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ABSTRACT
The sliding-window-based dynamic functional connectivity network (D-FCN) has
been becoming an increasingly useful tool for understanding the changes of brain
connectivity patterns and the association of neurological diseases with these dynamic
variations. However, conventional D-FCN is essentially low-order network, which
only reflects the pairwise interaction pattern between brain regions and thus
overlooking the high-order interactions among multiple brain regions. In addition,
D-FCN is innate with temporal sensitivity issue, i.e., D-FCN is sensitive to the
chronological order of its subnetworks. To deal with the above issues, we propose a
novel high-order functional connectivity network framework based on the central
moment feature of D-FCN. Specifically, we firstly adopt a central moment approach
to extract multiple central moment feature matrices from D-FCN. Furthermore, we
regard the matrices as the profiles to build multiple high-order functional
connectivity networks which further capture the higher level and more complex
interaction relationships among multiple brain regions. Finally, we use the voting
strategy to combine the high-order networks with D-FCN for autism spectrum
disorder diagnosis. Experimental results show that the combination of multiple
functional connectivity networks achieves accuracy of 88.06%, and the best single
network achieves accuracy of 79.5%.
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INTRODUCTION
Autism Spectrum Disorder (ASD) is a childhood nervous system developmental
disorder and persists into adulthood. Its main clinical manifestations include social and
communication difficulties, restricted interest, repetitive behavior, and language
developmental disorder. According to the latest report by the Centers for Disease Control
and Prevention, about one in 59 American children is affected by some forms of ASD
and four times more common among boys than among girls. To date, there is no effective
way to completely cure ASD, individuals with ASD suffer from lifelong illness (Elisabeth
Fernell & Gillberg, 2013; Ecker, Bookheimer & Murphy, 2015). Therefore, it is of great
significance to diagnose and intervene ASD as early as possible for the improvement of
patients’ quality of life. Accurate brain imaging-based ASD diagnosis is still challenging
since brain anatomical and functional changes in this stage are considerably subtle. By far,
previous studies (Wang et al., 2020; Huang et al., 2018) have already indicated that
resting-state functional magnetic resonance imaging (RS-fMRI) can serve as a promising
imaging technique for ASD diagnosis.

RS-fMRI is an emerging neuroimaging technology, which uses blood oxygenation
level-dependent (BOLD) signals to explore the biomarkers of nervous system diseases and
has been successfully applied to the diagnosis of ASD. Functional connectivity (FC),
defined as the temporal correlation of BOLD signals in different brain regions, can exhibit
how structurally segregated and functionally specialized brain regions interact with each
other (Friston et al., 1993; Michael, 2008). FC network has been of great importance
for discovering the functional organization of human brain and searching for the
biomarkers of the neuropsychiatric disorders, such as Alzheimer’s disease (Chen et al.,
2017;Hao et al., 2017) and autism spectrum disorder (ASD) (Zhao et al., 2018;Wee, Yap &
Shen, 2016). Currently, researchers have proposed various FC network modeling methods
for ASD assisted diagnosis (Liu & Huang, 2020; Zhao et al., 2020; Zhao et al., 2021).
For example, Liu & Huang (2020) estimated the severity of ASD by multivariate model
analysis, and they found that some FCs suffer from abnormal alterations in ASD patients.
Zhao et al. (2021) proposed a unit-based personalized fingerprint feature selection
(UPFFS) strategy and applied to ASD, they found that the top selected discriminative brain
regions by UPFFS are related to visual processing, social cognition, and emotional
expression which is associated with ASD. Overall, previous studies have shown that FC
networks have great potential for revealing FC deficits and finding abnormal brain regions
in ASD patients.

Due to the complexity of human brain, the FC relationship among different brain
regions may be reflected at multiple levels. However, many previous studies usually used
the single characteristic of FC to construct FC network (Zhang et al., 2016;Wee et al., 2016;
Zhang et al., 2018). For instance, Wee et al. (2016) proposed a classification method
based on a sparse temporal dynamic network, and suggested that the temporal dynamic
information is crucial for accurate diagnosis of neurological disorders, but it failed to
capture the complex high-order FC pattern. Zhang et al. (2016) constructed a high-order
FC network to capture this second-level relationship using inter-regional resemblance of

Xie et al. (2021), PeerJ, DOI 10.7717/peerj.11692 2/25

http://dx.doi.org/10.7717/peerj.11692
https://peerj.com/


the FC topographical profiles, it is more sensitive to group difference, able to better capture
individual variability, and able to show more prominent modular structures. However, this
method is based on the assumption and FC is static pattern of it, which ignores the
dynamic characteristic of FC. The above two types of FC network are analyzed from the
view of dynamic and static high-order, respectively. Therefore, how to effectively simulate
the complex FC interaction pattern which combines dynamic and high-order is still an
important challenge.

