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ABSTRACT  Objective: This work presents a device for non-invasive wound parameters assessment,
designed to overcome the drawbacks of traditional methods, which are mostly rough, inaccurate, and painful
for the patient. The device estimates the morphological parameters of the wound and provides augmented
reality (AR) visual feedback on the wound healing status by projecting the wound border acquired during
the last examination, thus improving doctor-patient communication. Methods: An accurate 3D model of
the wound is created by stereophotogrammetry and refined through self-organizing maps. The 3D model
is used to estimate physical parameters for wound healing assessment and integrates AR functionalities
based on a miniaturized projector. The physical parameter estimation functionalities are evaluated in terms
of precision, accuracy, inter-operator variability, and repeatability, whereas AR wound border projection is
evaluated in terms of accuracy on the same phantom. Results: The accuracy and precision of the device
are respectively 2% and 1.2% for linear parameters, and 1.7% and 1.3% for area and volume. The AR
projection shows an error distance <1 mm. No statistical difference was found between the measurements
of different operators. Conclusion: The device has proven to be an objective and non-operator-dependent
tool for assessing the morphological parameters of the wound. Comparison with non-contact devices shows
improved accuracy, offering reliable and rigorous measurements. Clinical Impact: Chronic wounds represent
a significant health problem with high recurrence rates due to the ageing of the population and diseases such
as diabetes and obesity. The device presented in this work provides an easy-to-use non-invasive tool to obtain
useful information for treatment.

INDEXTERMS Augmented reality, wound healing assessment, non-invasive measurements, chronic wound,
non-invasive, non-contact, miniaturized projectors, doctor-patient communication.

Adequate monitoring of wound condition is crucial for

Chronic wounds, including vascular ulcers, pressure sores,
and diabetic foot ulcers, result from a wound that, due to
different pathological factors, failed to complete the physi-
ological healing process and does not recover within three
months [1]. These conditions represent a significant health
problem; only in the U.S., about 6.5 million patients suffer
from chronic wounds [2], with a great prevalence in adults
over 65 years of age. Due to the ageing of the population and
the spread of diseases such as diabetes, obesity, and vascular
problems, the incidence of chronic wounds is expected to
increase significantly [3].

guiding treatment decisions, especially for chronic wounds
that may not follow the classical sequence of healing
events [4]. In this regard, wound healing assessment meth-
ods can be distinguished into manual and computer-assisted
methods. The former are the most widely used in nowa-
days clinical practice, which still relies on visual inspection
and manual techniques to assess changes in size and tissue
properties over time [5]. In the recent literature, computer-
aided methods have been researched to provide objective
evaluation parameters, minimizing the invasiveness for the
patient. However, only two of these devices are currently
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being marketed. Following is an examination of manual tech-
niques for wound healing assessment, an insight into the
features of the commercially available devices, and a survey
of the recent related literature. Finally, we will highlight
the innovative functionalities of the device and discuss its
usefulness in improving doctor-patient communication.

The most commonly measured parameters are: wound vol-
ume, area, perimeter, maximum depth, and tissue composi-
tion in the wound area (granulation, slough, and necrosis) [6].
The simplest manual technique to evaluate the wound surface
area is derived from linear dimensional measurements and
uses a ruler, but it only provides an approximation based on
a regular shape model, for example a rectangle (length x
width), or an ellipse (length x width x 0.785). Acetate
tracing is a more accurate method, especially for complex
shapes: it employs a transparent square sheet across the
wound surface to trace its outline with a pen. The wound
area is then determined by measuring the number of squares
within the circumscribed area [7]. The maximal wound depth
is estimated by inserting a cotton tip in the deepest recess of
the ulcer. This position is difficult to find and the practice can
cause severe pain to the patient. As to the wound volume,
there are no accepted standard measurement techniques at
present. Usually, volume is calculated by multiplying the
maximal wound depth by the area (with large estimation
errors). The volume may also be inferred by filling the wound
with saline [8], but this method is not feasible for wounds
located in inconvenient positions, and the measurement con-
tains errors due to the presence of wound exudate [6]. Tissue
composition analysis is commonly performed visually by a
clinician by associating each area of the wound with a label in
a red-yellow-black scale. The colors on this scale correspond
to the dominant colors of the main tissues in the wound: red
for granulation, yellow for slough, and black for necrotic
tissue [9]. However, this assessment is still subjective and
time-consuming.

In addition to their invasive nature, the manual methods
described offer poor accuracy and reliability due to subjective
interpretation and significant inter-observer variability.

