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A B S T R A C T   

Background: IgA nephropathy (IgAN) stands as the most prevalent form of glomerulonephritis and 
ranks among the leading causes of end-stage renal disease worldwide. Regrettably, we continue to 
grapple with the absence of dependable diagnostic markers and specific therapeutic agents for 
IgAN. Therefore, this study endeavors to explore novel biomarkers and potential therapeutic 
targets in IgAN, while also considering their relevance in the context of tumors. 
Methods: We gathered IgAN datasets from the Gene Expression Omnibus (GEO) database. Sub-
sequently, leveraging these datasets, we conducted an array of analyses, encompassing differ-
ential gene expression, weighted gene co-expression network analysis (WGCNA), machine 
learning, receiver operator characteristic (ROC) curve analysis, gene expression validation, 
clinical correlations, and immune infiltration. Finally, we carried out pan-cancer analysis based 
on hub gene. 
Results: We obtained 1391 differentially expressed genes (DEGs) in GSE93798 and 783 DGEs in 
GSE14795, respectively. identifying 69 common genes for further investigation. Subsequently, 
GMFG was identified the hub gene based on machine learning. In the verification set and the 
training set, the GMFG was higher in the IgAN group than in the healthy group and all of the 
GMFG area under the curve (AUC) was more 0.8. In addition, GMFG has a close relationship with 
the prognosis of malignancies and a range of immune cells. 
Conclusions: Our study suggests that GMFG could serve as a promising novel biomarker and po-
tential therapeutic target for both IgAN and certain types of tumors.   

1. Introduction 

IgAN stands as the most common form of glomerulonephritis globally and represents a significant contributor to the progression of 
end-stage renal disease (ESRD) [1,2]. Within 20–30 years post-diagnosis, 30–40% of individuals afflicted with IgA nephropathy will 
progress to ESRD, resulting in substantial financial burdens for families, society, and even entire nations [3]. The prevalence of IgA 
nephropathy varies by country, with the highest occurrence rate observed in Asian countries, accounting for 50% of primary 
glomerulonephritis cases [4]. The current diagnostic gold standard for IgAN, kidney puncture biopsy, is universally shunned by pa-
tients due to its invasive nature, potentially leading to an underestimation of IgAN prevalence. Hence, it is imperative to identify 

* Corresponding author. 
E-mail address: mali19820712@163.com (L. Ma).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2024.e28997 
Received 3 December 2023; Received in revised form 22 March 2024; Accepted 27 March 2024   

mailto:mali19820712@163.com
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e28997
https://doi.org/10.1016/j.heliyon.2024.e28997
https://doi.org/10.1016/j.heliyon.2024.e28997
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 10 (2024) e28997

2

effective and reliable biological markers that can serve as non-invasive means of diagnosing IgAN. The recent surge in genome-wide 
association studies (GWAS) has unveiled links between diseases and susceptibility genes, offering fresh insights into the search for 
diagnostic markers in IgAN. 

As specified in the glomerulonephritis medical practice recommendations that Kidney Disease Improving Global Outcomes 
(KDIGO) released in 2021 [5], systemic corticosteroid treatment and clinical trial enrollment are recommended for patients with high 
risk of progressing to ESRD. However, there remains ongoing debate regarding the efficacy of these interventions. Therefore, it is 
imperative that we explore novel therapeutic approaches. In the last ten years, more and more biologics have been employed in the 
treatment of immune-related conditions, such as infliximab for ulcerative colitis [6] and rituximab for membranous nephropathy [7]. 
Despite IgA nephropathy being an immune-related disease, there are currently no widely recognized biological agents specifically 
tailored for its treatment. In order to facilitate the development of biologics specifically designed to treat IgAN, it is imperative that we 
continue to explore therapeutic targets intimately linked to the disease’s pathophysiology. The GEO database, which offers a wealth of 
sequencing data related to diseases, may serve as a valuable platform for uncovering potential therapeutic targets in IgAN. 