Sliding window method is the popular method to construct dynamic FC network
(D-FCN). However, D-FCN reflects the pair-wise dynamic FC relationship between brain
regions and ignores the FC interaction pattern among multiple brain regions, in such a
sense, the D-FCN is called low-order D-FCN (LoD-FCN). Correspondingly, the FC
network which can reflect the FC relationship among multiple brain regions is called
high-order FC network. LoD-FCN is sensitive to the chronological order of its
subnetworks, which makes it difficult to make consistent and meaningful comparisons
among different subjects (Chen et al., 2016). Specifically, the FC subnetwork of LoD-FCN
depends on its relative position in the whole time series, if the relative positions of the two
FC subnetworks are switched, the LoD-FCNwill be changed. This leads to the sensitivity of
LoD-FCN to its subnetwork, which limits its use in comparative studies. In order to
eliminate the sensitivity, the central moment method was used to extract features from
LoD-FCN (Zhao et al., 2020, 2021). The central moment feature is a common translation
invariant feature, which reflects the shape information of the target and is often used in
feature extraction of sequences or waveforms. In theory, the change characteristics of a
random sequence can be better represented by central-moment features, the second-order
central moment (i.e., variance) can reflect the fluctuation level, third-order central moment
can reflect the skewness, and the fourth order central moment can reflect the kurtosis,
and so on. Note that the first central moment is equivalent to 0 in the mathematical sense,
we use the mean instead of the first central moment in this study.

Inspired from the LoD-FCN and the central moment method, we propose a novel
high-order FC network framework which reflects the interaction of low-order dynamic
FCs on the moment-level to measure brain high-order FC pattern. Specifically, we firstly
construct a LoD-FCN by the sliding window strategy, and then, the central moment
method is employed to extract central moment feature FC network (CM-FCN) from
LoD-FCN. We regard the row of the CM-FCN as the FC topographical profile of a special
brain region, reflecting the central-moment features of the FC time series from the
LoD-FCN. Then, the high-order FC is computed between two FC profiles. Each order
central moment reflects the statistical information of FC dynamic changes, and multiple
high-order FC networks can be constructed by changing the order number.

Our motivation is based on the hypothesis that FC of ASD children may change at the
moment-level, which may be due to miswiring during abnormal development. CM-FCN
reflects the topographical information of the center moment feature of dynamic FC,
which provides rich discriminative information for disease recognition and classification
(Zhao et al., 2020). However, CM-FCN is essentially a low-order network, since it
captures pair-wise FC topographical information. The current propose mothed provides
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diagnostic information for ASD by calculating the correlation between the central moment
statistical features of brain FC dynamic changes. This method includes both dynamic
characteristic of low-order FC and complex high-order FC pattern.

Taking variance as an example, the variance reflects the fluctuation level, the larger
the variance value of FC changes along time, the more unstable FC in the during scan.
As show in Fig. 1, the FC between the i-th (j-th) brain region and other brain regions is
dynamic. Whether the stability of FC between the i-th brain region and other brain regions
is related to the FC of j-th brain region with other regions, which can be reflected in
the correlation strength of variances. We propose that the FC changes between the i-th
brain region and other brain regions may related to the FC changes between the j-th brain
region and other brain regions. This interaction by calculating the correlation of central
moment features may provide important information for the diagnosis of ASD.

In summary, our high-order FC network has the following advantages: (1) it takes the
FC time-varying characteristics into account since it takes the LoD-FCN as the
infrastructure; (2) multiple high-order FC networks can be constructed by changing the
order of the central moment to represent the interaction patterns of brain regions; (3) the
discriminability can be further improved by integrating multiple high-order FC networks.

MATERIALS & METHODS
In this paper, lowercase letters (e.g., x) denote scalars, lowercase bold letters (e.g., x) denote
vectors, and uppercase bold letters (e.g., D) denotes matrices or FC networks. All FC
networks are stored in matrices, where each column (or row) denotes a vertex of the
corresponding FC network and the element denotes the associated weight of an edge
between two vertices.

Figure 1 The FC of the i-th (j-th) brain region and other brain regions.
Full-size DOI: 10.7717/peerj.11692/fig-1
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The flowchart of the proposed framework is illustrated in Fig. 2. Overall, there are four
steps, including (1) Constructing LoD-FCN; (2) Constructing CM-FCNs; (3) Constructing
high-order FC networks; (4) Feature extraction, feature selection, classification, and
combination.

Data acquisition and preprocessing
In this study, we conducted experiments on the Autism Brain Imaging Data Exchange
(ABIDE) database (Di Martino et al., 2014). We chose 45 ASD patients (36 males and
9 females) and 47 NC subjects (36 males and 11 females) aged between 7 and 15 years old,
scanned at New York University (NYU) Langone Medical Center. These subjects were
sociodemographic-matched, where there were no significant differences (p > 0.05) in
gender, age, and full intelligence quotient (FIQ) between ASD group and NC group.
The demographic information is summarized in Table 1. The diagnosis of ASD subjects
was based on the autism criteria sets in Diagnostic and Statistical Manual of Mental
Disorders, 4th Edition, Text Revision (DSM-IV-TR). In this work, only RS-fMRI data were
utilized for diagnostic study.

All subjects we selected underwent a 6-min scan using a 3T Siemens Allegra scanner at
NYU Langone Medical Center. During the RS-fMRI scans, all subjects were asked to

Figure 2 The flowchart of the proposed framework. Full-size DOI: 10.7717/peerj.11692/fig-2
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relax with their eyes open, and gaze at a white fixed cross in the middle of a black
background projected onto a screen to focus their attention prevent meditation with eyes
closed, which ensured the subjects do not have violent neural activity. During RS-MRI
scanning, eye movement was monitored by an eye tracker. When acquiring images, the
following parameters were used: TR/TE = 2,000/15 ms, flip angle = 90�, 33 slices per
volume, 180 volumes per scan, voxel thickness of 4.0 mm. The mean frame-wise
displacement (FD) was computed to describe head motion for each individual. Individuals
with mean FD larger than 1 mm were excluded for reducing the negative effect of head
motion (Lin et al., 2015; Ray, Gohel & Biswal, 2015).

