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Diseases affecting the glomeruli of the kidney, the renal filtration units, are a leading

cause of chronic kidney disease and end-stage renal failure. Despite recent advances

in the understanding of glomerular biology, treatment of these disorders has remained

extraordinarily challenging in many cases. The use of experimental models has proven

invaluable to study renal, and in particular, glomerular biology and disease. Over the

past 15 years, studies identified different and very distinct pathogenic mechanisms that

result in damage, loss of glomerular visceral epithelial cells (podocytes) and progressive

renal disease. However, animal studies and, in particular, mouse studies are often

protracted and cumbersome due to the long reproductive cycle and high keeping

costs. Transgenic and heterologous expression models have been speeded-up by novel

gene editing techniques, yet they still take months. In addition, given the complex

cellular biology of the filtration barrier, certain questions may not be directly addressed

using mouse models due to the limited accessibility of podocytes for analysis and

imaging. In this review, we will describe alternative models to study podocyte biology

experimentally. We specifically discuss current podocyte cell culture models, their role in

experimental strategies to analyze pathophysiologic mechanisms as well as limitations

with regard to transferability of results. We introduce current models in Caenorhabditis

elegans, Drosophila melanogaster, and Danio rerio that allow for analysis of protein

interactions, and principle signaling pathways in functional biological structures, and

enable high-throughput transgenic expression or compound screens in multicellular

organisms.

Keywords: model organism, kidney diseases, podocyte, mechanosensation, glomerular filtration barrier

INTRODUCTION

Chronic kidney disease (CKD) is becoming an increasingly prevalent condition affecting almost
10% of the population in Western societies. The majority of kidney diseases that progress to end
stage renal failure start in the glomerulus, the renal filtration unit, as a consequence of a very
limited capacity of glomeruli for regeneration and the limited ability of terminally differentiated
glomerular podocytes for self-renewal (1). The glomerular filtration barrier consists of three
anatomic layers: fenestrated endothelial cells, the glomerular basement membrane and podocytes,
post-mitotic epithelial cells located at the outer aspect of the capillary loops (Figure 1B). These
cells enwrap the glomerular capillaries with their primary and secondary processes and form the
outer layer of the filtration apparatus. All three layers contribute substantially to the glomerular
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filtration barrier and can be affected in human disease. Due
to their exposed anatomic localization podocytes are constantly
challenged not only by oxygen radicals, cytokines, immune
complexes and inflammatory processes but also by mechanical
forces. Podocyte damage plays a pivotal role in most, if
not all, glomerular diseases that result in glomerulosclerosis
(2). As podocyte loss cannot easily be compensated by cell
proliferation the cells undergo hypertrophy, autophagy, and/or
dedifferentiation depending on the injurious insult (3). Podocyte
hypertrophy and the increase in cellular size and the covered
area of the GBM represent protective measures to ascertain
proper glomerular function. In contrast, dedifferentiation is
considered to be maladaptive resulting in albuminuria and
persistent podocyte loss. It has to be stressed, that the onset
of albuminuria and even nephrotic range proteinuria does not
require podocyte depletion. Mere cytoskeletal rearrangements,
i.e., foot process effacement, are sufficient to cause massive
albuminuria as often seen in patients with minimal change
disease (MCD). A condition which lacks evidence of pathology in
light microscopy but presents with vast foot-process effacement
in electron microscopy. In the event of progressive or severe
glomerular disease podocyte loss is the clue and patients develop
massive albuminuria in combination with irreversible scarring,
i.e., glomerulosclerosis (1, 4–7). Importantly, albuminuria and
chronic kidney disease are independently associated with an
increased risk for end stage renal failure and cardiovascular
disease (8–10).

