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Robust weak antilocalization due to spin-orbital
entanglement in Dirac material Sr3SnO
H. Nakamura1,8✉, D. Huang 1, J. Merz1, E. Khalaf1,2, P. Ostrovsky1,3, A. Yaresko 1, D. Samal4,5 &

H. Takagi 1,6,7

The presence of both inversion (P) and time-reversal (T) symmetries in solids leads to a

double degeneracy of the electronic bands (Kramers degeneracy). By lifting the degeneracy,

spin textures manifest themselves in momentum space, as in topological insulators or in

strong Rashba materials. The existence of spin textures with Kramers degeneracy, however,

is difficult to observe directly. Here, we use quantum interference measurements to provide

evidence for the existence of hidden entanglement between spin and momentum in the

antiperovskite-type Dirac material Sr3SnO. We find robust weak antilocalization (WAL)

independent of the position of EF. The observed WAL is fitted using a single interference

channel at low doping, which implies that the different Dirac valleys are mixed by disorder.

Notably, this mixing does not suppress WAL, suggesting contrasting interference physics

compared to graphene. We identify scattering among axially spin-momentum locked states

as a key process that leads to a spin-orbital entanglement.
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E lectronic systems with Dirac or Weyl dispersion are char-
acterized by pseudospin degrees of freedom1–3, whose
existence can be detected by techniques sensitive to the

phase of the electron wavefunction. In magnetotransport mea-
surements, the phase can be probed via the quantum interference
of electron waves that occurs between electrons traveling the
same closed path in opposite directions. For normal electrons
with weak spin–orbit coupling, the interference causes weak
localization (WL). The presence of a Berry curvature in
momentum space may lead to an extra phase shift of π for such
closed trajectories, resulting in weak antilocalization (WAL), as
demonstrated for graphene4–8. This phase shift is a direct con-
sequence of pseudospin-momentum locking. Magnetic field
breaks time-reversal symmetry required for the interference, thus
providing a sensitive probe for the quantum interference: a
positive (negative) magnetoconductance follows as a result of WL
(WAL).

The role of the valley degrees of freedom in quantum inter-
ference effects has been extensively studied in graphene4–6, and
also recently, in other systems including Weyl semimetals9,10 and
transition metal dichalcogenides11,12. For graphene, scattering
between different valleys scrambles the pseudospin information
and causes the system to revert back to WL (Fig. 1a). More
specifically, intervalley scattering causes a crossover from the
symplectic time-reversal symmetry, which characterizes the
emergent degrees of freedom in individual valleys (pseudospin),
to orthogonal time-reversal symmetry, which characterizes the
microscopic degrees of freedom (real spin). The underlying rea-
son for this phenomenon is that the real spin does not play a
significant role in graphene due to negligible spin–orbit interac-
tions; the spin retains full rotational symmetry.

In contrast to graphene, Dirac materials with heavy elements
may possess strong spin–orbit coupling (SOC) that could lead to
broken spin symmetry. As a result, antilocalization in a Dirac
semimetal may persist in the presence of intervalley scattering.
Thus, one cannot deduce the degrees of freedom responsible for
quantum interference from the sign of the magnetoconductance
alone. Instead, WAL can be attributed to one of the two distinct
scenarios: (i) pseudospin-momentum locking within isolated
Weyl–Dirac nodes or (ii) real spin-momentum locking due to
SOC. Despite the recent experimental observation of antilocali-
zation in magnetotransport measurements for Weyl/Dirac semi-
metals13–19, the distinction between the aforementioned
scenarios, which entails an understanding of the role of the valley
degrees of freedom, has not been clarified. Elucidating the origin
of the observed antilocalization, and the role of pseudospin and
valley degrees of freedom is the main objective of this work.

The band degeneracy induced by the existence of inversion (P)
and time-reversal (T) symmetries in the absence of spin-rotation
symmetry makes spin–orbit coupled Dirac materials unique in
comparison with both graphene, where spin is conserved, and
Weyl semimetals such as TaAs20–23, where the band degeneracy
is lifted due to the broken T or P symmetries. Unlike in graphene,
a global momentum-independent spin operator commuting with
the Hamiltonian cannot be defined for a Dirac material with
strong SOC. As a result, the electron spin is entangled to its
momentum in a sense that will be explained in detail in this work.
Such a “hidden” spin-momentum entanglement is challenging to
observe in spin-resolved ARPES measurements24 due to the
existence of both spin states at every momentum. The situation is
very different in Weyl semimetals in which a spin texture could
be readily measured due to lifted degeneracy. Quantum inter-
ference measurements are ideally suited to detect such hidden
entanglement in Dirac materials, since WAL is expected when-
ever spin symmetry is broken, regardless of the existence of PT
symmetry.