Statistical Parametric Mapping (SPM8) software was adopted to preprocess the
acquired RS-fMRI data (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). The first 10
RS-fMRI images of each subject were discarded for magnetization equilibrium. Then, the
remaining images were spatially normalized into the Montreal Neurological Institute
(MNI) template space with resolution of 3 × 3 × 3 mm3. Other corrections were further
conducted, including the regression of nuisance signals (ventricle, white matter, global
signals, and head motion with Friston 24-parameter model), signal detrending, and
band-pass filtering (0.01–0.08 Hz) (Satterthwaite et al., 2013; Yan et al., 2013; Cordes et al.,
2001; Sophie et al., 2008; Tomasi & Volkow, 2010). Each brain image was then parcellated
into 116 regions according to the Automated Anatomical Labeling (AAL) atlas (Tzourio-
Mazoyer et al., 2002). Finally, the average of RS-fMRI time series within each brain region
was calculated, which was treated as the data matrix X 2 R170�116 for subsequent
processing, where 170 denotes the total number of temporal image volumes and 116
denotes the total number of brain regions.

Construction of low-order dynamic FC network
Let xi ¼ xi1; xi2; � � � ; xiMð ÞT i ¼ 1; 2; � � � ;Rð Þ denote the RS-fMRI time series associated
with the i-th brain region, whereM = 170 is the number of image volumes after discarding
the first 10 volumes, and R is the total number of brain regions.

We employ the sliding window strategy to generate LoD-FCN for encoding the
nonstationary interactions between different brain regions. Fig. 3 illustrates the steps of

Table 1 Demographic information of the subjects.

ASD NC p-values

Gender (M/F) 36/9 36/11 0.2135a

Age (mean ± SD) 11.1 ± 2.3 11.0 ± 2.3 0.773b

FIQ (mean ± SD) 106.8 ± 17.4 113.3 ± 14.1 0.0510b

ADI-R (mean ± SD) 32.2 ± 14.3c – –

ADOS (mean ± SD) 13.7 ± 5.0 – –

Notes:
ASD, Autism Spectrum Disorders; NC, normal control; M, male; F, female; FIQ, Full Intelligence Quotient; ADI-R,
Autism Diagnostic Interview-Revised; ADO, Autism Diagnostic Observation Schedule.
a The p-value was obtained by χ2-test.
b The p-value was obtained by two-sample two-tailed t-test.
c Two patients do not have the ADI-R score.
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LoD-FCN construction. Specifically, a sliding window with fixed length is utilized to
partition the RS-fMRI time series into K ¼ M �Wð Þ=sþ 1 overlapping segments
(Fig. 3A), where W is the length of sliding window and s is the translational step size of
sliding window. Let xi kð Þ (1 � k � K) denote the sub-series of the i-th brain region in the
k-th window. Then, for each segment, the short-time correlation between the i-th and the
j-th brain region is computed as:

qij kð Þ ¼ corr xi kð Þ; xj kð Þ� �
(1)

Thus, the subnetwork can be constructed as DLo kð Þ ¼ qij kð Þ
h i

1�i;j�R
(1 � k � K), the

LoD-FCN can be denoted as DLo ¼ DLo 1ð Þ; � � � ;DLo kð Þ; � � � ;DLo Kð Þ½ � (Fig. 3B). For two
specific brain regions, qij ¼ qij 1ð Þ; � � � ; qij kð Þ; � � � ; qij Kð Þ

� �
can reflect the dynamic

correlation between the i-th and the j-th brain regions along time (see Fig. 3F).
Note that the infrastructure of LoD-FCN will be destroyed if we change the relative

position of its subnetwork. The reason is that RS-fMRI scans along time, if the relative
position of two subnetworks is switched, the chronological structure of RS-fMRI will be
changed. Therefore, the subnetworks must be arranged in strict time order, i.e., LoD-FCN
is sensitive to the chronological order of its subnetworks.

Figure 3 The flowchart of LoD-FCN and high-order FC network construction. The ρij(k) denotes the
short-time correlation between i-th and j-th ROIs in k-th window, 1 ≤ k≤ K; The mij(d) is the d-th order
central moment feature of the FC time series, i.e., ρij = (ρij(1), ρij(2), : : : , ρij(K)); The hij denotes
high-order FC that obtained by calculating the correlation between the i-th and j-th rows of CM-FCN.

Full-size DOI: 10.7717/peerj.11692/fig-3
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Construction of CM-FCN
As mentioned above, LoD-FCN is sensitive to the chronological order of its subnetworks.
In order to eliminate the sensitivity, we adopt the central moment method to extract the
central moment feature FC network (CM-FCN) from LoD-FCN (see Fig. 3C). The d-th
central moment can be calculated by Eq. (2).

mij dð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1 qij kð Þ � �qij

� �d

K

d

vuut
(2)

where �qij ¼
PK

k¼1 qij kð Þ
K

is the average of all elements in qij. Thus, we can get the d-th order
CM-FCN as CM dð Þ ¼ mij dð Þ� �

1�i;j�R, and construct multiple CM-FCNs by varying d.
Specially, since mij dð Þ is equal to 0 when d = 1, we use the mean value (i.e., �qij) instead of
the first order central moment.