The finding that independent pathways and pathogenic
principles contribute to the identical glomerular phenotype
described as focal segmental glomerulosclerosis (FSGS) seems
trivial but is of major importance. Podocytes are firmly attached
to the underlying glomerular basement membrane and form
a unique cell-cell contact to foot processes of neighboring
podocytes, a cell junction called slit diaphragm. This specialized
cell-cell contact is not only an integral part of the glomerular
filtration barrier but also serves as signaling hub to regulate
podocyte function (11). Over the past several years, various
constituents of the podocyte slit diaphragm cell junction have
been identified leading to the concept that the proteins at
the slit diaphragm regulate podocyte biology through active
signaling. The slit diaphragm bridges the distance between
two adjacent foot processes, thus allowing formation of a
filtration slit. In severe podocyte damage, the slit diaphragm
disappears and podocytes simplify structure and shape due to
cytoskeletal alterations, a process called foot process effacement
(8, 10). Until recently, the function of the glomerular filtration
barrier and the pathogenesis of proteinuria have not been
well understood. This has changed with the identification
of gene defects in (rare) human genetic diseases known
to cause congenital or childhood steroid-resistant nephrotic
syndrome and progressive glomerulosclerosis [for review see
(9)]. These studies identified distinct deregulated pathways that
independently contribute to podocyte injury and, potentially, loss
of podocytes. Podocyte depletion has long been known to be
the culprit of glomerulosclerosis and progressive loss of renal
function (12–14). As multiple different pathogenic mechanisms
result in proteinuria and FSGS lesions in kidney biopsies, it is not

surprising that several clinical trials including all FSGS patients
failed to provide newMCD/FSGS treatment options, e.g. the NIH
has spent multimillion dollars on clinical trials that did not yield
a single new drug for MCD/FSGS patients (15).

The advent of modern genetics with the development of
animal models with cell specific gene manipulation including
gene deletions and transgenic gene expression together with
systems biology has deepened our understanding of the biology
and physiology of the renal filtration barrier in states of
health and disease. Despite our tremendous advances in
understanding glomerular function and the contribution of the
specific anatomic compartments to the renal filtration barrier,
essential questions remain to be addressed as treatment of
glomerular disorders is still unspecific and primarily based on
various immunosuppressive regimens, including glucocorticoids
or blockade of the renin-angiotensin-aldosterone system (15).

In the past, the use of experimental models has proven
invaluable to study renal, and in particular, glomerular biology
and disease. Even after the introduction of novel gene editing
techniques, mouse models are time consuming. The relatively
long reproductive cycle, high keeping cost, and not least the
regulatory standards make these models less flexible. In this
review, we will describe alternative models to study podocyte
biology experimentally.

PODOCYTE CELL CULTURE

Podocyte cell culture models were the first models to study
podocyte biology and are still widely used (16, 17) as gene
and protein expression as well as environmental cues can
be easily manipulated in vitro for mechanistic analyses (18,
19). Multiple human, mouse, and rat podocyte cell lines have
been generated in the past (16, 17, 20–22). Most groups rely
on immortalized mouse or human podocyte cell lines which
are cultured under proliferative (33◦C) and growth-restrictive
(37◦C) conditions. These studies promoted our understanding
of glomerular diseases (19) as well as the cytoskeletal regulation
(23), cell cycle control (24), cell death mechanisms (25),
signaling pathways (26, 27) as well as protein degradation
(28).

However, certain limitations apply and have to be taken into
account when translating experimental findings from cultured
podocyte cell lines; podocytes in culture are cultivated on
petri-dishes as a monolayer in the absence of mesangial and
endothelial cells in close proximity. Podocytes in culture do
not encounter mechanical stretch nor the flow of primary urine
filtrate (29). Hence, it is not surprising that podocyte cell lines do
not form secondary processes with slit diaphragms in-between
neighboring cells and show only a very limited expression of
specific marker proteins including nephrin (30), podocin (31), or
transient receptor potential cation channel 6 (26, 32, 33).

In an attempt to further characterize these widely used work
horses of podocyte research our group recently applied modern
MS/MS technologies and created a comprehensive map at a
depth of more than 7,000 proteins expressed in proliferating
and differentiated cultured podocytes in vitro (26). To this
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end, we examined an immortalized mouse podocyte cell line
kindly provided by S. Shankland (Seattle, WA) as well as a
conditionally immortalized human podocyte cell line obtained
from M. Saleem (Bristol, UK), both are widely used cell-culture
models generated by either isolation of primary podocytes
from the immortomouse (34) or by retroviral transfection
of primary human podocytes with a temperature-sensitive
SV40 large T-cell antigen (35) (Table 1). The temperature shift
from 33 to 37◦C induces in both cell lines a proteostatic
shift. Undifferentiated podocytes express high abundance of
proteasomal proteins while differentiated podocytes express
high abundance of lysosomal proteins. Additional studies using
pulsed stable isotope labeling by amino acids in cell culture
(pSILAC) and protein degradation assays determined protein
dynamics and half-lives and revealed a globally increased
stability of proteins in differentiated podocytes. Mitochondrial,
cytoskeletal and membrane proteins were particularly stabilized