Here, we perform a systematic study of the quantum inter-
ference effects in a 3D SOC Dirac material Sr3SnO as a function
of doping, which tunes the Fermi energy measured from one of
the Dirac nodes (EF=−30 to −180 meV). We find dominant
negative magnetoconductance (MC) from antilocalization for
films at all hole dopings. The magnetoconductance for the lowest
∣EF∣ could be fit to a theoretical model assuming a single inter-
ference channel, suggesting that the multiple Dirac valleys are
mixed. The observed WAL is thus ascribed to the coupling of real
spin, rather than pseudospin, to momentum. Scattering among
states with orthogonal spin-quantization axes are responsible for
WAL. This scenario describes the robustness of WAL in the
whole EF range studied experimentally.

Results
Band structure and the properties of Sr3SnO thin films. Sr3SnO
is a member of the family of 3D Dirac materials with antiperovskite
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Fig. 1 Pseudospin and spin in antiperovskites. a Pseudospin-momentum
locking induces a π phase shift for the two electron trajectories
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structure25–36. In this material, six Dirac nodes located along the
equivalent Γ–X directions (due to cubic symmetry) form via the
band inversion of the Sr 4d and Sn 5p bands (Fig. 1c). For a lightly
hole-doped case, this results in the presence of six Fermi pockets.
The chirality for each valley can be defined using two bases com-
posed mainly of Sn 5p and Sr 4d states for Sr3SnO, as shown
schematically in Fig. 1d.

The first-principles calculations for Sr3SnO are shown in
Fig. 2a, b. The result indicates two sets of Dirac electrons for
Sr3SnO: one with a small gap (D1) common to other
antiperovskites25–28, and the other (D2) without a mass gap
(Fig. 2b). The second Dirac points (D2) is found to be strictly
protected by symmetry even after the inclusion of SOC, which
was also discovered in a related material Ba3SnO34. Both of these
Dirac nodes (D1 and D2) are located along the Γ–X lines in the
Brillouin zone with six copies of each due to cubic symmetry.

Sr3SnO films were grown by a molecular beam epitaxy30. The
growth was performed on YSZ (yttria stablized ZrO2) substrates
at a substrate temperature of 450 °C. The grown films were single-
crystalline with no impurity phase in the X-ray diffraction
(Supplementary Figure 1). We grew and analyzed in total 13
films, with thicknesses d= 50–300 nm. The carrier densities and
mobilities obtained from the Hall effect at 10 K were 1.7
−13 × 1019 cm−3 and 18–270 cm2/Vs. The sign of the Hall effect
was always positive, indicating that all the films were hole doped.
By adjusting the Sr/Sn ratio during the growth, the hole density
np was controlled, which allowed systematic tuning of EF (−30 to
−180 meV). These EF values were obtained by integrating the
density of states from first-principles calculation until it matched
experimental hole densities np.

Magnetoconductance and dimensionality of WAL. Figure 3
shows differential MR for two representative samples with dif-
ferent thicknesses (105 and 50 nm). A magnetic field was applied
perpendicular (θ= 90°) or parallel to the current (θ= 0°). We
observed a clear positive MR in the low-field region for both thick
and thin films, which we attribute to weak antilocalization
(Fig. 3a, b). Notably, for the 105-nm-thick film, the low-field MR
(B < 0.5 T) was insensitive to the relative angle between the
magnetic field and the current direction (Fig. 3c), which suggests
that the WAL is three dimensional in origin. In contrast, for the
thinner film (d= 50 nm), although wide-field MR is very similar
for the two orientations (Fig. 3b), the in-plane WAL has a broader
lineshape than the out-of-plane WAL in a low-field magnified
plot (Fig. 3d). This makes sense, because we expect a flat line in
the pure 2D limit37. Thus, we interpret that the films with
thickness d ~ 100 nm or greater are in a 3D regime for localiza-
tion, whereas those with d ~ 50 nm are in a quasi-2D regime. We

note that 50 nm is currently the thinnest film we can achieve
without degradation.