In CM dð Þ, an element, i.e.,mij dð Þ, denotes the fluctuation characteristic of FC along the
scanning time in a pair of brain regions, and the i-th row vector (denotes as mi dð Þ)
represents the characteristics of low-order dynamic FC for the i-th brain region and other
brain regions (see Fig. 3D).

Construction of high-order FC network
In order to find that how the fluctuation characteristics of FC interact with each other, we
use the high-order FC, obtained by calculating the correlation between any two rows of
CM dð Þ, reflecting the high-order interaction. The high-order FC hij dð Þ is calculated by:

hij dð Þ ¼ corr mi dð Þ;mj dð Þ� �
(3)

where the mi dð Þ ¼ mi1 dð Þ;mi2 dð Þ; . . . ;miR dð Þð Þ denotes the row of d-th order CM-FCN,
it means that the central moment features of dynamic FC of i-th brain region with other
brain regions.

Thus, we can get a high-order FC network asHo dð Þ ¼ hij dð Þ� �
1�i;j�R, when the value of

d is different, the high-order interaction information of high-order FC network reaction is
also different. For instance, the second-order central moment (i.e., variance) feature can
reflect the fluctuation level, the larger the variance value of FC time series, the more
unstable FC in during scanning. Thus, the hij 2ð Þ reflects that whether the stability of FC
between the i-th brain region and other brain regions relates to the FC stability of the j-th
brain region and other brain regions.

Feature extraction, feature selection, classification
For the l-th subject, we use its corresponding high-order FC matrices Ho dð Þ as raw
features. Considering the symmetry of each FC matrix, we only vectorize its lower
off-diagonal triangular part to define the feature vectors, i.e., yl dð Þ, for representing the l-th
subject. The dimensionality of yl dð Þ 1 � d � 10ð Þ is M M�1ð Þ

M , whereM denotes the number
of brain regions.
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The feature vectors yl dð Þ extracted from high-order FC network may include irrelevant
or redundant features for ASD diagnosis. Therefore, it is necessary to further select the
most-relevant features. To reduce noise features, we perform t-test and L1-norm
regularized least squares regression, known as LASSO (Tibshirani, 1996), for feature
selection. Specifically, for each feature from yl dð Þ, we perform a two-sample t-test between
NC and ASD subjects, due to its simplicity and efficiency. Then, we select the features only
with their p-values smaller than a certain threshold, denote as ŷðdÞ. After t-test, we
adopt the LASSO to further optimize the feature subset. Let xi ¼ wi1;wi2; � � � ;wicð ÞT
represent the weight vector for the feature selection task and I lð Þ is the class labels of ŷ dð Þ,
where I lð Þ ¼ 1 when the l-th subject is ASD and I lð Þ ¼ �1 when the l-th subject is NC.
Mathematically, the LASSO model can be described as follows:

1
2

XL
l¼1

Il � ŷ;xih i		 		2
2
þ�kxik1 (4)

where〈·, ·〉denotes the inner product operator, and λ is a regularization term. A value of
λ can make the solution xi sparser. By setting a proper value for λ, we can achieve sparse
feature selection, where features corresponding to the non-zero elements of xi are
retained. For simplicity, let y���l dð Þ represent the final feature set selected from the feature
vector y���l dð Þ.

After selecting the most-relevant features with t-test and LASSO, we use Support Vector
Machine (SVM) (Cortes & Vapnik, 1995) with simple linear kernel for disease
identification. SVM seeks a maximum margin hyperplane to separates the samples of one
class from the another, meanwhile minimizing the classification errors. The empirical risk
on the training data and the complexity of the model can be balanced by a hyperparameter,
thus ensuring the good generalization ability of the unknown data. Herein, we construct a
SVM model for each high-order FC network.

Experimental settings
In this work, we used the 10-times five-fold cross-validation strategy to evaluate the
effectiveness of the proposed method. All data were divided into five subsets of the same
size, with one part of each subset as the test set and the other four parts as the training set.
To avoid any possible bias in fold selection, the entire five-fold cross-validation process
was repeated 10 times, with a different random partitioning of samples each time. Note
that the hyperparameters in the process of the “Feature extraction, Feature selection,
Classification” were tuned based on the training subjects by a nested five-fold
cross-validation in order to avoid the effect of overfitting. Finally, the average statistics of
the 10 repetitions were reported. To compare different methods, we used the following
performance indexes: accuracy (ACC), sensitivity or true positive rate (TPR), specificity or
true negative rate (TNR), F1-score:

ACC ¼ TP þ TN
TP þ FP þ TN þ FN

(5)
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TPR ¼ TP
TP þ FN

(6)

TNR ¼ TN
FP þ TN

(7)

F1 ¼ 2� TP
2� TP þ FN þ FP

(8)

where TP, TN, FP, and FN indicate true positive, true negative, false positive and false
negative, respectively.