To overcome the drawbacks of traditional methods, new
devices have been proposed which provide a 3D reconstruc-
tion of the ulcer through non-contact techniques [10], [11].
Such measurement devices can be based on stereopho-
togrammetry techniques or laser scanner. The first category
includes the solution proposed in [12], where the authors
used multiple view geometry algorithms to generate a 3D
model of the wound on which physical measurements are
taken, while the laser scanner technology, to the best of the
author’s knowledge, is employed in all the commercially
available devices for wound assessment. Silhouette Star by
Aranz Medical provides morphological measurements with-
out any reconstructed 3D wound model. eKare inSight®) is
a portable 3D measurement device for wound assessment,
which combines an iPad and a Structure Sensor by Occipital
to determine depth by using an infrared projector and camera
system [13]. The details of Silhouette Star and eKare are

VOLUME 8, 2020

TABLE 1. Ekare and silhouette specifications.

eKare Silhouette
Accuracy Area 2.55% 0.3%
Perimeter 2.63% 0.01%
Depth 2.87% 4%
Volume 3.46% -2.5%
Precision Area 2.9% 1%
Perimeter 11% 1%
Depth 19% 2%
Volume 3.3% 2%
Capture to 38.87’s 120’s
measurement time
Inter-rater Area 0.999
reliability Length 0.997
Width 0.995
Depth 0.649
Volume 0.696

Data on Silhouette Inter-rater reliability are not available.

reported in Table 1 [14], [15]. Accuracy in the estimation of a
parameter denotes the deviation of the measured value from
the true value and is expressed as:

[measured value — true value]

Accuracy % = -100. (1)

true value

Precision is expressed as coefficient of variation (CV). It mea-
sures the statistical variability of the measurements and is
calculated as the ratio of standard deviation (o) to the mean
value (x) module:

CV =0/ 3. 2

Data on inter-rater reliability are given as intra-class correla-
tion coefficient (ICC).

Recently, new low-cost technologies have been developed,
such as a smartphone app [16] and a Microsoft Kinect
sensor [17]. The former is a mobile platform that gives a
sparse 3D model of the wound by using SLAM algorithms.
This solution requires moving the smartphone around the
ulcer to obtain the 3D reconstruction and the measurements.
Although the method is easily accessible even in non-clinical
settings, it is susceptible to errors and inter-operator variabil-
ity, requiring the user to play an active role in the acquisition
of the 3D model. The device proposed in [17] is based on
Kinect v2 Time of Flight principle to estimate wound perime-
ter, area, and volume.

In our work, we developed a prototype that, in addition
to estimating morphological parameters, offers AR func-
tionalities, mainly to improve doctor-patient communication.
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Clinician communication skills are crucial for building a
trustworthy doctor-patient relationship that contributes to
therapeutic success. Patients who have a better understand-
ing of their ailment increase their compliance to the doctor
advices [18], [19]. Good communication has a whole series
of positive effects on the patient’s psychology, mental health,
tolerance power [20], but not all doctors are naturally gifted
with it. Furthermore, wound progression can be evaluated
through objective data, and a direct transfer of such informa-
tion to the patient can overcome any subjective interpretation
of the speaker (the doctor) and of the listener (the patient).
For this reason, we integrated AR techniques to facilitate
doctor-patient communication, as already demonstrated for
other diseases. In their work, Wu et al. [21] used AR tech-
nology for the preoperative management of complex neck
fractures, making doctor-patient communication simpler and
more accurate. Touati et al. provide patients with a tablet to be
used as an AR mirror to get a preview of their cosmetic den-
tistry surgery [22]. Augmented reality has also been widely
used in rehabilitation to make the exercises more intuitive and
alleviate monotony [23]. In this work, augmented reality is
achieved through a miniaturized projector. Compared to the
widely used head-mounted display, this projector allows its
users to overcome ergonomic issues mainly related to the
wearability of the devices and their perceptual limits [24].
A drawback of projector-based AR is the parallax effect that
is caused every time the AR information is related to a non-
exposed surface [25], which is not an issue in the case of
wounds assessment.

Some recent works have positively evaluated the projector
as a powerful tool to provide AR information: Gavaghan et al.
presented a portable projector-based AR device for the visu-
alization of navigation data in a surgical scenario [26] and
Mewes et al. developed an AR system to visualize pre-
planned paths and risk structures directly on the patient inside
the MRI bore [27].

The aim of our work is to identify guidelines for the
development of versatile and complete devices capable of
obtaining both wound geometric parameters and tissue clas-
sification, and AR functionalities that provide an immediate
feedback on the ulcer status in support of doctor-patient
communication.

Il. MATERIALS AND METHODS
A. DEVICE OVERVIEW
The AR wound monitoring device consists of a pair of
Leopard Imaging LI-OV580 stereo cameras, size 26 mm X
18 mm x 28 mm each, and a Philips PPX4010 pico-projector,
size 68 mm x 66 mm x 22 mm. The camera resolution is
2208 x 1242 @ 15 fps, which gives horizontal and vertical
fields of view of 80° and 54°, respectively. The main infor-
mation from the camera data sheet is reported in Table 2.