Remarkably, several studies have uncovered a connection between glomerular disorders and a diverse range of cancers, with a 
particular emphasis on hematological and solid malignancies [8]. IgA nephropathy, as the most prevalent glomerular condition, has 
been linked to solid respiratory tract malignancies, cutaneous T-cell lymphoma, and kidney cell carcinoma [8]. Furthermore, an 
increasing amount of data suggests that individuals with IgAN have a higher susceptibility to developing cancer compared to their 
healthy counterparts [9]. 

In this study, datasets from the GEO, GTEx, and TCGA databases were acquired to delve into the intricate relationship between 
IgAN and various malignancies. Our approach involved a multi-faceted analysis. Initially, we employed differential gene expression 
analysis, machine learning, and WGCNA to identify key genes at the core of this relationship. Subsequently, we conducted ROC 
analysis, gene expression validation, clinical correlation assessments, and immune infiltration analysis to validate the significance of 
the core gene in IgAN. Finally, to underscore the pivotal role of the core gene in malignancies, a comprehensive pan-cancer analysis 
was carried. In summary, this study holds the potential to provide fresh insights into the intricate interplay between IgAN and cancer. 
Additionally, it may help identify a prospective biomarker and therapeutic target, not only in the context of IgAN but also across a 

Fig. 1. The sketch of this study.  
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spectrum of malignancies. For a detailed depiction of the study’s methodology, please refer to Fig. 1. 

2. Materials and methods 

2.1. Collecting and processing data 

The datasets (GSE14795, GSE93798, and GSE37460) were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/geo/) 
[10]. A summary of the specifics can be found in Table 1. To identify differentially expressed genes (DEGs) in GSE14795, we employed 
the R package "limma" [11]. The criteria used for this analysis were |logFC| > 0.5 and P-value <0.05. The modules in GSE93798 that 
exhibited the strongest association with IgAN were selected using the "WGCNA" method [11]. The validation dataset GSE37460 was 
utilized to validate the main genes expression and their diagnostic utility. 

2.2. GO and KEGG pathway enrichment analyses 

We utilized the "jvenn" tool (http://jvenn.toulouse.inra.fr/app/example.html) [12] to select interacting genes between GSE14795 
and GSE93798. The enrichment analyses were conducted by using the Database for Annotation, Visualization, and Integrated Dis-
covery (DAVID; https://david.ncifcrf.gov/tools.jsp) based on aforementioned genes [13]. 

2.3. Selecting and validation of diagnosis biomarkers in IgAN 

Three machine learning algorithms, namely Random Forest (RF) [14], LASSO [15], and SVM-RFE [16], were employed to identify 
the primary IgAN biomarkers. For RF, we used the "randomForest" [17] and "caret" [18] R packages. The "glmnet" R package was used 
to perform LASSO [19]. The "e1071" R package was used to conduct SVM-RFE [20]. Genes were considered important if they were 
identified by all three techniques. ROC analysis was used to evaluate the diagnostic significance of these significant genes. Subse-
quently, GSE37460 was then employed as the validation dataset to validate the expression levels and diagnostic usefulness of these 
significant genes. 

2.4. Clinical correlation analysis 

The Nephroseq V5 database (https://v5.nephroseq.org) [21] contains clinical traits and gene expression data. To investigate the 
correlation among the important genes and clinical characteristics of IgAN, we integrated these genes into the database. 

2.5. Immune infiltration analysis 

We employed the "CIBERSORT" algorithm [22] to investigate the connection among immune infiltrated cells, IgAN, and the 
expression levels of key genes. 

2.6. Pan-cancer analysis 

Pan-cancer datasets were obtained from the University of California, Santa Cruz (UCSC) (https://xenabrowser.net/) [23]. Dif-
ferential expression analyses of the main genes were conducted in various cancer types using R software (version 4.1.3) [24]. To 
explore the association between important genes expression and malignancies prognosis, cox regression analysis was constructed using 
the R package "survival" [25]. We discovered the association between crucial genes and immune infiltrated cells in malignancies using 
the TIMER [26], xCELL [27], and EPIC algorithms [28]. Finally, in order to ascertain the connection between significant genes and 
previously investigated immune checkpoint genes, we lastly ran Pearson’s correlation analysis. 