Since we construct the LoD-FCN by sliding windows and construct Ho-FCN based on
LoD-FCN, the window length (W) and translational step size (s) of the sliding window
may have an impact on the performance of the high-order FC network. We set the range of
W and s as W 2 30; 40; � � � ; 100½ �, s 2 2; 4; � � � ; 16½ �. And we set the order of central
moment from 1 to 10, i.e., d 2 1; 2; � � � ; 10½ � for constructing multiple high-order FC
networks.

RESULTS
The performance on high-order FC network
The number of the windows is K ¼ M �Wð Þ=sþ 1, it can be seen that changing the
sliding window length (W) and translational step size (s) alter the number of sliding
windows. At the same time, the number of LoD-FCN’s subnetwork will also be different.
Therefore, W and s affect the infrastructure of LoD-FCN, and then affect the structure of
CM-FCNs. This may lead to changes in high-order FC network performance. It is a
dilemma to choose an appropriate window length and step size, since the window length
should be short enough to capture short-term fluctuations while long enough to allow
robust FC estimation (Sakoglu et al., 2010). Thus, we optimize the performance of each
network by adjusting the values of parameters W and s.

Figure 4 displays the ACC achieved by high-order FC networks using different
combinations of W, s, and d values. We can see that when W = 30, s = 2 and d = 8, the
highest classification accuracy is obtained and the ACCs are greatly influenced byW, s, i.e.,
classification performance is rather sensitive to these parameters. Each high-order FC
network with varying d has different performance, indicating the high-order FC networks
contains different level information for ASD diagnosis. Therefore, we can draw that it is
necessary to select W and s carefully toward better understanding of dynamics in brains.

The best ACCs and corresponding W, s of the high-order FC networks are shown in
Table 2, where Ho (d) 1 � d � 10ð Þ denotes the high-order FC network based on d-th
order CM-FCN. We can see that there are some differences among the best ACC of
high-order FC networks, the best result is achieved when the d = 8, which is about 6%
higher than Ho (1). This indicates that the high-order FC networks contain different
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degrees information for ASD diagnosis. In addition, we notice that when the high-order
FC networks achieve the best performances, the values of W (or s) are different, which
indicates that the structure of LoD-FCN will affect the performance of the high-order FC
network.

The most discriminative features for ASD diagnosis
We used t-test, followed by LASSO regression, to identify the most discriminative features
in high-order FC networks. In this study, we used the frequency, at which features are
selected in all cross-validation cases, to quantify feature relevance to the target
classification. The high-order FCs with the highest frequencies during the 10-times
five-fold cross-validation were selected as the most discriminative connections.
The reported results were based on the original AAL atlas (with 116 brain regions)
(Tzourio-Mazoyer et al., 2002) for illustration.

Since not all of the 10 networks we have constructed have good classification accuracy,
in this subsection, we only analyze the high-order FC networks with the best classification
accuracy (i.e., Ho (8)). In Fig. 5 and Table 3, we show the results the top 10 most

Figure 4 The average ACC of high-order FC networks using different combinations of W and s. Full-size DOI: 10.7717/peerj.11692/fig-4
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discriminative features from Ho (8), where each link corresponds to a connectional
feature. Since the proposed high-order FC represents the correlation between the central
moment characteristics of the i-th brain region with other brain regions and the j-th brain
region with other brain regions (as shown in Fig. 3D), for simplicity, we only visualize the
connection between the i-th and the j-th brain region. Moreover, we calculate the
frequency of the 10 most discriminative features which selected from Ho (8).
The frequency is defined as the ratio of occurrence for brain region pairs in 10-times
five-fold cross-validations. For example, if a feature is selected 49 times, then its frequency
is 49/50 = 0.98, the related detailed information is shown in Table 3, where “.L” and “.R”
denote the brain region belong to left and right hemisphere, respectively. To evaluate
the significant differences between ASD and NC, the p-value at the 5% significance level of
each discriminative brain region pair computed based on two sample t-test is also listed in
Table 3. The p-values of discriminative features identified by our method are smaller
than 0.01, showing the significant between-group difference individually.

Table 2 The best performances of high-order FC networks.

Features W s ACC (%) TPR (%) TNR (%) F1 (%)

Ho (1) 60 14 72.86 72.00 73.68 72.30

Ho (2) 80 10 72.88 72.22 73.48 72.09

Ho (3) 90 14 73.63 72.88 74.33 72.69

Ho (4) 30 2 75.68 73.55 77.86 74.47

Ho (5) 100 14 73.83 79.55 68.48 74.64

Ho (6) 30 2 78.47 76.22 80.68 76.92

Ho (7) 90 10 74.19 73.77 74.60 73.51

Ho (8) 30 2 79.50 78.44 80.55 78.50

Ho (9) 90 10 75.67 74.00 77.28 74.78

Ho (10) 30 2 78.74 77.11 80.31 77.48

Figure 5 Illustration of top 10 most discriminative connections selected fromHo (8) with the highest
frequencies. SBN, subcortical nuclei regions; DMN, default mode network; VN, visual network; CER,
cerebellum; EAN, executive and attention network; SMN, sensorimotor network.

Full-size DOI: 10.7717/peerj.11692/fig-5
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In the previous study, 116 brain regions in AAL atlas were divided into six common
functional networks according to BrainNet Viewer software (Xia et al., 2013): the default
mode network (DMN), the execution and attention network (EAN), the sensorimotor
network (SMN), the visual network (VN), the subcortical nuclei (SBN) regions and the
cerebellum (CER). As shown in Fig. 5, half of the discriminative brain regions selected by
our method came from DMN and CER.