in differentiated podocytes. However, the expression levels of so-
called podocyte marker genes or podocytopathy gene products
varied significantly as compared to primary cells. Highest levels
were detected for Actin-regulating proteins comprising Myosin-
9 (MYH9) (36), rho GDP-dissociation inhibitor 1 (ARHGDIA)
(37) and alpha-actinin-4 (ACTN4) (5). Out of 15 podocytopathy-
associated genes linked to cytoskeletal function 8 were expressed
in the cultured cells (MYH9, ARHGDIA, ACTN4, anillin
(ANLN), inverted formin-2 (INF2), unconventional myosin IE
(MYO1E), synaptopodin (SYNPO), and podocalyxin (PODXL)
(22, 38–41). With respect to basement membrane proteins 4
out of 8 were quantified in undifferentiated and differentiated
human podocytes [CD151 antigen (CD151), integrin alpha-3
(ITGA3), integrin beta-4 (ITGB4), and laminin subunit beta-
2 (LAMB2) (20, 42, 43). In contrast, only one out of six
slit diaphragm proteins (CD2-associated protein (CD2AP) (44)
could be detected.

TABLE 1 | Expression profiles of podocyte-specific marker proteins known as determinants of cell specificity as suggested by Shankland et al. (26).

Protein name Gene name Cultured Human Podocyte

Proteome (45)

Cultured Mouse Podocyte

Proteome (26)

33◦C 37◦C 33◦C 37◦C

CYTOSKELETAL PROTEINS

Myosin-2 MYH2;

MYHSA2

– – – –

Podocalyxin POD+L + + + +

Synaptopodin SYNPO + + + +

Alpha-actinin-4 ACTN4 + + + +

BASEMENT MEMBRANE PROTEINS

Integrin alpha-3 ITGA3 + + + +

Integrin beta-1 ITGB1 + + + +

Integrin-linked protein kinase HEL-S-28;

ILK

+ + + +

SLIT DIAPHRAGM PROTEINS

CD2-associated protein CD2AP + + + +

Nephrin NPHS1 – – – –

Cytoplasmic protein NCK1 NCK1 + + + +

Cytoplasmic protein NCK2 NCK2 + + + +

Podocin NPHS2 – – – –

Short transient receptor potential

cation channel 6

TRPC6 – – – –

MEMBRANE PROTEINS

Type-2 angiotensin II receptor AGTR2 – – – –

T-lymphocyte activation antigen CD80

(Activation B7-1 antigen)

CD80 – – – –

P-Cadherin CDH3 – – – –

OTHER

Transcription factor 21

(podocyte-expressed 1)

TCF21

(POD1)

– – – –

Transforming growth factor beta-1/2 TGFB1/2 + + + +

Vascular endothelial growth factor A VEGFA – – – –

Wilms tumor protein 1 WT1 – – – –

Respective proteins are either marked as expressed (“+”) or not expressed (“–”) in the two examined cell culture conditions (33◦C = undifferentiated, and 37◦C = differentiated cells).

According to Schroeter et al. (45).
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MODEL ORGANISMS TO STUDY
PODOCYTE BIOLOGY

Caenorhabditis elegans with its short life cycle, completely
established cell lineage including a neuronal map (connectome),
compact and fully mapped genome, uncomplicated genetic
modification by feeding of RNAi-expressing E. coli, and cost-
effective keeping is a prime model for cell biology (46). In
addition and in contrast to other multicellular model organisms,
(genetically modified) individuals can be easily frozen, stored
for the longer term, and revived with immediate capability to
reproduce.

These characteristics make the nematode an ideal model
to study signaling pathways and functionality of proteins in a
multicellular organism and represent an advantage as compared
to mammalian models.

Principle signaling pathways like e.g., the insulin/mTOR
signaling cascade are generally well-conserved across species
(47). Along this line, the observation that the insulin/mTOR
pathway is induced and refers damage in podocytes with
mitochondrial dysfunction due to the loss of Prohibitin-2 (PHB-
2) was substantiated in C. elegans using worm strains expressing
fluorescence labeled DAF-16 (48). After heat-shock DAF-16 is
pooled in the nuclear compartment. Redistribution of DAF-16
to the cytoplasm depends on the activity of the insulin pathway.
Consistently with data from podocyte-specific PHB-2 knockout
mice, phb-2-deficient worms showed accelerated recovery of the
DAF-2 (insulin receptor) mediated cytosolic redistribution of
DAF-16.