3. Results 

3.1. Identification of the common genes in IgAN 

We obtained two datasets, GSE14795 and GSE93798, for use as training sets in identifying crucial genes in IgAN. The analysis of 
differential gene expression in the GSE14795 dataset resulted in 783 DEGs. Fig. 2 (A, B) displays a heatmap and a corresponding 
volcano plot to visualize these findings. Meanwhile, WGCNA network was constructed using the GSE93798 dataset, leading to the 

Table 1 
Microarray datasets of IgA nephropathy.  

Series Platform GeneChip Samples 

GSE14795 GPL96 [HG-U133A] Affymetrix Human Genome U133A Array 20 
GSE93798 GPL22945 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 42 
GSE37460 GPL14663 Affymetrix GeneChip Human Genome HG-U133A Custom CDF 35  
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retrieval of 1391 genes by selecting the brown and turquoise modules with the strongest association with IgAN (Fig. 3A–F). Ultimately, 
by examining the intersection of DGEs and module genes, we identified 69 common genes, as depicted in Fig. 4A. 

3.2. GO and KEGG pathway enrichment analysis 

Based on the common genes, we performed enrichment analysis for KEGG and GO analysis. The Molecular Function (MF), Cellular 
Component (CC), and Biological Process (BP) components were included in the GO results [29]. Fig. 4B illustrates the top five terms in 
each component. Among the BP terms, the positive regulation of cell migration and proliferation exhibited an abundance of these 
common genes. In the CC category, cytosol, nucleus, and cytoplasm were the top three terms. Regarding MF, the common genes were 
connected to protein and protein kinase binding. The JAK-STAT signaling pathway may be crucial in the development of IgAN, ac-
cording to the findings of the KEGG pathway. 

3.3. Identification of GMFG as the biomarker in IgAN and its clinical correlation analysis 

We utilized three analysis techniques (Random Forest, SVM-RFE, and LASSO) to select the core gene in IgAN among genes dis-
playing the same expression patterns in the training sets (Fig. 5A–G). Remarkably, the three algorithms produced one overlapping 
gene, GMFG (Fig. 5H), suggesting that GMFG may be the primary IgAN biomarker. Subsequently, we conducted a clinical correlation 
study of GMFG using the Nephroseq V5 database. The results revealed a positive association between GMFG and serum creatinine, and 
an inverse relationship with age and glomerular filtration rate (GFR) (Fig. 6A–C). 

3.4. Validation of the expression level and assessment of the diagnostic value of GMFG 

To validate the expression level and diagnostic utility of GMFG, we used GSE14795 and GSE93798 as training sets (Fig. 7A–D). The 
findings demonstrated a statistically significant increase of GMFG expression in IgAN group, with both AUC values exceeding 0.8, 
indicating a strong diagnostic potential for GMFG in IgAN. As a validation set, we employed GSE37460 to verify GMFG expression and 
diagnostic utility (Fig. 7E–F). Once again, the results indicated elevated GMFG expression in IgAN and an AUC exceeding 0.8. 

3.5. Immune infiltration analysis in IgAN 

Realizing that IgAN is an autoimmune illness and the most common primary glomerular disease, we conducted an immune 
infiltration analysis to assess the extent of immune cell invasion in IgAN and the relationship between GMFG and immune cells 
(Fig. 8A–E). The expression levels of neutrophils, resting memory CD4 T cells, activated NK cells, resting dendritic cells, macrophages 
M2, naive B cells, macrophages M1, CD8 T cells, and resting NK cells were different between IgAN and healthy (P < 0.05) (Fig. 8C). 
Notably, the expression of CD8 T cells, activated NK cells, macrophages M2, resting dendritic cells, and macrophages M1 increased, 
while others decreased in IgAN. Furthermore, the strongest associations were observed between GMFG and neutrophils and resting 
dendritic cells (Fig. 8E). 