DISCUSSION
The influence of sliding window on high-order FC network
Due to the high spatial resolution, fMRI has become a powerful tool for studying
human brain. However, the temporal resolution of fMRI is limited by the hemodynamic
response function (HRF), which is usually sampled every few seconds. Sliding window
method is a commonly used approach to obtain dynamic FC based on RS-fMRI, which is
based on a temporal locality assumption. For a time series, if the rate of its actual
change is much slower than its sampling rate, the temporal locality assumption is correct.
In the case of RS-fMRI with task-free, the voxel time series are usually modeled as
convolution of neural activity and slowly changing HRF. From this view, the locality
assumption can be justified (Yaesoubi, Adalı & Calhoun, 2017).

The proposed high-order FC network framework is based on sliding-window-based
LoD-FCN, the parameters of the sliding window (i.e.,W, s) inevitably affect the results, and
the results shown in Fig. 4 also illustrate this point. For the RS-fMRI data used in this
paper, each subject underwent a 6-minute scan and 180 volumes were acquired, i.e., per
volume is sampled every 2 seconds. When the high-order FC network achieves good
results, the value of W and s are relatively small, such as Ho (6) (W = 30, s = 2), Ho (8)
(W = 30, s = 2) andHo (10) (W = 30, s = 2) (see Table 2). It can be understood as that when
the value of sliding window and translational step is too large, the number of temporal
windows will be reduced, and the span of each moving is too large, which assumed that the
mental activity of human brain will not change in a long time at resting state. And when

Table 3 The 10 most discriminative features from Ho (8).

Features Frequency p-value

III-Cb & III-VER 1.00 0.000

PreCG.L & IFGoperc.L 0.98 0.001

X-Cb & PCUN.R 0.96 0.000

II-Cb & LING.R 0.94 0.001

REC.L & PCG.L 0.94 0.000

OLF.R & IPL.R 0.88 0.000

II-Cb & IV-V-Cb 0.86 0.003

ORBinf.R & SFGmed.R 0.82 0.004

DCG.R & PCG.R 0.84 0.002

OLF.L & OLF.R 0.82 0.007
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the sliding window length and the translational step are large enough, the sliding-window-
based LoD-FCN may degenerate into C-FCN.

Compare with LoD-FCN
In order to validate the effectiveness of our high-order FC network, we compare it with
C-FCN and LoD-FCN. Specifically, the comparison method utilizes the C-FCNmatrix and
extracts statistical features based on central moment (i.e., CM-FCN) (Zhao et al., 2020)
and root-mean-square (RMS) (Chen et al., 2017) from LoD-FCN as original features, and
then perform feature selection for SVM classification. The best classification performances
of comparison methods are summarized in Table 4. In order to compare with other
methods intuitively, Fig. 6 shows the histogram of our method compared with other
methods.

As shown in Table 4 and Fig. 6, we can see that the classification performance of C-FCN
is better than RMS and some CM-FCNs, such as CM (1), CM (3), etc., while the
performance of CM (2) is better than C-FCN, RMS and other order CM-FCNs. It indicates
that the feature type of LoD-FCN has a great influence on its classification performance.
In addition, the classification performance of CM-FCN does not necessarily affect its
corresponding high-order FC network. For instance, the ACC of CM (2) is 79.18%, while
the ACC of higher-order FC network is 72.88%; the ACC of CM (8) is 74.86%, while
the ACC of higher-order FC network is 79.50%. This indicates that CM-FCNs and
high-order FC networks may provide complementary information in ASD diagnosis.

Combination of FC networks with voting strategy
For the binary classification task, the learner Et will predict a label from the label set {c1, c2},
and the voting is the most common combination strategy. In this study, we adopt

Figure 6 The histogram of our method compared with C-FCN, RMS and CM-FCNs.
Full-size DOI: 10.7717/peerj.11692/fig-6
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majority voting for combination, i.e., if a label gets more than half of the votes, it is
predicted to be that label, otherwise, the prediction is rejected. Formally,

fj ¼ cj; if
PT

t¼1 Et sð Þ ¼ cj >
T
2
;

reject; otherwise:

(
(9)

where fj 2 c1; c2f g denotes the label after the vote, Et sð Þ ¼ cj is the learner Et that predicts
the label of the s-th subject as cj 1 � j � 2ð Þ, T is the total number of the learners.

In general experience, in order to achieve good integration, individual learners should
have certain accuracy and differences among learners. From Tables 2, 4 and Fig. 6, we
can see that the classification accuracy of many classifiers is more than 70%, and there are
obvious performance differences between them. Therefore, we use multiple networks to
make voting decisions. The voting strategies are summarized in Table 5. Among them, C +
CM (2) + Ho (8) denotes the combination of C-FCN, second-order CM-FCN and
high-order FC network based on 8th order CM-FCN, RMS + CM (2) + Ho (8) denotes the
combination of RMS feature extricated from LoD-FCN, 2nd-order CM-FCN and
high-order FC network based on 8th order CM-FCN, the meanings of the other symbols
are similarly defined. The results of voting combinations are summarized in Fig. 7.