However—with regard to glomerular research—C. elegans
does not contain a filtering excretory organ homolog to
the mammalian glomerulum. Nevertheless, ortholog genes in
analogs structures can be studied in the nematode to understand
principle mechanisms of podocyte morphogenesis and podocyte
slit-diaphragm function.

The mammalian slit diaphragm is composed of the
transmembranous immunoglobulin family proteins nephrin and
Neph1. Nephrin and Neph1 are lipid raft associated proteins that
refer outside-in signals by tyrosin phosphorylation. Mutations
in the nephrin encoding gene NPHS1 or lack of NEPH1 lead
to defective assembly of the foot processes and loss of the slit
diaphragm which becomes evident as (congenital) nephrotic
syndrome (49, 50). The adhesion molecules nephrin and Neph1
are well conserved across species. In C. elegans orthologs of
Neph1 and Nephrin are SYG-1 and SYG-2, respectively. SYG-1
and SYG-2 refer cell-cell recognition in synapse development
between the hermaphrodite specific neuron (HSN) and
specialized epithelial guidepost cells adjacent to the nematode’s
vulva muscle cells medially in the hermaphrodites’ soma. The
two HSN (HSNL and HSNR) localize to the lateral aspects
in the middle of the nematode and protrude their axonal
processes ventrally, where they innervate the vulvar muscle
cells and provide the neuronal circuit required for egg laying.
Interaction of SYG-1 on the HSN axon with SYG-2 expressed
on guidepost cells initiates intracellular signaling processes in
HSN to trigger synapse formation and maintenance (51, 52).
Mutations in either syg-1 or syg-2 fail to exhibit functional

synapses due to aberrant placement of presynaptic sites (53, 54).
Interestingly, heterologous expression of mammalian nephrin
or Neph 1, −2 or −3 can rescue phenotypes of mutant syg-1
or syg-2 (55, 56). The cytoplasmic tail of SYG-2 is required for
subcellular trafficking of SYG-2 itself, whereas the cytoplasmic
domain of SYG-1 is required for synapse formation but
dispensable in later stages (57). Although elegant ultrastructural
analyses in mammalian and avian glomeruli have challenged
the concept of heterophilic nephrin and Neph1 interaction
at the slit diaphragm, synapse formation at the HSN in
C. elegans may represent a suitable model to study signaling
mechanisms at the cytoplasmic domains of nephrin and Neph1
by visualization of synaptic vesicles in SNB-1::YFP transgenic
worms.

Another example for the utility of C. elegans in glomerular
research is based on the homology of mammalian podocin
and C. elegans MEC-2. Podocin is an essential constituent
of the mammalian slit diaphragm complex, whereas MEC-2
is part of the mechanosensory complex of C. elegans sensing
gentle touch. Both stomatin-like proteins share a central
stretch of hydrophobic amino acids which refers membrane
association while the amino and the carboxy terminal ends face
the cytoplasm. The highly conserved PHB domain mediates
homophilic interactions and lipid binding via palmitoylation,
creating the microenvironment that regulates signaling via the
associated ion channel proteins TRPC6 in mammals and the
DEG/ENaC channel MEC-4/MEC-10 in C. elegans (58–60).
This regulatory role of MEC-2 can not only be assessed by
quantification of mechanoreceptor channel currents but also in
functional in vivo assays measuring sensitivity to gentle touch
in adult hermaphrodites (61). In addition, regular localization of
MEC-2 and other components of the mechanosensory complex
in a characteristic punctate pattern on the six mechanosensory
neurons of C. elegans can be evaluated by staining with MEC-
2 specific antibodies or employing MEC-4::YFP transgenic
worms (28, 62). Identifying co-localization of the primarily
mitochondrial protein Prohibitin 2 (PHB-2) and MEC-4 in
mechanosensory punctae of touch receptor neurons in C.
elegans as well as partial loss of touch sensitivity in PHB-
2 knock down worms helped to establish the role of PHB-
2 as a slit-diaphragm protein (63). In a recent paper, the
ubiquitin ligase Ubr4 has been shown to control podocin
protein stability and conservation of this molecular mechanism
could be confirmed for MEC-2 in C. elegans assays, where
the loss of the Ubr4 ortholog C44E4.1 (ubr-4) resulted
in a more dispersed staining pattern of MEC-2 positive
punctae (28).