Fig. 2. The volcano plot (A) and heatmap graph (B) of GSE14795.  
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3.6. The results of pan-cancer analysis 

Our study investigated GMFG expression across various malignancies using tumor-related datasets from TCGA and GTEx databases 
(Fig. 9A–B). Elevated GMFG expression levels were observed in several tumors, including KIPAN, STES, GBM, ESCA, HNSC, STAD, 
KIRC, and CHOL, across 26 distinct tumor expression datasets. Combining datasets from 34 cancers confirmed increased GMFG 
expression levels in GBM, OV, LIHC, STES, CHOL, STAD, HNSC, KIRC, LGG, SKCM, GBMLGG, PAAD, TGCT, and KIPAN, suggesting its 
potential oncogenic role in these cancers. Prognostic analysis using UCSC database showed high GMFG expression negatively 
correlated with OS in tumors such as LGG, KIPAN, LAML, GBMLGG, and UVM, while positively associated with OS in tumors like 
BRCA, CESC, and LUAD (Fig. 10A–C). Furthermore, analysis using TIMER database revealed associations between GMFG expression 

Fig. 3. The WGCNA network of GSE93798. (A) The sample clustering of GSE93798. All samples were divided into two clusters. (B) The identi-
fication of optimal soft threshold (β = 9). (C) The gene clustering dendrogram and corresponding module colors. (D) Module-trait relationships. 
(E–F) Module membership vs. gene signification scatter plot of IgAN in turquoise and blue modules. 
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and immune cell infiltration levels across various malignancies, with significant links observed in LGG, COAD, SKCM-M, and others 
(Fig. 11A–C). Evaluation of common immunological checkpoints also showed close correlation with GMFG expression in tumors 
(Fig. 11D). 

4. Discussion 

IgAN stands as the most prevalent form of glomerulonephritis globally, and it shares characteristics with autoimmune disorders, 
often leading to a challenging prognosis [30]. The cornerstone of IgAN diagnosis remains kidney biopsy. However, IgAN can manifest 
with a spectrum of symptoms, ranging from asymptomatic microscopic hematuria to a rapid decline in renal function accompanied by 
persistent proteinuria [31]. Due to the invasive nature of kidney biopsy, many patients with mild symptoms tend to defer the pro-
cedure, resulting in delayed diagnosis, often leading to the presence of stage 3 or stage 4 chronic kidney disease (CKD) by the time of 

Fig. 4. (A) The identification of 69 overlapped genes between selected modules and DEGs. (B) The top 5 terms in GO and KEGG pathway 
enrichment analysis. 
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biopsy [32]. Additionally, owing to the absence of specific drugs, the primary treatment for IgAN is currently optimal supportive care, 
which, regrettably, does not prevent the progression of IgAN to end-stage renal disease [33]. As a result, targeted therapy has emerged 
as a modern approach for treating immune-related disorders. Although targeted treatment plans for IgA nephropathy are still under 
development, the search for novel biomarker genes for early IgAN diagnosis and targeted therapy is of paramount importance. 

The field of molecular research has undeniably witnessed explosive growth over the past decade, with genome-wide analyses 
playing a prominent role in uncovering novel insights into disease pathophysiology and laying the groundwork for more accurate early 
disease detection and management [34]. In this context, the GEO database stands as a freely accessible repository, housing a wealth of 

Fig. 5. The selection of special genes. (A) The confirmation of common expression pattern genes in GSE14795 and GSE93798. (B) The biomarkers 
selection by the support vector machine-recursive feature elimination (SVM-RFE) technique. (C–D) The feature genes identification by using the 
least absolute shrinkage and selection operator (LASSO) model. (E–G) The selection of significant genes by Random Forest. (H) The Venn graph of 
three machine learning results. 

Fig. 6. The clinical correlation analysis of GMFG. (A) The expression of GMFG is negatively connected with GFR. (B) The expression of GMFG is 
positively correlated with serum creatine level. (C) The expression of GMFG is negatively connected with age. 
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high-throughput microarray genomic datasets and second-generation sequence datasets. It serves as a pivotal platform for delving into 
the molecular underpinnings of disease development [35]. The utility of the GEO database is evident in the multitude of studies that 
have harnessed its potential to explore target genes and the underlying mechanisms of various diseases, including conditions like 
rheumatoid arthritis [36], inflammatory bowel disease [37], and different types of tumors [38]. In our pursuit of potential target genes 
for the early diagnosis and management of IgAN, we have adopted a comprehensive approach in this study. We amalgamated WGCNA, 
machine learning techniques, and immune infiltration methodologies to conduct a thorough and in-depth examination of IgAN-related 
datasets within the GEO database. 

