Lambda to perform parallel IO operations between the object
store layer andmemory cache layer andDynamoDB for indexing.
These serverless technologies allow BossDB to rapidly and
automatically scale resources during periods of heavy operation
without incurring additional costs while idle.

The BossDB spatial database is designed to store petascale,
multi-dimensional image data (i.e., multi-channel three-
dimensional image volumes, with optional time series support,
Figure 2) and associated coregistered voxel annotations
(Figure 3). In this context, voxel annotations are unsigned
64-bit integer (uint64) labels stored in a separate channel that
is in the same coordinate frame as the source image data. Each
unique uint64 value represents a unique object (e.g., neuron,
synapse, organelle). A user can leverage annotations within
various channels (e.g., “segmentation,” “mitochondria”) to create
groups of voxels to define objects that have some semantic
meaning, typically the result of manual annotation or automated
processing. The database maintains an index of annotation
locations, enabling efficient spatial querying and data retrieval
(Figure 4).

The internal representation of volumetric data utilizes small
cuboids, or 3D chunks of data (i.e., 512 × 512 × 16 voxels,
which can vary in dimension), which are stored in Amazon
S3 as compressed C-order arrays. Cuboids are indexed using a
Morton-order space-filling curve, which maps the 3D location
of each cuboid to a single dimension. In addition, annotations
are indexed so BossDB can quickly retrieve which annotation
IDs exist in an individual cuboid, and in which cuboids a unique
ID exists. With these indices, all of which are stored in auto-
scaling AmazonDynamoDB tables, theBossDBAPI can provide
spatial querying of annotations by ID and efficient retrieval of
arbitrary data volumes. The database will also render and store
a resolution hierarchy through downsampling of a dataset, which
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FIGURE 1 | A high-level schematic of BossDB platform.

FIGURE 2 | An illustration showing image slices (left) being composed into 3D

cuboid volumes (middle). Arbitrary requests may be made to extract image

regions of interest (right).

is critical for visualization applications to efficiently provide low-
resolution views and useful when processing large datasets. The
spatial database supports various bit-depths (including uint8,
uint16 image channels and uint64 annotation channels) and we
will provide additional bit-depth and data formats as needed.

Additionally, BossDB is able to store various mesh files
associated with voxel annotation channel ID values, including
precomputed format (Maitin-Shepard, 2021), which can be
accessed through our API by visualization applications.

2.2. Single Sign-On Identity Provider
A centralized and standalone authentication server provides
single sign-on functionality for BossDB and integrated tools
and applications. This allows BossDB to control permissions
internally and operate securely, while maintaining the ability to
federate with other data archives in the future.

FIGURE 3 | An illustration showing annotations, composed of voxel labels

(left) and how a unique annotation identifier can represent a unique object in

the image data (right).

We use the open source software package Keycloak as an
identity provider to manage users and roles. We created a Django
OpenID Connect plugin to simplify the integration of services
with the SSO provider.

Our identity provider server intentionally runs independently
from the rest of BossDB system, forcing the BossDB API
to authenticate just like any other SSO integrated tool or
application, and making future federation with other data
archives or authentication systems easy. The Keycloak server is
deployed in an auto-scaling group that sits behind an Elastic Load
Balancer in order to achieve high-throughput database requests
with minimal latency.

2.3. Application Programming Interface
As the primary interface to BossDB, the API provides a
collection of versioned, RESTful web services. It enforces access
permissions and organizes data in a logical data model for
spatial and functional results. Because the API is versioned,
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FIGURE 4 | An illustration showing how large 2D image slices generated by EM imaging are re-formatted as cuboids, which fit into a larger 3D volume, indexed using

a z-order curve.

the BossDB storage engine can support significant changes
while still maintaining backwards compatibility with legacy
applications and tools. This BossDBAPI was designed from first
principles to be versioned, and so this feature adds little in the
way of day-to-day engineering complexity. All requests to the
API are authenticated through the SSO service or via a long-lived
API token, which enables tracking usage and throttling requests
as needed to manage cost and ensure reliable performance (e.g.,
high bandwidth power user vs. a limited guest user). The services
BossDB provides are summarized below:

2.3.1. SSO Management and User Authorization
A set of services to manage users, roles, groups, and permissions.
Roles limit what actions a user can perform on the system,
while permissions limit what data users can access or manipulate.
Permissions are applied to BossDB datasets via groups, making
it easy to manage and control access for both individuals and
teams. Through the application of permissions, a researcher or
administrator can choose to keep a dataset private, share with
collaborators, or make it publicly available.