With regard to glomerular research, studying C. elegans is
instrumental as a functional read out for protein interactions,
trafficking and protein turnover as well as signaling of conserved
pathways in a multicellular organism. This holds true especially
for mammalian podocin, nephrin, Neph 1, and their orthologs.
A weakness of the nematode as a model of conserved principles
in mammalian (patho-)physiology as well as for compound
screens is the lack of organs homolog to heart, liver, central
nervous systems, and of course filtering organs like the
kidney.
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Drosophila melanogaster evolved as another high-capacity
model organism for glomerular research. Cell type specific gene
inactivation and editing make the fly a versatile, adaptable, and
expedite model. The reproductive cycle is around 12 days.

Similar to the nematode the Drosophila model allows to
study protein interactions in functional biologic structures. In
the fly adhesion molecules ortholog to mammalian nephrin
and Neph proteins called sticks’n stones/hibris (sns/hbs) and
kirre/dumbfounded (duf) are involved in cell-cell recognition,
and cellular signaling events to control adhesion, cell shaping,
and programmed cell death during eye development in
the fly. During embryonal development Drosophila’s facet
eyes develop from a single layered epithelium and remain
undifferentiated during almost the entirety of larval stages.
In the final differentiation steps heterophilic interactions
of sns/hbs and duf determine cell fate specification and
are required for patterning and separation of ommatidea
(64, 65).

During the last decade, research explored Drosophila
nephrocytes as a novel tool of cell biology. The term was initially
coined by Bruntz and Kowalsky, who discovered ammonia
carmin absorbing cells around the heart, the digestive organs,
and the nervous system in arthropods (66, 67). Nephrocytes are
specialized filtrating cells with high endocytic activity, that may
have detoxifying and sequestration function. In the adult fly there
are two populations of nephrocytes. The Garland nephrocytes,
which are assembled along the esophagus, and the pericardial
nephrocytes, which palisade the heart tube. Nephrocytes are large
cells with a surface laced by invaginations, so called labyrinthine
channels, and covered by a continuous basement membrane.
Near the apical surface the invaginations are abridged by a slit
diaphragm (Figure 1A). Loss of the nephrin ortholog sns or the
Neph ortholog duf results in loss of slit diaphragm structures,
smaller lacunae and thickening of the basement membrane (68).
Filtration across the pericardial nephrocyte slit diaphragm is
limited to substances smaller than 70 kDa (69). Molecules that
get filtered into the labyrinthine channels are taken up by the
nephrocyte via endocytosis (70). In this regard the nephrocyte
differs significantly frommammalian podocytes as to our current
understanding. Filtration across the nephrocyte slit diaphragm
as well as endocytosis can be assessed in assays on explanted
nephrocytes employing different tracers, like e.g., GFP-, labeled
albumin, horseradish peroxidase or dextrans of variable sizes
(68, 69, 71, 72).

A novel transgenic fly model expressing secreted atrial
natriuretic factor labeled with red fluorescent protein (ANF-
RFP) frommuscle cells and nephrocyte-specific green fluorescent
protein (GFP) combined with the option of nephrocyte specific
genemanipulation via a nephyrocyte specific Dot-Gal4 driver has
implemented an expedite and reliable screening tool for genes
associated with human disease (69). This model was employed
to screen Drosophila orthologs of human monogenic nephrotic
disease. Reassuringly, most of the pathogenic alterations were
conserved in the fly (71, 73). Loss of Coq2 or Rab GTPases e.g.,
leads to loss of labyrinthine channels and loss of function in
nephrocytes (71, 74).

In addition, rescue and overexpression studies with human
orthologs are possible in Drosophila knockout models. Both
eye and nephrocyte development were evaluated to identify a
conserved amino acidmotif inmammalianNeph1 to functionally
replace Drosophila duf, whereas neither Neph2 nor Neph3
showed similar effects (75).

In general, the fly is an ideal model organism for high-
throughput transgenic screens and rescue experiments, when
variants of ortholog human genes are expressed in the respective
drosophila knock out. The in vivo filtration assay or eye pattern
formation serve as reliable and expedite readouts.