From Fig. 7, we can see that the classification performance is improved by voting
strategy fusion, while the fusion of different features improves the performance in different
degrees. It indicates that the available functional correlation information from single FC
network is limited and the FC information from different feature types can provide
complementary information in ASD diagnosis. For example, the classification accuracy of
RMS feature extracted from LoD-FCN is only 70.63%, which is lower than that of C-FCN.
However, after merging with second-order CM-FCN and high-order FC network based
on 8th order CM-FCM, the classification accuracy is higher than any one of them.
Moreover, we note that the integration of different features from the same network
improve indistinctly performance. For instance, the highest classification accuracy using a

Table 4 The best performances of C-FCN, RMS and CM-FCN.

Features W s ACC (%) TPR (%) TNR (%) F1 (%)

C-FCN – – 74.29 70.89 77.40 72.58

RMS 70 16 70.63 66.22 74.89 68.48

CM (1) 40 16 72.72 69.33 75.93 70.63

CM (2) 60 10 79.18 78.00 80.33 78.24

CM (3) 90 16 65.95 59.56 71.93 61.44

CM (4) 60 10 76.92 74.67 79.11 75.74

CM (5) 30 14 68.27 64.89 71.47 66.07

CM (6) 70 10 74.36 75.78 73.00 73.93

CM (7) 40 12 70.60 70.44 70.96 69.76

CM (8) 70 10 74.86 74.89 74.84 74.18

CM (9) 40 16 71.75 68.44 75.04 69.66

CM (10) 70 10 75.01 75.11 74.98 74.51
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single CM-FCN is 79.18%, but the accuracy of CM (2) + CM (4) + CM (10) is 81.86%, only
2.28% higher than 2nd order CM-FCN, and the accuracy of Ho (6) + Ho (8) + Ho (10)
only 1.64% higher than 8th high-order FC network.

In summary, through the voting strategy, we can draw the following conclusions: (1) by
combining, the performance has been significantly improved and the highest accuracy
has reached 88.06%; (2) the features from the same network may be less complementary,
and the fusion of different network types is more conducive to improve the accuracy;
(3) the selection of classifiers plays a key role in the fusion result, which relies on the
complementarity among classifiers.

Figure 7 The results of voting strategies, where the specific strategies are shown in Table 5.
Full-size DOI: 10.7717/peerj.11692/fig-7

Table 5 The voting with different feature type combinations.

Voting strategies The abbreviations in Fig. 7

C + CM (2) + Ho (8) A

RMS + CM (2) + Ho (8) B

CM (2) + CM (4) + CM (10) C

Ho (6) + Ho (8) + Ho (10) D

C + CM (2) + CM (4) + CM (10) + Ho (8) E

RMS + CM (2) + CM (4) + CM (10) + Ho (8) F

C + CM (2) + Ho (6) + Ho (8) + Ho (10) G

RMS + CM (2) + Ho (6) + Ho (8) + Ho (10) H

C + CM (2) + CM (4) + CM (10) + Ho (6) + Ho (8) + Ho (10) I

RMS + CM (2) + CM (4) + CM (10) + Ho (6) + Ho (8) + Ho (10) J
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Analysis of discriminative brain regions
The mean correlation coefficients (high-order FCs) of the discriminative features are
computed from NC and ASD children, respectively, which are shown in Fig. 8. There are
great differences between NC and ASD high-order FC, both positive and negative
correlations reflect genuine physiological processes (Goelman, Gordon & Bonne, 2014), the
positive correlations reflect synchronized activity between brain regions, while negative
correlations reflect a kind of anti-correlation or competitive relationship between brain
regions (Fox et al., 2009; Uddin et al., 2010). Among the selected brain region pairs, the
connections: PCUN.R & X-Cb, LING.R & II-Cb and OLF.R & IPL.R are showed positive
and negative correlation on ASD and NC, respectively, indicating that the FCs of these
connections may change from the original competitive relationship to the synchronous
relationship. In previous studies, PCUN is one of the brain regions which predominate in
DMN (Florian et al., 2013), and it is related to ASD (Urbain, Pang & Taylor, 2015);
Cerebellum involving in the fine motor function (Hampson & Blatt, 2015), and it may also
play an important role in cognition and emotion (Sui & Zhang, 2012); The OLF, which
may serve in ASD intervention (Woo & Leon, 2013), may also provide for a novel early
non-verbal non-task-dependent ASDmarker (Rozenkrantz et al., 2015); LING is one of the
brain regions responsible for visual processing; IPL is found to be linked to praxis
development (Wymbs et al., 2021). The above studies suggest that these brain regions are
associated with ASD. In the current study, the brain pairs: PCUN.R & X-Cb, LING.R &
II-Cb and OLF.R & IPL.R are negative correlation in ASD, but positive in NC, indicating
that these brain regions pairs changed from synchronous activity to competitive activity,
which is a serious brain FC lesion.