The magnetoconductance, Δσ, taken for Sr3SnO films with
different carrier densities is shown in Fig. 4a–d. In these plots, Δσ
measured in units of e2∕π2h μm−1, where h is the Planck constant
and e is unit charge. WAL appears as a sharp peak around zero
field at low temperatures, and is seen for the whole range of
carrier density. A negative magnetoconductance proportional to
B2 is observed at higher fields. This contribution dominates the
entire field range at higher temperatures (T > 100 K), and
originates from classical orbital effects due to the Lorentz force.
In addition, Δσ develops clear positive slopes in intermediate field
region for larger n, which is especially pronounced at the highest
doping levels (Fig. 4c, d). We attribute this to a crossover to WL
from the low-field WAL.

Quantum interference channels. The following equation
describes the field dependence of Δσ:
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Here, N is the number of independent interference channels, ζ is
the Hurwitz zeta function, and B is the magnetic field. The length
scales lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

_=4eB
p

, l, lϕ, and lSO denote the magnetic length, the
mean free path, the phase coherence length, and the spin–orbit
scattering length, respectively. Equation (1) is an extension of the
Hikami–Larkin–Nagaoka theory38 of weak (anti)localization to
3D, and the spin–orbit-free WL formula (l�1

SO ¼ 0) derived by
Kawabata39,40. We also note that the strong SOC limit (l�1

SO ¼ 1)
of Eq. (1) coincides with a formula used to describe WAL in Weyl
semimetals9. The prefactor N corresponds to a valley degeneracy
factor in the limit of negligible intervalley scattering41–43. The
derivation of Eq. (1) is provided in Supplementary Note 1.

To analyze the experimental MC, we consider the lowest
magnetic fields when lB ≫ l, lSO. As we discuss in detail in the
Supplementary Note 1, the second zeta function in Eq. (1)
becomes the dominant term:
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Hence, the low-field data are fitted by a function with only two
independent parameters: number of channels N, and dephasing
length lϕ. The results of the fit using Eq. (2) are shown in
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Fig. 2 Antiperovskite electronic band structures. a Band diagram of Sr3SnO obtained from first-principles calculations. b The enlarged band diagrams near
Dirac nodes. The large arrows indicate the location of Dirac nodes.
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Fig. 4e–o. From the estimate of the mean free path for each
sample (l= 0.9–4.4 nm), the low-field regime used for the fit was
chosen to be B < 0.1–0.5 T (lB= 41–18 nm), corresponding to lB
approximately a factor of 10 larger than l. For samples with N ~ 1
(low np), the absence of WAL–WL crossover enables us to
establish an upper bound on the value of lSO which is shorter than
the magnetic length lB, thus the condition lB ≫ lSO is manifestly
fulfilled. For higher np data, we estimate lSO < 35 nm by using a
full formula (Eq. (1)). Although this is comparable to lB at the
largest B used for each fitting, data points at lower B (i.e., larger
lB) are more important for WAL/WL due to their steep
dependence on B, making the fitting based on Eq. (2) robust.
Indeed, the fit based on Eq. (2) reproduces the low-field part of
the experimental MC data perfectly (Fig. 4e–o), underscoring that
the signal originates from WAL as described in Eq. (2). Further
details of the fitting procedure and error estimate are described in
Supplementary Note 2. The number of quantum channels
extracted from the analysis evolves with carrier density (Fig. 4r).
At low np, N takes values close to 1. At higher np, however, larger
N values of between 2 and 3 are deduced. For quasi-2D films, 2D
WL/WAL analysis using a HLN formula38 also gave N
approaching 1 at low np (Fig. 4p). For completeness, the analysis
of quasi-2D films based on the 3D formula is given in the
Supplementary Note 3. Fittings results on each film using 3D and
2D formula are summarized in the Supplementary Tables 1 (3D
films) & 2 (quasi-2D films).

The evolution of the Fermi surface as a function of EF derived
from the first-principles calculation is shown in Fig. 5. The EF is
measured from the top of the valence band. This corresponds to
the energy distance from the first Dirac nodes (D1). At very low
EF (−5 meV), D1 forms separate Dirac valleys as expected. With

small doping (EF=−25 meV), which approximately corresponds
to the lowest n in our experiment, another set of trivial electron
pockets, which are separated from D1, emerge. Further doping
merges these pockets together and forms a large Fermi sphere
centered at the Γ point, while small D2 pockets appear. For EF=
−180 meV, which corresponds to the highest n studied in this
work, two large Fermi surfaces and a small Fermi surface are
found, all centered at Γ point.