2.3.2. Dataset Management
The BossDBAPI organizes data into a logical hierarchy to group
related data together (e.g., source image data and associated
annotations, 2-photon and EM datasets from the same tissue
sample). This service provides interfaces to create and manage
datasets and their properties.

2.3.3. Ingest Service
A critical challenge when using a centralized data archive is the
ingest of large datasets to standardized formats from diverse local
storage formats and organization paradigms. The Ingest Service
enables the moving of large datasets of varying data formats
(Table 1) from local or cloud storage intoBossDB by performing
the upload of data into the cloud and then ingesting that data
into the spatial database format, allowing independent scaling
and failure recovery. The service provides methods to create a
new ingest job, monitor the status of a job, join an upload client
worker to a job, and cancel a job. Unlike general upload tools
that run on client-side compute infrastructure, or commands
like the aws command-line offerings that may run on a single
host, the ingest client is able to perform ingests on arbitrarily
many compute nodes, with graceful error management even

TABLE 1 | Data types and associated data formats that are supported by tile and

chunk/volumetric based ingest service processes.

Data type Data format Ingest type

JPEG 8-bit, 16-bit Tile

PNG 8-bit, 16-bit Tile

TIFF 8-bit, 16-bit Tile

CATMAID Native format Tile

HDF5 Any encoding Tile/Chunk

N5 Any encoding Tile/Chunk

Zarr Any encoding Tile/Chunk

CloudVolume Native format Tile/Chunk

DVID Native format Tile/Chunk

Nifti Any encoding Tile/Chunk

Dicom Any encoding Tile/Chunk

Knossos Any encoding Tile/Chunk

in the case that a compute node powers down during an
ingest job.

2.3.3.1. Tile Ingest
As demonstrated in Figure 5, the ingest process directly leverages
AWS infrastructure, scaling on demand. First, using the ingest
client a user uploads an ingest job configuration file to the API
(1) which populates a task queue, enumerating all tiles that must
be uploaded, and returns temporary AWS credentials. Next, the
ingest client retrieves a task from the Upload Task Queue (2),
and loads the requested local file into memory as an image tile
(3), and uploads the tile data to an S3 bucket (4). The ingest
client then writes a message to the index queue signaling it is
finished with this tile (5). An AWS Lambda automatically fires
when a message enters the Index Queue and it uses DynamoDB
to track which tiles are successfully written to the tile bucket (6),
(7) and when enough tiles in a region have arrived to generate the
BossDB cuboid data representation, a second Lambda function
is triggered (8). This Ingest Lambda function then loads the
specified tiles, reformats them into cuboids, inserts them into
the Spatial DB S3 bucket, updates the Spatial DB cuboid index,
and finally marks the temporary tiles for deletion (9). The ingest
client supports both parallel and distributed operation, allowing
users to maximize their network bandwidth, especially in the case
where source data is organized into numerous small image files.
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FIGURE 5 | A diagram outlining the data ingest service process.

2.3.3.2. Volumetric Ingest
The ingest process also supports uploading three-dimensional
chunks of data in the CloudVolume format2; this interface
can be straightforwardly extended to other formats. Similar to
Tile Ingest, the ingest client is used to upload an ingest-job
configuration file to the API, populating a task queue with all
chunks to be uploaded. The ingest client then retrieves a task
from the Upload Task Queue, and loads that chunk into memory.
The memory chunk is divided into multiple BossDB cuboids
(512 x 512 x 16) and each cuboid is uploaded to an AWS S3
bucket. Upon uploading, the S3 update will trigger an AWS
Lambda that copies the cuboid into main s3 store, adds an entry
in DynamoDB, and marks the original cuboid for deletion.

2.3.4. Dataset Metadata
BossDB can store arbitrary key-value pairs linked to data
model items, which is useful to track experimental metadata
and provenance (e.g., voxel size, animal information, annotation
algorithm used). This service provides an interface to
query, create, update, and delete key-value pairs associated
with a dataset.