Other discriminative brain region pairs have different degrees of connectivity strength
changes, most of which come from DMN and CER. It is generally accepted that the DMN

Figure 8 The mean high-order FC value of NC and ASD.
Full-size DOI: 10.7717/peerj.11692/fig-8
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plays an important role in high-level cognitive functions, while abnormality of the DMN
can be observed across a range of neurological disorders (Murdaugh et al., 2012;
Washington et al., 2014). In the present study, the DMN is found that the failure of
modulating the deactivation of the DMN and the abnormal connectivity of DMN with
other regions have been found in ASD (Assaf et al., 2010; Kennedy, Redcay & Courchesne,
2006). PCUN.R, PCG.L, PreCG.L, OLF.R, SFGmed.R, REC.L belong to DMN. Besides the
DMN, many brain regions of cerebellum are selected, such as II-Cb, III-VER and so on.
Some recent studies have implicated cerebellar connectivity deficits in ASD patients (Khan
et al., 2015; Igelström, Webb & Graziano, 2017; Wang, Kloth & Badura, 2014). These
selected brain regions are consistently shown to be related to ASD pathology in the
previous studies (Urbain et al., 2016; Ha et al., 2015).

Analysis of connectivity between functional networks
Some intra-network and inter-network connections are abnormal in ASD, and these
abnormal connections are important for understanding ASD diagnosis. Some studies have
found that abnormal intra-network and inter-network connectivities in ASD (Liu &
Huang, 2020; Morgan et al., 2019; von dem Hagen et al., 2013). In the current study, the
discriminative brain regions are distributed over several common resting-state networks,
and the connections distributed over intra-network and inter-network, such as PCUN.R
and OLF.R belong to DMN, X-Cb belong to CER, IPL.R belong to EAN (see Fig. 5).

Figure 9 shows the interactions between the six functional networks. Figs. 9A and 9B
show the interaction matrix between two networks of NC and ASD, respectively, that is,
the average of the FCs between all of the brain regions in one network and all of the brain
regions in the other networks. As depicted in Fig. 9, the average connectivity strength
inside SMN of NC is higher than ASD, and the interaction between VN and CER of NC is
significantly higher than that of ASD. This shows that the connectivity strength between
some functional networks of ASD is reduced, which is reflected in the intra-network and
inter-network.

Figure 9 Analysis of the interaction between the six functional networks. (A) and (B) show the
interaction matrix between different brain networks of NC and ASD, respectively.

Full-size DOI: 10.7717/peerj.11692/fig-9
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The SMN is a large-scale brain network that is activated during motor tasks and plays
an important role in ASD-related studies. The social communication barriers, atypical
sensory responsivity, repetitive and restrictive behaviors and other behavioral defects
related to SMN have been included in the present ASD diagnostic criteria (Hannant et al.,
2016). Recent studies have shown that ASD patients show abnormal development of the
motor system (Hannant, Tavassoli & Cassidy, 2016; Mosconi & Sweeney, 2015; Tavassoli,
Hoekstra & Baron-Cohen, 2014; Floris et al., 2016). For example, Mosconi & Sweeney
(2015) suggested that sensorimotor deficits occur before social and communication deficits
and are primary features of ASD. Tavassoli, Hoekstra & Baron-Cohen (2014) indicated that
reduced sensory perception is associated with a greater number of autism symptoms.
In the current study, the result also shows that connectivity within SMN deficits in ASD
patients, which manifest as connectivity strength decreased.

The VN is responsible for the visual processing of human brain, and some brain regions
of VN have been found abnormal in ASD, such as right fusiform gyrus (Urbain et al., 2016)
and left calcarine (Perkins et al., 2015). The cerebellum plays an important role in both
higher cognitive functions and motor control and coordination (Hampson & Blatt, 2015).
Some studies have shown that have cerebellar connectivity defects in ASD patients
(Igelström, Webb & Graziano, 2016; Khan et al., 2015). In our study, the average
connectivity strength within VN and CER in ASD patients was slightly lower than that in
NC patients. However, the interaction between VN and CER manifests as significant
connectivity strength decreased. This indicates that the intra-network interaction between
VN and CER networks of ASD patients is abnormal.

Limitations
Our study has some limitations. Firstly, we employed the voting strategy based on
classifier-level fusion to fuse the network, which limits our exploration of which brain
regions have an impact on the fusion results. The discriminative brain regions play an
important role in the detection of functional connectivity abnormalities in ASD. In the
future work, we will explore feature-level fusion strategy to find useful discriminative brain
regions for ASD classification. Secondly, the sample size limits our study. ABIDE database
involved 17 international sites, among which the site NYU with the most data has 184
subjects (79 ASDs and 105 NCs). After our data preprocessing, only 92 subjects (45 ASDs
and 47 NCs) were retained. Such a small sample size seriously limits our research on the
generalization performance of the model, which is a common problem in the current
research on ASD classification.

CONCLUSION
In this paper, we proposed a novel high-order FC network framework, which is based on
the central moment features of the low-order dynamic FC network. The developed method
is simple and effective. It can not only avoid the time sensitive problem of dynamic
network, but also capture the high-order connectivity patterns among brain regions.
The experiments on ASD identification show that the high-order FC networks based on
different order central moments have certain complementarity, and the classification
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accuracy can be improved by effective combination. The proposed high-order FC network
is combined with other networks by voting strategies, and the classification accuracy
reaches 88.06%. We found that some connectivity deficits in ASD patients, especially the
directional changes of high-order FC in PCUN.R & X-Cb, LING.R & II-Cb and OLF.R &
IPL.R brain region pairs, and the connectivity within SMN, and the interaction between
VN and CER networks deficits in ASD patients.
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