Danio rerio, the zebrafish, provides a third model organism
of glomerular filtration. In striking contrast to the non-
vertebrate Drosophila and C. elegans models, the zebrafish forms
vascularized glomeruli in the pronephrons and the mesonephros
during development with the mesonephros maintained in adult
life. At the pronephros-stage the zebrafish kidney consists of
two fused glomeruli with connection to the aorta draining
primary urine into the pronephric tubuli followed by the
pronephric ducts (76). The pronephros glomeruli already contain
fenestrated endothelium, mesangial cells and podocytes that
form a functional slit diaphragm (77). In addition, genome
conservation of 70% between human and Danio rerio as well as
versatile morphlino techniques, CRSPR/Cas-based gene editing
and cross-species rescuemodels make the fish a primarymodel to
study glomerular disease. Loss of zebrafish nephrin and podocin,
which are specifically expressed in pronephric podocytes, leads
to the loss of slit-diaphragms early in development (78). As
in human nephrotic syndrome, pericardial edema, periocular
edema, and general edema develops. Likewise disruption of
zNeph1 or zNeph2 showed similar phenotypes (55). Besides
structural analyses functional assays of glomerular filtration
have emerged. Early on, the integrity of the filtration barrier
was monitored qualitatively on fixed tissue after injections of
large molecular weight dextran, which was detected in tubular
epithelial cells in case of disruption of the glomerular filter (78).
By now, several assays to quantify glomerular filtration have been
established. Amongst these are in vivo fluorescence measurement
in the eye or in large vessels in time-laps experiments
after injection of fluorescence-labeled 10-, 70-, and/or 500-
kDa dextrans (79). Another approach employs transgenic fish
expressing eGFP-labeled vitamin D-binding protein (eGFPDBP)
of a molecular weight of 78 kDa in the liver, which is repelled
from glomerular filtration in healthy fish but leaks into urine
in states of glomerular damage and can be quantified in the eye
(accumulation in control) and—as excreted protein—in the water
surrounding the fish (80).

ORGANOIDS

Generation of kidney organoids by differentiation of pluripotent
stem cells (IPS cells) or re-aggregation of single cell suspensions
of embryonic kidney cells in culture provided an important new
tool for the study of kidney development and disease (81, 82).

However, the delicate morphology of the glomerular
filter as well as the need for specific cellular interactions
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FIGURE 1 | (A) Immunofluorescence image of Drosophila nephrocytes stained with Duf (Neph1)-specific antibody (left tile) and electronmicrograph of the nephrocyte

apical membrane showing lacunae, slit diaphragm and basement membrane (right tile). (B) Electron micrograph of a murine glomerular capillary (left tile) and higher

magnification of the filtration barrier consisting of glomerular endothelium, basement membrane and podocyte foot processes (right tile).

and vascularization has hampered the study of glomerular
biology on kidney organoids. In addition, recent single cell
transcriptomic analysis of organoids has identified incomplete
differentiation of all kidney organoid cell types, including
podocyte progenitors (83).

In an elegant study, researchers generated organoids
mixing murine embryonic kidney cells and implanted
these organoids into nephrectomized athymic rats. They
describe differentiation of morphologically and functionally
intact glomeruli (84). In addition, the authors were able
to integrate human amniotic fluid stem cells into chimeric
organoids by mixing murine embryonic kidney cells and
human amniotic fluid stem cells before in vitro organoid
culture. Interestingly, also human amniotic fluid stem cells
generated functional podocytes. Similar results were recently
confirmed for human pluripotent stem cell derived organoids

transplanted under the renal capsule of immunocompromised
mice (85).

In conclusion, organoids will become a very important tool
also in glomerular research. Again the complexity of glomerular
structure and interaction of glomerular cell types is the major
challenge to overcome.

CONCLUSION

Research of the last two decades has boosted our understanding
of podocyte cell biology and genetics and provides growing
understanding of the composition of the renal filtration barrier
and cellular interactions needed to maintain its function.
Experimental work in podocyte cell culture models informed
on expression, trafficking, interaction and turnover of essential
proteins of podocyte function. However, cell culture studies
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in podocytes are limited due to the fact that podocytes in
culture lose their characteristic features. Cultured podocytes
lack the intricate foot process morphology, cell polarity is
incompletely preserved, and most importantly, intercellular
contacts are neither structurally nor functionally close to the
slit-diaphragm found in vivo. It is very clear that in vivo
models are needed to understand glomerular physiology and to
address podocyte diseases experimentally. Besides indispensable
rodent models, model organisms like C. elegans, Drosophila
melanogaster, and the zebrafish have entered the stage of
glomerular research and allow unparalleled functional analyses
of inter-cellular interactions and morphogenesis, signaling
mechanisms, cell polarity, and filtration in vivo. Kidney
organoids may become an additional important tool in the
future.
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