By comparing the evolutions of N and band structure with hole
doping, we arrive at the following dichotomy: At low np, N ~ 1.
This implies that the six Dirac valleys and the trivial electron
pockets are all mixed by scattering. Beyond a critical doping of
nc = 3− 4 × 1019 cm−3, however, N clusters between 2 and 3
(average of 2.4). This implies that the new Fermi pockets which
emerge beyond nc do not fully mix with the preexisting pockets in
the presence of disorder, but instead contribute to additional
quantum interference channels. Generally, intraorbital scattering
dominates interorbital scattering44,45, and if the new pockets have
different orbital characters, then scattering with the preexisting
pockets may be suppressed. The non-integer value of N ~ 2.4 may
be explained as follows: (1) There is small but non-negligible
interorbital scattering, such that the new pockets do not form a
fully independent interference channel, and/or (2) the different
channels have different sets of parameters, requiring a more
complicated fit. From here on, we focus solely on the physics in
the low np regime, where N ~ 1.

Phase coherence lengths. The phase coherence lengths lϕ
extracted from the fits are plotted in Fig. 6 for films with two
different thicknesses (d= 200 and 50 nm). Both films had a low
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Hall carrier density of np= 1.8 × 1019 cm−3. The temperature
dependence of lϕ in general reflects the dephasing due to inelastic
scattering. Theoretically, it follows lϕ∝ T−p∕2 (τϕ∝ T−p), where p
depends on the dephasing mechanism46,47. In three dimensions,
p= 3/2 for electron–electron interactions and p= 3 for
electron–phonon interactions46,47. However, note that the latter is
for a clean limit, and for a disordered system, predicted values of
p ranges from 2 to 448. In 2D, dephasing at low temperatures is

dominated by electron–electron interactions and p= 1. From
Fig. 6, it can be seen that lϕ increases with decreasing T, with
exponents −0.75 (p = 3/2) and −0.5 (p= 1) for 3D and quasi-
2D films, respectively. This suggests that electron–electron
interactions could be a dominant dephasing mechanism in both
cases, although we note that dephasing due to electron–phonon
interactions in a disordered 3D system is not well understood48.
Below 5 K, there is a change in exponent, followed by a possible
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saturation of lϕ around 0.5 K. Regarding a possible saturation in lϕ
at low temperatures, in general, it could be attributed to a
dephasing which is constant in T. Such a source of dephasing
includes magnetic spin-spin scattering process49–52, but many
other mechanisms have also been discussed48.

Discussion
The experimental results demonstrate extremely robust antilo-
calization. It not only survives strong intervalley scattering
inferred from the valley parameter N= 1, but it is also observed at
high carrier densities where the different pockets are merged and
the non-Dirac bands dominate. The role of real spin in antilo-
calization needs to be considered to describe this observation.

To this end, we refer to the microscopic wavefunctions realized
in Sr3SnO, whose character is depicted in Fig. 7a. Here, the z axis
points toward one of the X directions in the Brillouin zone. We
assume a lightly hole-doped situation in which small Dirac
pockets form. In this setup, the px ± ipy states originating from Sn
5p orbitals forms the “north pole” of the Dirac pocket. The “south
pole” is formed by Sr 4d. Because of PT symmetry, all of these
states are doubly degenerate. However, we find that the spin
direction cannot be free as in the case for graphene.

We first describe the situation for the north pole. The wave-
functions are

~";þ�� � ¼� 1ffiffiffi
2

p ðjSn px "i þ ijSn py "iÞ;

~";��� � ¼ 1ffiffiffi
2

p ðjSn px #i � ijSn py #iÞ:
ð3Þ

Here, ~" is the chirality (up), the indices ± denotes a pair of states
related by PT symmetry, and ↑,↓ is spin. These are mj= ±3∕2 (J=
3∕2) states. The key observation is that the quantization axis of
orbital angular momentum, l, is fixed to the direction of
momentum, k. This is because the splitting between mj= ±3∕2
and mj= ±1∕2 states of Sn 5p orbitals at finite k breaks the
rotational symmetry of J= 3∕2. The breaking of the rotational
symmetry of J, in turn, locks the quantization axis of spin via
SOC, thus aligning s parallel to momentum (Fig. 7a). Thus,
although the double degeneracy still allows both spin-up and
-down states to exist at a k point, there is hidden locking between
the spin-quantization axis and momentum in the north pole
which is axial in nature. This means that any superposition of the
two states in (3) (which represents spin pointing in a generic
direction) will have strong spin–orbital entanglement, although
each of the two states is a product of a spin part and an orbital
part and is thus unentangled.