2.3.5. Cutout Service
BossDB provides the cutout service, which enables users to
interact with the Spatial Database by reading and writing
arbitrary data volumes. While BossDB stores all data internally
using a standardized format, the cutout service uses HTTP
content negotiation to determine the data format of a request,
allowing users to request specific database-supported formats
when downloading data (e.g., compressed C-order blob, hdf5 file,
pickled numpy array). The same is true of data-uploads: A user-
provided content annotation enables BossDB to accept data in
a variety of volumetric and image-based formats. This service
enables scalable analytics by letting users access arbitrary chunks
of data in parallel, perform automated processing, and write the

2CloudVolume Is a Python Library for Reading and Writing Chunked Numpy

Arrays From Neuroglancer Volumes in “precomputed” Format. Available online

at: https://github.com/seung-lab/cloud-volume.

annotation result back to BossDB. It also supports querying
for the spatial properties of annotations, such as the bounding
box of an annotation or identifying which annotations exist
within a region.

2.3.6. Image Service
In addition to our volumetric cutout service, we provide an
image service to meet common user needs, which retrieves a
2D slice of data from the spatial database along one of the
three orthogonal planes (i.e., XY, XZ, YZ), encoded as an image
file. Again, HTTP content negotiation is used to determine the
format of the response (e.g., png, jpeg). The service supports
arbitrary image sizes or a fixed tile size, which is often used by
visualization tools.

2.3.7. Downsample Service
To allow users to quickly assess, process, and interact with
their data, BossDB iteratively builds a resolution hierarchy
for each dataset by downsampling the source data. This is a
workflow that is run infrequently and on-demand, and needs
to scale from gigabytes to petabytes of data. We developed a
serverless architecture built on AWS Step Functions to manage
failures and track process state. AWS Lambda is used to
perform the underlying image processing in a parallel, scalable
fashion. This approach helps to minimize costs since resources
are only provisioned when needed and scale on-demand in
a fully-automated paradigm. It is also possible to perform a
partial downsample when only a portion of the original dataset
has changed, saving the time and expense of re-running the
process on the entire dataset. Image volumes with anisotropic
native voxel sizes (e.g., x = 4 nm, y = 4 nm, z = 40
nm) are downsampled in the image plane dimensions (e.g.,
downsampling factors of x = 2, y = 2, z = 1) until block sizes
reach near-isotropy (e.g. third downsample to resolution of x =

32 nm, y= 32 nm, z= 40 nm), after which they are downsampled
equally in all dimensions. This remaining anisotropy diminishes
higher in the downsampled hierarchy. In general, these levels are
used primarily for visualization, andmost analyses are performed
at native or near-native resolutions (resolution 0 or 1).
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2.4. User Tools
User facing tools are required to make a data archive truly useful,
easy to use, and well documented. We currently offer a web-
based management console, an ingest client, and a client-side
Python module called intern for programmatic interaction3

(Matelsky et al., 2021). We have also integrated 3rd-party web-
based data visualization tools. While BossDB API provides a
rich interface to interact with the system, user friendly tools
built on top of the API are important to increase utility and
adoption by the community. We expect to mature and expand
the scope of this tool library as community users build on the
core BossDB technologies.

2.4.1. Web-Based Management Console
BossDB has a web interface that lets users perform common
actions interactively in their browser (e.g., create a dataset,
monitor an ingest job, share a dataset with a user). This Django-
backed web application is the primary interface for most users
and will expose much of the API’s functionality through an
intuitive graphical interface. From the console, a researcher is
able to manage datasets, discover new data, and launch the
visualization tool.

2.4.2. Web-Based Visualization
A critical capability to any data archive is the ability to
easily visualize stored data. Whether inspecting ingested data,
exploring a dataset, or sharing an interesting sample with a
collaborator, the most common interaction with stored data
will be through visualization. We integrated a version of
Neuroglancer (Maitin-Shepard, 2021) to let users visually explore
data stored in BossDB, and enable other visualization methods
that provide abstraction over much of the API’s complexity. The
Neuroglancer interface may be used on all modern browsers and
operating systems that support WebGL, including (as of the time
of publication) Chrome version 51 or greater, Firefox version 46
or greater, and Safari 15.0 or greater. Through use of the imagery
API, BossDB also supports mobile-friendly data visualization
tools such as Substrate (Matelsky et al., 2020).