Fig. 7. The expression validation and ROC analysis of GMFG in GSE93798, GSE14795, and GSE37460. A–C: The expression level of GMFG is up- 
regulated among the three datasets. D–F: The AUCs of GMFG are more than 0.8 among the three datasets. 
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In our study, we conducted an intersection analysis between the 1391 module genes from the GSE93798 dataset and the 783 DGEs 
from the GSE14795 dataset, identifying 69 common genes for further investigation. Subsequently, we carried GO and KEGG pathway 
enrichment analyses. The KEGG results were enriched in the Janus kinase-signal transducer and activator of transcription (JAK-STAT) 
signaling pathway, pathways associated with cancer, Kaposi sarcoma-associated herpesvirus infection, and human cytomegalovirus 
infection. Notably, the GO analysis indicated that all of the identified genes were correlated with processes related to the positive 
regulation of cell proliferation and migration, cell components such as the cytosol and nucleus, and functions involving the binding of 
proteins and protein kinases. The JAK-STAT signaling pathway is a critical intracellular route that responds to extracellular signals, 
such as chemokines and cytokines [39]. Several studies have suggested that the JAK-STAT pathway is active in IgAN and may 
contribute to the development of galactose-deficient IgA1, a key component in the pathogenesis of IgAN [39]. As such, these shared 
genes may indeed play a pivotal role in the pathogenesis of IgAN, particularly through their involvement in the JAK-STAT pathway. 

We employed three machine-learning methods to pinpoint the hub gene, and the results consistently pointed to GMFG as the key 
gene. To validate the significance of GMFG as a potential biomarker in IgAN, non-rank sum tests and ROC analysis were performed on 
both the training and validation datasets. These analyses aimed to confirm GMFG’s expression level and its diagnostic utility in IgAN. 
The findings from both datasets consistently demonstrated that IgAN exhibited higher levels of GMFG expression compared to control 
groups. Notably, the AUC values in the ROC analysis exceeded 0.8, underscoring the strong potential of GMFG as a biomarker for early 
diagnosis and treatment of IgAN. Furthermore, we conducted clinical correlation analyses on GMFG, which unveiled valuable insights. 
GMFG expression levels exhibited a negative correlation with age and GFR but a positive correlation with serum creatinine. These 
results suggest that GMFG expression levels are closely associated with the severity of IgAN. Consequently, GMFG emerges as a 
candidate diagnostic marker and a valuable prognostic indicator in the context of IgAN. 

Glia maturation factor (GMFG), primarily synthesized in inflammatory cells, is now recognized as a novel member of the actin 
depolymerization factor/cofilin superfamily of proteins [40]. Research indicates that GMFG plays a pivotal role in regulating the 
chemotaxis of neutrophils, lymphocytes, and monocytes, making it an integral component of the body’s inflammatory response [41]. 
IgA nephropathy (IgAN) is well-documented to typically develop in the wake of pathogenic invasions of the mucosa, and the in-
flammatory response holds a central position throughout the course of the disease [42]. When pathogens infiltrate the mucosal barrier, 
GMFG might act as a chemoattractant, guiding neutrophils and T cells to the site of infection. Subsequently, these immune cells release 
various inflammatory factors, initiating a cascade of inflammatory reactions. Moreover, our study has demonstrated a high expression 
of GMFG in IgAN. Based on these findings, it is reasonable to hypothesize that GMFG may substantially contribute to the onset of IgAN 
by triggering robust inflammatory responses. This points to the potential importance of GMFG in the pathogenesis of IgAN, particularly 
in the context of orchestrating heightened inflammatory reactions. 