As shown in Fig. 1, the hardware is assembled on a
printed support ensuring the stability of the reciprocal pose
of the components. The cameras are mounted in parallel
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TABLE 2. LI-OV580 stereo.

Resolution (Cy x Cy) 2208x1242
Frame rate 15 fps
Vertical field of view (FOVy) 80°
Horizontal field of view (FOVp) 54°

Technical data of the LI-OV580 stereo cameras. The horizontal and
vertical fields of view are obtained from the nominal ones considering the
sensor crop at the selected resolution.

=

FIGURE 1. Wound healing assessment device prototype.

configuration with a baseline b = 45 mm. The work-
ing distance is set between 15 cm and 35 cm taking into
account clinical needs. The system requires the application,
on the patient limb, of a registration pattern consisting in
an adhesive patch or on a semi-permanent tattoo depending
on the clinical case. The pattern provides a reference for the
alignment of models acquired over time and is essential for
AR functionalities.

1) CAMERA STEREO CALIBRATION

For the proper operation of the device, both the stereo camera
and the projector are calibrated in terms of intrinsic and
extrinsic parameters, to obtain an accurate 3D reconstruction
of the limb surface.

Camera stereo calibration involves intrinsic calibration,
which gives the image formation parameters for each camera,
and then extrinsic calibration, returning the roto-translation
matrix for changing the reference system to the reference
camera (the left one). Stereo calibration is performed in C++
language using OpenCV libraries with a 6 x 5 checkerboard
pattern, 10 mm square size.

2) CAMERA-PROJECTOR CALIBRATION
Camera-projector calibration is required to precisely re-
project the AR 3D information, acquired with the stereo
camera, over the patient limb.

The projector has been calibrated against the reference
camera by using the method proposed by Falcao in [28].
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The projector pose and intrinsic parameters are derived by
projecting a 15 x 8 digital checkerboard pattern with 80 pixel
square size on a plane with different positions-orientation.
The plane is defined by a second 4 x 3 checkerboard pattern
with 10 mm square size and is used to get the 3D position of
each projected corner by applying ray-plane intersection.

B. SOFTWARE OVERVIEW

The block diagram in Fig. 2 illustrates the layout of the soft-
ware and the relationships among its modules. The two main
blocks, “Estimation of wound parameters’ and “AR projec-
tion of previous wound state”’, handle the main functionalities
of the system, i.e. wound healing assessment through the
monitoring of clinical parameters and through AR visualiza-
tion of wound evolution, respectively. The first sub-block,
the “Wound 3D model”, processes the stereo image pair
through a stereo-photogrammetric 3D reconstruction algo-
rithm that produces a dense point cloud of the wound surface
and surrounding skin. The point cloud is then converted
into a polygon mesh that constitutes the input to the next
functional block, “Wound clinical parameters’’. This block
handles the estimation of morphological parameters and the
classification of wound tissues. The data of each patient
examination is stored and identified by patient ID and date.
The ““visit database” is the link to the last block that allows
for a visual evaluation of the wound progress over time; the
AR functionality is obtained by re-projecting the previous
wound contours and/or tissue classification directly onto the
patient’s skin.

Estimation of wound

parameters

Wound 3D

Stereo images model

- AR projection of previous
Dense 3D point cloud

reconstruction wound state
User input
‘Wound segmentation - -
Model Registration
Polygon mesh Visit -
) database AR AR tissue
topol . p
s ‘ e classification
Geometrical Tissue
parameters classification
Depth Granulation
Perimeter Slough
Area Wound L. Necrosis
Main Axes  Clinical
Volume parameters

FIGURE 2. Software layout and system functionalities.

1) WOUND 3D MODEL

The wound 3D surface is obtained by processing a pair of
stereo images through the widely used three-dimensional
digital image correlation method. As described in Fig. 3:,
this method initially involves undistorting and rectifying the
stereo image pair to reduce the complexity of the match-
ing algorithm. Undistortion corrects non-linear deformations
caused by the lenses, to allow the modeling of the camera as
a pinhole projective system, whereas rectification applies a
transformation based on the epipolar geometry to the images
that reduces the search for matches of each image pixel to
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Dense 3D point cloud
reconstruction

Stereo images
¥

| Image undistortion |
|

| Image rectification |
|

| Correspondence probleml

| Disparity map |
1

| Triangulation |

Point cloud

FIGURE 3. 3D reconstruction by stereophotogrammetry. The diagram
presents the procedures for obtaining a 3D point cloud from a stereo
image pair.

a single row [29]. The points of the disparity map resulting
from this process are finally triangulated taking into account
the intrinsic and extrinsic parameters obtained from cali-
bration to produce a dense point cloud in 3D space. The
resolution of the 3D reconstruction method along the three
dimensions Ay, Ay, and Az are geometrically derived from
the intrinsic and extrinsic parameters of the cameras as:

2 %D % tan (%)
Ay = = 0.012 mm;
Ch
2 %D % tan (%)
Ay = = 0.033 mm;
Cy
D2
Ay = — =0.83 . 3
Z=50 mm 3

where D is the mean working distance, f is the focal length
of the cameras, FOVy, FOVy, Cyg, and Cy are the camera
parameters as in Table 2 , and b is the baseline.