2.4.3. Immersive Visualization and Annotation
The BossDB volumetric API likewise supports 3D collaborative
annotation through immersive virtual reality (VR) tools
such as syGlass (Pidhorskyi et al., 2018), which can enable
high-throughput annotation of large volumes of dense
imagery. VR takes advantage of the natural parallax of
stereoscopic vision, which can improve the visual perception of
complex 3D structures.

2.4.4. Ingest Client
We have developed an open source ingest client in Python to
manage uploading data to BossDB. The ingest process operates
on a upload task queue which contains tasks specifying individual
2D tiles or 3D chunks of data to upload. To deal with the unique
formats and file organization methods of diverse users, the client
uses a simple plug-in design to import custom snippets of code

3Intern Software Development Kit (sdk) Tools Page on Bossdb.org. Available

online at: https://bossdb.org/tools/intern (accessed December 03, 2021).

responsible for taking a task, finding the right file, and loading
the data into memory, which is then uploaded by the client.
The work queue design allows copies of the client to be run
distributed across compute nodes and in parallel on a single
machine, substantially increasing throughput.

2.4.5. Python Software Development Kit (SDK)
To support developers and researchers who want to
programmatically interact with BossDB, we developed a
pip-installable Python library that provides abstraction over
much of the complexity in the API. Data cutouts of arbitrary
size can be efficiently retrieved from our archive, enabling
easy integration with analytics tools. The current SDK, called
intern, will continue to be expanded and supported to
accommodate updates and additions to the existing BossDB
system and user requests.

3. RESULTS

3.1. Motivating Application
Many of our design requirements for the BossDB ecosystem
were motivated by the activities planned for the Intelligent
Advanced Research Projects Activity (IARPA) Machine
Intelligent from Cortical Networks (MICrONS) Program4.
This effort seeks to enable the rapid advancement of
artificial intelligence capabilities by creating novel machine
learning algorithms that use neurally-inspired architectures
and mathematical abstractions of the representations,
transformations, and learning rules employed by the brain4. To
guide the construction of these algorithms, the program centers
around massive co-registered functional (e.g., two-photon
calcium imaging) and structural (e.g., EM) neuroimaging
experiments aimed at estimating the synapse-resolution
connectome of a 1mm3 volume of mouse visual cortex,
represented by nearly a petabyte of image and segmentation
data, and using that information to constrain machine learning
architectures. Our goal was to organize, store, and support the
analysis of these large functional and anatomical datasets, and
eventually enable public dissemination.

3.2. Deployment
We envision that this data archive will facilitate neuroscience
inquiries through extensible, scalable processes, with a
sample workflow outlined that includes data generation,
data ingest, intra- and cross-dataset analysis, and multi-user
data visualization in various workflows (e.g., data proofreading)
outlined in Figure 6. During the IARPA MICrONS Program, a
deployed instance of our BossDB system enabled concurrent
proofreading operation by dozens of users, as well as the
storage of a highly-available contiguous image volume that
approached 2 PB of lossless EM image data (Bishop et al.,
2021) using the blosc compression standard5. In addition to

4MICrONS: Machine Intelligence From Cortical Networks. Available online

at: http://iarpa.gov/index.php/research-programs/microns (accessed October 31,

2017).
5Blosc Compressor. Available online at: http://blosc.org (accessed December 03,

2021).
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FIGURE 6 | A diagram outlining an example user story showing utilization of the BossDB infrastructure. A typical research group collecting data for a hypothesis will

move sequentially from (1)–(4). Other groups will extend these analyses using steps (3) and (4). Sample data included for demonstration (see text footnote 4).

EM and segmentation datasets from the IARPA MICrONS
program (https://bossdb.org/project/microns-minnie, https://
bossdb.org/project/microns-pinky), we currently publicly store
highly-available data for over 30 large-scale volumetric image
collections, with multiple contiguous image volumes exceeding
100 TB in size (https://bossdb.org/projects/).