IgAN stands as the most prevalent form of primary glomerulopathy, and it also presents characteristics of an autoimmune condition 

Fig. 8. The immune infiltration analysis. (A) The stacked chart of 22 immune cell subpopulations comparing IgAN and healthy samples. (B) The 
heatmap of 22 immune cell subpopulations in samples of GSE93798. (C) The bar graph indicates the different expression levels of 22 immune cells 
in IgAN versus healthy samples. (D) The heatmap performed the relationship between 22 immune cells in IgAN and healthy samples. (E) The 
correlation between immune cells and GMFG. 
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[43]. To gain insights into the extent of immune cell infiltration in IgAN, we conducted an immune infiltration study using the dataset 
GSE93798. The expression of several immune cell types, such as resting memory CD4 T cells, neutrophils, activated NK cells, resting 
dendritic cells, macrophages M2, CD8 T cells, macrophages M1, naive B cells, and resting NK cells, was found to differ statistically 
significantly between the IgAN and control groups. The "multi-hit" hypothesis [44], posits that when B cells are activated by pathogens, 
they may produce significant quantities of Gd-IgA1, a key factor in the development of IgAN, which is associated with a decline in 
naive B cells [45]. Studies have also suggested that NK cells may contribute to the pathophysiology of IgAN by promoting an in-
flammatory environment [46], which could explain their elevated presence in IgAN. Furthermore, previous research on IgAN has 
pointed to the involvement of various immune cell types in the disease process, such as T cells and dendritic cells stimulating Gd-IgA1 
production [47,48], and macrophage polarization leading to kidney fibrosis in IgAN [49]. In line with these findings, our research has 

Fig. 9. The expression levels of GMFG in cancers. (A) GMFG expression levels across cancer types in the TCGA dataset. (B) GMFG expression levels 
across cancer types in the TCGA and GTEx datasets. 

Fig. 10. The relationship between CYFIP2 and pan-cancer prognosis. (A)The correlation between GMFG expression and DSS in tumors. (B) The 
correlation between GMFG expression and OS in tumors. (C) The correlation between GMFG expression and PFI in tumors. 
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revealed strong correlations between GMFG and active NK cells, resting dendritic cells, neutrophils, and naive B cells, further 
bolstering the case for GMFG’s potential as a biomarker in IgAN. These correlations suggest that GMFG may play a role in immune cell 
regulation in IgAN and could be a valuable indicator of disease activity and progression. 

In a comprehensive pan-cancer investigation, these findings illustrate that GMFG plays diverse roles in various malignancies. 
Several studies have contributed to our understanding of GMFG’s role in cancer. For instance, it has been shown to inhibit the growth 
of lung cancer by activating the p53 signaling pathway [50]. In the case of LGG, which exhibit higher levels of GMFG expression, it has 
been associated with worse overall survival [40]. Furthermore, GMFG has been found to play a critical role in the metastasis of 
epithelial ovarian cancer and colorectal cancer [51,52]. Analysis also revealed significant correlations between GMFG and various 
immune cell types, aligning with findings in IgAN. Additionally, GMFG showed strong associations with existing immunological 
checkpoint genes in tumors, suggesting its potential as a new immune checkpoint for cancer treatment. 

While our study has extensively explored diagnostic biomarkers in IgAN and expanded its findings to pan-cancer analyses, it is 

Fig. 11. The role of GMFG in cancer immune response. (A) xCELL immune score. (B) EPIC immune score. (C) TIMER immune score. (D) The 
correlation of GMFG with immune checkpoint genes. *p < 0.05, **p < 0.01, ***p < 0.001. 

X. Deng et al.                                                                                                                                                                                                           



Heliyon 10 (2024) e28997

12

important to acknowledge certain limitations in our work. Firstly, despite our efforts to validate the biomarker in various datasets, it is 
crucial to conduct in vivo or in vitro experiments to further confirm the robustness and functional significance of GMFG as a potential 
biomarker. Secondly, as there has been no previous report on GMFG in the context of IgAN, more in-depth research is needed to 
investigate the underlying mechanisms through which GMFG may be involved in the pathophysiology of IgAN. This could illuminate 
its specific role in the disease. Thirdly, while the prognostic analysis of GMFG in IgAN shows promise, it is based on available data and 
requires further validation through additional clinical investigations to strengthen its reliability and applicability as a prognostic 
indicator. Addressing these limitations will be crucial for developing a more comprehensive understanding of GMFG’s role in IgAN and 
its potential as a diagnostic and prognostic marker in both IgAN and cancer. 

5. Conclusion 

In summary, our study has identified GMFG as a significant diagnostic and prognostic marker not only in IgAN but also across 
various cancer types. This suggests that GMFG holds promise as a valuable diagnostic tool and a potential therapeutic target for IgAN 
and malignancies. 
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