After that, the procedure continues with a semiautomatic
3D point cloud segmentation process performed on the
2D image captured by the reference camera (the left one)
remapped on the 3D points. The user is asked to draw a coarse
contour with no need to accurately follow the wound bound-
ary. To simplify and speed up the procedure, and reduce the
user bias, the contours are automatically adapted to best fit the
wound color and texture following the procedure described
in [30]. This technique for active contours uses Mumford
and Shah [31] segmentation to stop the evolving curve on
the desired boundary, offering positive results also in the
presence of smooth boundaries. Fig. 4 shows an example of
user selection and the resulting segmentation refinement. The
segmented image is expanded by 50% from the segmented
area to include the surrounding skin, which will serve as a ref-
erence for subsequent processing, while the remaining part,
which includes the background, is neglected. The segmented
area on the 2D image is used to select the corresponding
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(@)

FIGURE 4. Wound D segmentation steps. a) Wound phantom as captured
by the reference camera; b) User manual tracing (blue line), and output of
the assisted segmentation algorithm.

3D point on the wound. The 3D meshes corresponding to
the wound area, with and without the surrounding tissue, are
created using a self-organization map (SOM) approach [32].
A SOM is a type of artificial neural network that produces a
two-dimensional representation of the input space by using
unsupervised machine learning. The representation consists
of components called nodes, arranged in a rectangular grid.
Each node is given a weight; the map evolves by reducing a
distance metric to move weight vectors toward the input data
while preserving its topology. In this work, self-organizing
maps are employed for reconstruction, so the input data is
the 3D point cloud, the map nodes correspond to the output
mesh vertices and the weights represent 3D coordinates. The
distance metric is the Euclidean distance and it is used in the
learning phase to adapt the mesh to the input point cloud. This
approach produces a quad-mesh and allows to remove the 3D
reconstruction noise and obtain a surface without any holes,
producing a mesh as in Fig. 5.

v.‘\\&\t{?“,\’

“‘k\‘

-146

Z -150,
-154]

FIGURE 5. Wound area 3D mesh.

2) WOUND CLINICAL PARAMETERS

In order to obtain reliable clinical parameters, first we will
determine the equation of the plane that best fits the skin
points of the tissue surrounding the wound. This plane is
called 7, p being the generic point of the plane, and is
expressed in the Hessian normal form as:

T:p-ng—dyg=0
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Depth is derived as the distance between the 7 plane and the
farthest point of the wound mesh as:

sup,ex(no - X — dp)

where x is a point in the wound mesh, X. Fig. 6 (a) shows
depth at the deepest point of the mesh.

The software implements the Moore-Neighbor tracing
algorithm modified by Jacob’s stopping criteria [33] to find
the perimeter points of the ulcer in the 2D image of the
reference camera. These points are then projected into 3D
space through the disparity map to obtain the ulcer perimeter
points shown in red in Fig. 6 (b), Xp. Finally, the perimeter is
estimated as the sum of the Euclidean distances of contiguous
points of the perimeter:

> dxi, xip1)

xeX,

where d() is the Euclidean distance operator between two
points.

The device yields two area values. The former, named 3D
area, is shown in Fig. 6 (c) and is computed directly from
the wound mesh as the total area of each quadrilateral of the
mesh. Specifically, having named the row index in the node
map as r and the column index as c, the 3D area is calculated
as shown below:

c — x — 4+  —  x —>

Z Z XreXr+l,c Xr.eXre+1 Xr41,cXr+1,c+1 Xr,c4+1Xr+1,c+1

xeXxeX

where the * operator computes the cross product. The second
value is obtained by projecting the 3D point cloud onto the
7 plane. To simplify operations and speed up the algorithm,
the point cloud is rotated so that the 7 plane is parallel to the
x-y plane. This simplifies the projection and also reduces the
problem to 2D, because the projected points share the same
Z coordinate. Finally, the 2D projected points are processed
through 2D alpha shape to get a boundary line that encloses
all points [34]. The resulting area, shown in Fig. 6 (d) is called
projected area and was introduced to obtain data comparable
with the conventional acetate tracing method [7]. Fig. 6 (e)
shows the main axes of the wound, also useful for comparison
with traditionally acquired manual values.

Main axes are calculated from the projected point cloud
by using the principal component analysis. The first principal
component is the direction in space, along which projections
have the largest variance; this is the largest of the main
axes. The second principal component is the direction that
maximizes variance in the direction orthogonal to the first,
that is the smaller of the main axis.