3.2.1. Implementation
Figure 7 shows the architecture of BossDB. The system has two
user facing services: Authentication and Web Server Endpoint,
both of which sit behind AWS elastic load balancers. The system
uses Keycloak servers in a high-availability configuration for
single sign-on authentication. The web server endpoints use
Django API, to provide access to the majority of the services
in BossDB.

BossDB uses serverless computing and storage, with AWS
Lambda, SQS, S3, and DynamoDB to provide all of the other
services mentioned in Section 2: Ingest, Metadata, Cutout, Image,
and Downsample. Using serverless computing and storage for
these components will automatically scale with demand and
eliminate the need to maintain components.

BossDB is installed using the AWS CloudFormation service
along with Salt and Packer to manage our infrastructure. This

allows us to quickly duplicate the environment for testing
and development and even change instance sizes within the
new environments.

3.2.2. Data Generation
Researchers collect experimental data; stitching, alignment, and
registration take part prior to upload to BossDB. Users create
new resources in BossDB to identify and store their datasets,
recording their experimental parameters and dataset properties
(e.g., voxel dimensions, bit depth, spatial extent) prior to upload.
An example screenshot from our web console is shown in
Figure 8; this setup can be accomplished programmatically using
intern as well.

3.2.3. Data Ingest
Once available, a researcher uploads image data via one of several
methods supported by BossDB (e.g., REST API, ingest client),
safely and efficiently storing data in BossDB. Large datasets can
be uploaded incrementally, with data available for read as soon as
it has been ingested, providing access to collaborators in minutes,
not months.

The ingest client has already been used to upload petabytes of
EM and calcium imaging data; many of these uploads proceed
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FIGURE 7 | A high-level architecture diagram of BossDB as deployed using Amazon Web Services architecture, highlighting a number of services, including ingest

processes on the left. Sample data included for demonstration (see text footnote 4).

without any intervention from the developer team with the
system automatically scaling to meet user’s needs.

Previous testing of the ingest process reached a sustained
ingest throughput of 230 GB/Min (Figure 9) using the
volumetric ingest-client into BossDB. The ingest client
was run on 750 kubernetes pods across eight large servers
uploading data from an AWS Bucket. AWS Lambda scaled
to over 5000 concurrent executing functions to handle
the load.

To perform at this speed we were running 12 Endpoint servers
sized with m4.2xlarge instances, an RDS database backed with a
db.m4.xlarge instance, and DynamoDB table sized at 2,000 read /
4,000 write capacity.

This test shows the how BossDB will autoscale to meet
demands (Figure 10). The same 3.2 million tiles from a 225-GB
dataset were uploaded during each test. Each test used a different
number of kubernetes pods running the ingest-client (100, 200,
400). BossDB automatically scaled endpoints, DynamoDB read
and write demand to handle the throughput efficiently.

BossDB has monitoring capability at several levels. In
Figure 11 you see a snippet of our Ingest Dashboard which allows

the administrator to see how much stress any one component
of the system is under. Notifications will also go out if any key
components fail, and when the system hits cost milestones.

3.2.4. Data Analytics
Many big data research analyses are enabled by BossDB features
(e.g., standardized interfaces, arbitrary cutouts, spatial indexing),
accelerating the scientific process.

One common use for BossDB is acting as a backend
for local data analysis pipelines. Users download chunks of
data from BossDB using intern and process it to create
annotation labels using humans or machines. The resulting
annotation data is uploaded via a choice of methods (python
API, ingest client), below we include an example of such
use case.

# import intern package
from i n t e r n import a r r a y

# specify data location
COLL_NAME = ’test_collection’
EXP_NAME = ’test_experiment’
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FIGURE 8 | An example screenshot from our BossDB console for the MICrONS Pinky dataset (see text footnote 4).

CHAN_NAME = ’test_channel’

# Use a URI to identify the data location:
chan = f "bossdb://{COLL_NAME}/{EXP_NAME}/
{CHAN_NAME}"

# Create a numpy-like pointer to the data,
# specifying the downsample-level:
d a t a s e t = a r r a y ( chan , r e s o l u t i o n =0)
# ...with access to dataset.shape,
dataset.dtype, etc.

# Download the cutout from the channel into
a 3D numpy array
da t a = d a t a s e t [ 0 : 1 0 , 0 : 5 1 2 , 0 : 1 0 2 4 ] .