For the south pole, the situation is drastically different. Here,
the wavefunction is a superposition of three dx2�y2 orbitals cen-
tered at three different Sr sites in an antiperovskite unit cell (Sr1,
Sr2, and Sr3), whose principal axes are pointing in three ortho-
gonal [100] directions25:

~#; ±�� � ¼ 1ffiffiffi
6

p ðjSr1 dy2�z2 "; #i þ jSr2 dz2�x2 "; #i

� 2jSr3 dx2�y2 "; #iÞ:
ð4Þ

Here, ~# is the chirality (down), and spin (↑,↓) in this case does not
have fixed orientation with respect to the orbitals. Note that the
dominant amplitude is provided by one of the dx2�y2 orbitals
(Sr3), whose principal axis is parallel to kz ∥ [001]. For simplicity,
we use this function to display the south pole state in Fig. 7a. For
this state, SOC is weak because this orbital does not form a basis
for the orbital angular momentum, l. This means that the spin
direction is free in the south pole, retaining an approximate spin-
rotational symmetry as schematically shown in Fig. 7a. As a
result, any superposition of the states (4) is unentangled.

Based on these considerations of the microscopic wavefunc-
tions, we propose that intervalley scattering gives rise to
spin–orbit entanglement for the states at the north pole, which is
responsible for the WAL observed even when the symmetry
related to chirality in individual valleys is lost by valley mixing.
The essence of this process is captured by considering a scattering
between valleys in orthogonal Γ–X directions. As shown in
Fig. 7b, this type of intervalley scattering forces rotation of the
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Fig. 5 Evolution of Fermi surface in Sr3SnO with EF obtained by first-principles calculation. Two different Dirac nodes D1 and D2 appear successively in
Sr3SnO.
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obtained from localization analysis. Filled symbols represent data for a
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dashed line). Source Data are provided as a Source Data file.
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spin-quantization axis when states at north poles are involved. As
a result, a north pole state for which spin and orbitals are not
entangled will become entangled once it is scattered to a north
pole state in a different Dirac pocket. It is interesting to note that
such spin–orbital entanglement is not introduced when we only
consider scattering between a pair of Dirac pockets on the same
momentum axis, because the spin-quantization axis remains
uniaxial.

The mechanism is readily extended to situations where Dirac
pockets are merged. Even in such cases (as shown in Fig. 5), some
part of the bands could still have strong mj= ±3∕2 character from
Sn orbitals, especially in the direction along Γ–X. Therefore,
scattering which involves such states still could break spin-
rotational symmetry and WAL could follow.

Before closing, we make a few remarks regarding possible
future extensions of the current work. The crossover between
spin-dominated to pseudospin-dominated antilocalization should
be observed in the clean limit with negligible intervalley scattering
by improving the quality of film. One expects significant
enhancement of the antilocalization signal as we approach the
clean (pseudospin-dominated) limit due to an increase in the
valley factor, N. Such crossover may involve a few steps if only a
specific pair of valleys (e.g., those along the same Γ–X line) mix53.
Evaluation of valley factors in other Dirac-Weyl semimetals with
different numbers of valleys will be useful to clarify the role of
orbitals in scattering-induced (peudo)spin rotation. Spin-flip
impurity scattering was studied in detail for conventional metals
and semiconductors54–59, but little is known about its effects in
Dirac-Weyl semimetals. Realistic calculations including the
orbital nature of the Dirac-Weyl nodes could thus provide a
guideline to utilize such effects in spin transport and other spin-
related phenomena.

In conclusion, we have performed a systematic study of
quantum interference in a 3D Dirac material with strong SOC
across a range of hole carrier concentrations. We observed robust
WAL, whose mechanism is distinct from that found in Dirac
semimetals with weak SOC (e.g., graphene) or Weyl semimetals
with broken P or T symmetries. Our fitting results from the
magnetoconductance data reveal that the number of independent
interference channels N is greatly reduced by intervalley scatter-
ing. This implies that the observed WAL cannot be attributed to
the chirality of Dirac electrons, like in graphene, since the pseu-
dospin degree of freedom associated with an isolated valley is
quenched. Instead, we propose that a locking of the quantization

axis of the real spin along the axial momentum direction in each
Dirac pocket can induce spin–orbital entanglement in the pre-
sence of intervalley scattering, thereby restoring WAL. Our
measurements thus demonstrate the ability of quantum inter-
ference to detect hidden textures in the spin-quantization axis
that are invisible to conventional spin-resolved probes. Our work
also sheds light on the interplay between real spin and pseudospin
in a multivalley Dirac system with strong SOC, which may be
manifest in other quantum phenomena, such as spin/pseudospin
(Klein) tunneling and the spin/valley Hall effect.