The volume, shown in Fig. 6 (f), is calculated by measuring
the region enclosed by the boundary surface produced by
applying the 3D alpha shape to the wound mesh [35]. In this
process, the 7 plane is used as a constraint to prevent the
surface from collapsing inside the wound cavity.

Tissue classification is performed via an image-based pro-
cedure that returns the percentage of each tissue type over
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(c)

(d)

)

FIGURE 6. Graphic visualization for geometric parameter computing. a) Wound 3D area is evidenced with respect
to the surrounding skin. b) The projected area is shown in red. c) The perimeter is plotted relative to the wound
SOM mesh. d) The green line indicates wound depth and is placed in line with the point that produced the depth
value. e) The red semi-transparent grid shows the volume of the wound. f) Perpendicular blue lines mark the

wound main axes.

the total wound 3D surface. The user is asked to select
the kind of tissue through a radio button and then pick a
seed in a region containing the selected tissue. In order to
avoid errors caused by shadows, the successive processing
is carried out in the LAB colour space, which allows for the
removal of the brightness contribution to the image. Classifi-
cation is performed on the pre-segmented image using simple
linear iterative clustering [36] and is based on the k-mean
algorithm, using the user-defined seeds as initial centroids.
Fig. 7. shows the result of tissue classification, performed
with a k-means classifier.

mGranulation tissue
Slough tissue
mNecrotic tissue

FIGURE 7. D wound classification. Red: granulation tissue. Yellow:
slough. The wound shows no necrotic tissue.

3) AR PROJECTION OF PREVIOUS WOUND STATE

The AR module offers the clinician and the patient a tool to
directly compare the current wound status with a previous
wound status. This functionality relies on two components: a
database that stores the geometric and tissue clinical parame-
ters collected at each visit from each patient, and a registration
procedure based on a marker placed near the wound. The
registration marker currently consists of a 12 x 8 mm square
checkerboard.

VOLUME 8, 2020

The registration module first calculates the camera-
referenced 3D location of the marker’s fiducials in both
the current and previous images. This is achieved through
an algorithm that locates the marker in the left and right
images, and then triangulates the position of the fiducials
to obtain their 3D coordinates. Then, the roto-translation
matrix relating to the point sets is derived from a least-squares
method [37]. More specifically, given that pyrey are the marker
points in the previous state and pcyr are the marker points in
the current state, the method finds the least square solution
for rotation, Ry, and translation, Ty, in the equation:

Pcurr = pc Pprev + Tpc- 4

This roto-translation allows us to align the previous point
cloud, loaded from the database, with the current one.

For the AR functionality, the software projects the previous
perimeter points on the image plane of the projector. For AR
classification, the procedure is similar: the 3D points of the
wound surface are first colored as per the classification, then
roto-translated according to R, and Ty, and finally pro-
jected onto the projector image plane. The images resulting
from this process are transferred to the projector to obtain the
AR view as in Fig. 8.

C. GRAPHICAL USER INTERFACE OVERVIEW

The GUI has been designed to provide all the above-
mentioned features in a simple, fast, and intuitive way.
Fig.9 shows an overall view of the GUI. Once the device has
been positioned, the user starts the wound healing assessment
procedure by pressing the “Capture” button in the Data
acquisition module; this will show the acquired images on the
screen in real time and allow the user to adjust the device pose,
if needed. The image acquired by the reference camera is
shown in the upper right corner of the GUI. Then, by pressing
the “Boundary” button, a guided procedure allows a fast

2700412



|EEE Journal of Translational

Engineering in
Health and Medicine

V. Mamone et al.: Monitoring Wound Healing With Contactless Measurements and AR

FIGURE 8. AR projection of previous wound state. The system registers
the wound perimeter measured during the previous visit and compares it
against the current state through the checkerboard pattern, and then
generates an image that the projector uses to visualize the AR content.
In this case, the perimeter obtained in the previous visit will overlap the
current one, because the ulcer mannequin was not modified.

selection of the wound profiles, then refined by the software.
Next, the GUI displays the wound 3D mesh on the screen, that
is navigable using the zoom, pan, and rotate buttons. At this
point, all the geometric parameters of the ulcer can be calcu-
lated by pressing the “Compute geometric parameters’ but-
ton in the Wound Parameters section. The process takes a few
seconds, after which the estimated geometric parameters are
loaded in the appropriate fields. If the doctor needs an idea of
the processing behind certain values, the parameter of interest
can be selected individually to view the processing images
in Fig. 6. The classification procedure starts by pressing the
“Classification’ button in the Wound Parameters module and
requires the physician to visually inspect the wound. The AR
functionality requires selecting the previous examination for
comparison through the “Date selection’ button of the Load
Previous Wound model. Then, by pressing the ‘‘Perimeter”
or “Tissue Classification’ buttons, the software registers the
previous models with the current one by using the marker,
and the corresponding AR information is projected.