3.2.5. Data Visualization and Publication
Data can be quickly visualized using applications such as
Neuroglancer (Figure 12).

Data are published along with initial analysis, and made
widely accessible through BossDB. Other research teams can
then conduct additional analysis, extending and validating the
existing scientific findings.

4. DISCUSSION

Our data archive will enable scientists to easily access and process
large datasets, and to scale up their approaches with minimal
alterations and without needing large local storage. Because the
results are anchored to a universally-accessible datastore, it is
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FIGURE 9 | Volumetric Ingest throughput demonstrated over the complete ingest of a 50TB dataset in about 4 h.

FIGURE 10 | Tile Ingest throughput on demand of a 200 GB EM dataset using various scales of ingest operation.

easier for others to inspect the results, improve upon them, and
reproduce processing pipelines by leveraging common interfaces.

When considering a cloud-native approach, vendor lock-in is
one potential concern – as we not only use the AWS cloud to
deploy BossDB, but have integrated many of its services into the
system to substantially accelerate development and performance.
To minimize the development impact of expanding to an
additional cloud provider or on-premise cluster, future work is
needed to create a layer of abstraction between the core software
and AWS services. We plan to continue to develop toward a
microservices style architecture, which will decrease coupling

between sub-components. This will allow BossDB to be able
to independently scale sub-components and increase the ability
to easily deploy, update, and manage services. We believe that
storage engines will continue to specialize around datatypes (e.g.,
multi-dimensional image data, video data, gene sequence data)
and be applicable to multiple research communities through
the creation of domain-specific APIs that maintain the unique
formats, organization, and needs of that community.

We intend to continue to provide BossDB as a reliable
and scalable storage resource to the general microscopy and
biology communities in perpetuity. We expect that as the
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FIGURE 11 | A CloudWatch dashboard monitoring during ingestion.

FIGURE 12 | An example Neuroglancer web visualization backended by BossDB, showing public EM, segmentation, and mesh data generated during the IARPA

MICrONS Program (see text footnote 4).

community uses our data archive, additional tools will be
developed to address new researcher needs, such as a universal,
robust object-level metadata system and additional visualization
engines. Several other research groups have leveraged BossDB
deployments, including NeuroData (Vogelstein et al., 2018)
which serves a diverse range of collaborators utilizing several
imaging modalities (e.g., light microscopy, array tomography,
serial multi-photon tomography) and added several new tools
and capabilities to the BossDB ecosystem.

One concern about running a cloud data archive is estimating
and managing cost. BossDB architecture was designed to allow
dynamic scaling of resources to balance cost with performance
and throughput capacity. As our software stack continues
to mature, we plan to further optimize our tiered storage
architecture (e.g., automatic migration data between S3 Standard,
Infrequent Access, and Glacier tiers). The proposed system will
provide a framework that is able to trivially scale from terabytes

to petabytes while maintaining a balance between cost efficiency
and performance.

As modern neuroscience datasets continue to grow in size, the
community is fortunate to have several options to store and share
their data. The precomputed format (Maitin-Shepard, 2021)
offers a flexible, lightweight option that is readily deployable in
both local and cloud settings. As mentioned above, DVID (see
text footnote 1) is used to manage immutable and versioned
annotations at the terascale level. We believe that our BossDB
solution offers key advantages in scalability and indexing
(adaptable from gigabyte to petabyte storage); authentication to
manage user access workloads and costs; indexing to promote
data exploration and discovery; and managed services to ensure
that data is maintained and available in an efficient manner for a
variety of user workflows. For a given research lab (or even within
the lifecycle of a scientific question), one or more of these storage
solutions may be most appropriate to enable and share results.
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The standardization and scalability provided by our data
archive will support a fundamental change in how researchers
design and execute their experiments, and will rapidly accelerate
the processing and reuse of high-quality neuroscience, most
immediately for the large, petascale image, and annotation
volumes produced by IARPA MICrONS. No previously existing
platform met the operational and scaling requirements of
the program, including managing an estimated 3–5 petabytes
of image and annotation data—much larger than public
neuroanatomical data archives. The BossDB software and
documentation is open source and we are eager to expand
the user community, supported modalities, and features.
More information, examples and support are available at
https://bossdb.org and https://github.com/jhuapl-boss/.
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