D. DEVICE ASSESSMENT

The system has been tested by novice users to assess accuracy,
precision, and inter-rater reliability in the estimation of geo-
metric parameters. Repeatability was then analyzed to assess
the agreement between successive measurements under the
same conditions. Finally, the accuracy of the AR projection
was assessed.

Tests on healthy human limbs and on an ulcer mannequin
(Arterial Insufficiency Leg mannequin by VATA) were car-
ried out to prove the clinical translation of the system. The
device produced 3D meshes of human hand, arm and leg
portions and mannequin ulcers, also returning, in this case,
wound morphological parameters. Fig. 10 shows the 3D
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meshes resulting from the tests performed on the hand and
mannequin ulcer.

1) GEOMETRICAL PARAMETERS

Four models simulating a healing wound were designed with
the PTC Creo 3.0 software to provide real reference values for
measurements. A Stratasys Objet30 Prime 3D printer allowed
for a rapid prototyping of the wound models with a 600 dpi
X-Y resolution, 1600 dpi Z resolution and 0.1 mm precision.
The phantoms were created with Stratasys VeroClear and
VeroBlack materials, with a 16-micrometer thickness of the
printing layer, and they were covered with a thin layer of
enamel paint to simulate granulation, slough, and necrotic
tissues. Fig. 11 shows the wound phantoms and their cor-
responding CAD models. Wounds with a great variety of
sizes and shapes are reported in the clinical scientific litera-
ture [38], therefore we designed completely different realistic
models ranging from a small circular ulcer, which simulates
a healing ulcer (wound A), to a completely irregular ulcer in
both shape and depth (Wound D). Wound A mostly consists
of granulation tissue; Wound B has a trapezoidal shape and
presents a gradually increasing depth from 0 mm to 7.5 mm;
Wound C has an elliptical shape and shows granulation,
exudate, and necrotic tissue; Wound D has an uneven depth up
to 5.4 mm, irregular shape and slough and granulation tissue.
Table 3 shows all the geometric parameters derived from the
CAD models and used as gold standard for comparison with
the parameters measured by the device.

The device was tested by 11 users without any previous
familiarity with our system. Each user received a 10 minute
training on the features and acquisition modes of the GUL
Specifically, users were trained to set a working distance
between 15 cm and 35 cm and a device orientation, which
must be as perpendicular as possible to the wound bed in order
to maximize the wound size in the images (to be able to scan
the entire wound bed without occlusions).

Each user tested the device on each of the wound models,
for a total of 44 tests. The collected data were used to assess
accuracy, precision, and inter-rater reliability. The working
distance was also recorded to evaluate compliance with the
acquisition methods. Accuracy was estimated as the differ-
ence from the reference value according to (1). Precision
was determined as the standard deviation of measurements
according to (2). Inter-rater reliability was determined by
comparing the measurements of the same wound taken by
different users through the intraclass correlation coefficient
(ICC). In particular, the ICC(2,1) coefficient [39] was used:
users have been considered to be representative of a larger
population of similar users, so no familiarity with the device
was required. In addition to geometric parameters, the mea-
surement time was also recorded as the interval from the
initial acquisition by the stereo-cameras to the data display.

A final set of tests was performed for the evaluation of
repeatability. The procedure was repeated 10 subsequent
times by the same user, in the same location. Follow-
ing the guidelines of [40], a repeatability value for each
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TABLE 3. Geometric parameters calculated in PTC CREO for each wound model.

Wound 3D Area Projected Perimeter Depth (mm) Volume Major Axis Minor Axis
model (mm2) Area (mm?2) (mm) (mm3) (mm) (mm)

A 744.50 706.85 94.24 3 1385 30 30

B 1070.08 825 133.33 7.50 2679 50 25

C 1413.83 1178.10 127.63 5 4444.60 50 30

D 2077 1841 163.73 5.40 4601 60 40

Patient ID: | 13210

Wound parameters

Compute gecmeriz parzmetars|

FIGURE 9. Software GUI. Upper right: The Data acquisition section guides
the user from image capture, to segmentation, to visualization of the
wound 3D mesh (lower right corner). Bottom left: geometrical parameters
and AR projection of previous wound condition.

Z 180,
LG&,,”’

40 |

FIGURE 10. Device clinical transaction. a) 3D mesh from tests on a
healthy hand. b) 3D mesh from mannequin ulcer by VATA (Arterial
Insufficiency Leg).

parameter was computed from the one-way analysis of vari-
ance (ANOVA).

2) AR PROJECTION

An image target consisting of 1-mm radius increment con-
centric circles was created to quantitatively evaluate the error
in the re-projection of the wound. As shown in Fig. 12,
the image was applied to a cylindrical object, so that the target
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points lay at different depths from the cameras. The target
was then acquired and the outside circle manually segmented
following the guided procedure described in section II-C
until the 3D model was obtained. Subsequently, a variation
to the algorithm consisting in the calculation of the median
of the point cloud was introduced, and the median point was
projected on the target. The inner circles were then used
as reference to evaluate the distance between the projected
center and the target center. If the projected point fell across
a circle, as in Figure 12, the radius of the enclosed circle
was taken as the projection error. If it fell between two rings,
the average radius of these rings was taken as the projection
error. The projection error was then determined as the dis-
tance between the projected center and the target center.

The tests were repeated with consecutive steps of 2.5 mm
inside the device working space and the average value from
3 measurements was reported for each distance.

Ill. RESULTS

A. CAMERA STEREO CALIBRATION

Intrinsic calibration parameters for both the left and right
cameras are listed in Table 4 with a 95% confidence interval.
The re-projection error is the standard method to evaluate
intrinsic calibration accuracy; it corresponds to the distance
between a checkerboard corner in a calibration image and
the respective world point projected into the same image.
Fig. 13 shows the boxplots associated with re-projection
errors in the left and right cameras. The overall mean re-
projection errors for the left and right cameras were 0.21 px
and 0.20 px, respectively.

The epipolar error was used to assess extrinsic calibration
quality. In a stereo camera configuration, a point in one cam-
era view must fall along a single line in the other camera view.
This line is the epipolar line of that point, and its distance
from its corresponding point in the other camera image is the
epipolar error. The boxplots in Fig. 14 report statistics for the
epipolar errors produced by each checkerboard point for each
calibration image; the average error is 0.45 px.

B. CAMERA-PROJECTOR CALIBRATION
The quality of the calibration between the camera and the
projector is indicated by the re-projection error in Fig. 15.
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(a)

FIGURE 11. Wound models printed with Stratasys Object30 Prime and corresponding CAD model designed with PTC Creo 3.0: (a) Wound A

(b) Wound B (c) Wound C (d) Wound D.

TABLE 4. Intrinsic calibration parameters.

LEFT CAMERA RIGHT CAMERA
Focal length (px) 1603 +24 1605 +24 1650420 1649 +20
Principal point (px) 1089 + 8 629 +8 1117+6 636+ 8
Radial distortion -0.171 +0.004 0.028 £ 0.002 -0.184 +0.004 0.034 = 0.002
Intrinsic calibration parameters for left and right cameras. Each value is associated with the 95% confidence interval.
TABLE 5. Accuracy and precision of the geometric parameters.
Projected . . .
Parameter 3D Area Area Perimeter Major axes Minor axes Depth Volume
Accuracy (%) 3.53 3.69 1.43 3.51 0.92 223 -2.04
Precision (%) 1.16 0.58 0.75 0.79 1.16 2.18 2.28
. Left camera
. ’
t: 09
L)
g
ATTFTLIFTLITER T

FIGURE 12. Experimental setup for projection accuracy evaluation.

The error refers to the difference in pixels between the
AR checkerboard points in the image and the re-projection
of the checkerboard 3D points to the same camera image.
The latter are determined by the intersection of the plane
identified by the real checkerboard and the rays from the
digital checkerboard corners in the image plane of the
projector.
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calibration images

Right camera

06

reprojection error
o o
[

°

0
calibration images

FIGURE 13. Intrinsic calibration evaluation. The re-projection error is
expressed in pixels. Blue boxes represent the upper and lower quartiles
of re-projection errors. Black lines denote the minimum and maximum
error values.

C. GEOMETRICAL PARAMETERS
All users took measurements within the workspace with an
average time of 1min 5s & 18s. Table 5 lists the accuracy and
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TABLE 6. Intraclass correlation coefficient for geometric parameters.

Proi
Parameter 3D Area r(ﬁ:ec;ed Perimeter Major axes Minor axes Depth Volume
Icc 0.999 1 0.998 1 0.996 0.996 0.996
TABLE 7. Repeatability coefficients for geometric parameters.
Projected . . .
Parameter 3D Area Arca Perimeter Major axes Minor axes Depth Volume
Repeatability 0.9998 0.9997 0.9981 0.993 0.9972 0.993 0.994
2 .
5 2 3350 1
g 15 é 3
5 =
<, E 25 f
R o
N B B e ,
0 | T T 2
calibration images r:? 1
<
0.5" 1
FIGURE 14. Extrinsic calibration evaluation. The epipolar error is in ‘ ‘
pixels. Blue boxes represent the upper and lower quartiles of epipolar 0 15 17.5 20 225 25 275 30 325 35

errors. Black lines denote the minimum and maximum error values.

reprojection error

| = ‘ ‘
0.5 ‘
calibration images

FIGURE 15. Camera-projector calibration evaluation. The re-projection
error is in pixels. Blue boxes represent the upper and lower quartiles of
re-projection errors. Black lines denote the minimum and maximum error
values.

precision values for each geometric parameter. Tables 6 and 7
respectively report the results for inter-rater variability and
measurement repeatability coefficients.

D. AR PROJECTION

Tests to evaluate the AR projection error yielded the
results shown in Fig. 16 for distances within the work-
ing area. The lowest error occurred at 20 cm from the
device and it increased by moving towards the workspace
boundaries.
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distance from wound assessment device (cm)

FIGURE 16. Projection error. Blue points denote the mean error, whereas
error bars represent the error standard deviation. No error bar is plotted
when standard deviation is less than 0.01 mm.

IV. DISCUSSION

Our camera stereo calibration achieved sub-pixel accuracy.
This ensures high-quality stereo reconstruction, which pro-
vides us with a solid basis for the calculation of reliable
parameters [41]. In fact, the accuracy and precision of geo-
metric parameter measurements are similar and mostly better
compared to currently marketed devices. Parameters more
prone to error, such as depth and volume, are calculated with
an accuracy of about two percentage points off with respect
to the 4% depth accuracy of the Silhouette device and to
the 3.46% volume accuracy of eKare [14], [15]. There are
no terms of comparison available for the projected area and
the main axes, which, however, show good accuracy values
and an average precision of 0.8%. The measurement time of
about one minute considerably speeds up the inaccurate and
unpleasant traditional procedure for wound healing assess-
ment, leaving the clinician more time to determine the best
specific treatment for the patient. The short measurement
time also allows clinicians to use AR without extending the
visit, which improves doctor-patient communication. The AR
projection reveals a working distance of 20 cm as the optimal
distance in terms of projection error, which is 0.67 mm. The
error reaches its maximum value at 35 cm. This behavior may
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be due to inaccuracies in the extrinsic camera-projector cali-
bration, which, however, showed a low re-projection error, so
further work is needed to achieve consistent accuracy in the
working area. ICC values indicate excellent inter-rater relia-
bility according to the ranges given in [39], but for a proper
assessment we need to increase the sample size. ICC values
close to 1 suggest that bias sources imputable to the user are
not relevant, and the work done to refine the segmentation of
wound boundaries has been successful.

All users took measurements within the workspace, so the
other source of bias relates to the device orientation only.
Based on these considerations and given that all the users in
the study used the device for the first time, we can state that
the device is easy-to-use and gives excellent results in terms
of accuracy and precision. The HW components we used have
been selected on the basis of the following lines of reasoning:
a mini projector can offer an AR view directly on the patient;
at least one camera in the visible spectrum is required to
allow the physician to perform tissue classification; to auto-
matically obtain wound geometric parameters, 3D scanning
functionalities are required and, in theory, a projector and a
camera are enough to scan the wound by using structured
light or phase shift techniques [42], [43]. In any case, to obtain
a good model resolution, both these approaches require to
capture more than one image, while keeping the relative posi-
tion between the limb and the fixed scanning system (camera
and projector). Moreover, the resolution of 3D systems based
on a single camera and a projector is strictly related to the
projector resolution, which is usually low for mini projectors
compared to the camera resolution. Lastly, obtaining a wound
3D model by projecting on a highly heterogeneous wound
area could cause contrast issues affecting the accuracy of the
reconstruction, whereas, in stereo camera systems, texture
and color heterogeneity is associated with a good 3D accu-
racy. For this reason, we introduced a second camera and
used a stereo matching technique to obtain information about
depth.

V. CONCLUSION

The purpose of this work was to create a practical and
non-invasive device for wound healing assessment, while
providing augmented reality functionalities to facilitate
doctor-patient communication with a direct feedback on the
condition of the wound.

The healing process is assessed by using stereo cameras,
which simultaneously yield tissue classification and accu-
rate 3D wound reconstruction. High-resolution 3D models
are created based on the natural wound heterogeneity and
skin texture without compromising the ease of use of the
device. The tests produced accurate and precise values for the
geometric parameters of the wound in a short time and in a
totally non-invasive manner. Users who are familiar with the
device take about 42s to complete the assessment procedure.
Accuracy and precision for linear parameters are 2% and
1.7%, respectively; for surface and volume they are 1.2% and
1.3%, respectively. This shows that very good estimates are
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given of the two parameters, which are subject to major errors
even in devices that focus more on accuracy than on time.
The evaluation of inter-rater reliability produced excellent
results, suggesting that user-related sources of variability are
minimal.

With the same objective of producing a user-friendly
device, we chose a projector to provide AR info, leaving
the surgeon’s hands and vision free. The assessment of the
accuracy of AR projection produced an error at the optimal
distance of 0.67 mm =+ 0.58 mm.

We can conclude that for an accurate and complete 3D
wound healing assessment device featuring AR functional-
ities to be produced, two cameras in the visible domain and a
mini projector are needed.

To the best of our knowledge, this is the first system capa-
ble to obtain a non-contact measurement of wound clinical
parameters paired with AR projection to easily and intuitively
follow the wound evolution.

The above-mentioned technical validation paves the way
for the next step: a clinical validation on human patients.
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