Methods
First-principles band calculations. Self-consistent band structure calculations
were performed using the linear muffin-tin orbital (LMTO) method60 as well as the
Wien2k package61 and consistency of the results has been confirmed. The LMTO
method adopted the atomic sphere approximation (ASA) as implemented in the PY
LMTO computer code60. The Perdew–Wang parameterization62 was used to con-
struct the exchange-correlation potential in the local density approximation (LDA).
Relativistic effects including SOC were taken into account by solving the Dirac
equations inside atomic spheres. For the calculation using Wien2k61, the generalized
gradient approximation as parameterized by Perdew–Burke–Ernzerhof63 was used
to describe the exchange-correlation potential. We used atomic sphere radii (RMT)
of 2.33 (Sr), 2.50 (Sn), 2.33 (O) and RMTKmax = 9.0, where Kmax is the plane-wave
cut off parameter in the interstitial region outside the atomic spheres. Momentum
meshes of 100 × 100 × 100 in the whole Brillouin zone are employed in the self-
consistent calculations. Spin–orbit interactions are included using a second-
variational method. The orbital character of bands is examined using the result of
LMTO code and was in agreement with earlier theoretical works25,26.

MBE growth. Antiperovskite Sr3SnO was grown by a custom-made molecular
beam epitaxy system (Eiko, Japan) at 450 °C30. A SrO buffer layer (10 nm)
was grown on YSZ substrate at 500–600 °C prior to the deposition of the anti-
perovskite film. The elemental flux was controlled to be in the range of
0.015–0.024Å/s (Sn) and 0.29–0.30Å/s (Sr) as monitored by quartz crystal
microbalance. Diluted oxygen gas (2% in Ar) was introduced using a leak valve. A
computer-controlled sequence was used to regulate shutters and oxygen leak
valves to separate the oxygen flux from the Sr and Sn fluxes. The main chamber
pressure during the introduction of Ar–O2 gas was 1.3 × 10−3 Pa, while the
background pressure at the deposition temperature was 1–2 × 10−6 Pa. Films with
different carrier densities (n) were obtained by adjusting the Sr/Sn flux ratio
during the MBE growth. The doping is likely induced by Sr deficiencies: a higher
Sr/Sn ratio yielded lower n and the positive sign of the Hall effect (indicating hole
as a carrier) is consistent with cation vacancies. Assuming the chemical formula
Sr3−xSnO and that one Sr vacancy provides two holes, the observed n corresponds
to x= 0.0016−0.0094.

Sample preparation and characterization. After the growth, the film was
transferred in vacuum to an Ar glovebox for contact deposition and capping. For
XRD, a gold film (80 nm) was deposited uniformly on the film. For transport
measurements, Apiezon-N grease was put on the film surface after depositing gold

⎮Sn px ± ipy〉

⎮Sr dx2–y2 〉

I S

+

+

Quantization axis locking

Free spin

X

X

X

a b

Γ

Γ

X

X

X

X

Quantization axis
rotation

Fig. 7 Orbital and spin character contributing to the Dirac pockets. aMagnified view of one of the Dirac pockets. The principal axis of the orbital is locked
parallel to momentum for both the north and south poles. In addition, strong spin–orbit interaction locks the spin-quantization axis at the north pole.
b Intervalley scattering under strong locking of the spin-quantization axis and momentum. Rotation of the spin-quantization axis is expected for scattering
between north pole states in Dirac pockets that lie along orthogonal Γ–X lines (dashed lines). Spin-momentum entanglement follows from such intervalley
scattering processes.
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contacts, but avoiding part of the gold contacts which was later used for electrical
connections. The electrical connection was made by wire bonding in air just before
installing to PPMS. For some of the films, the connection was made by a silver
paste inside the Ar glovebox. The films were characterized by a high resolution
four-circle X-ray diffraction system (in-house). Typical XRD 2θ−θ scans and
reflection high-energy electron diffraction (RHEED) image are shown in Supple-
mentary Fig. 1. No impurity peaks are observed in XRD except for those related to
the gold capping layer and substrate. Furthermore, RHEED images match the
expected in-plane structure of films and indicate an atomically smooth surface.
Relatively weak (00l) peaks with odd l for Sr3SnO reflect a structure factor. From
the position of the (003) peaks in XRD, we obtain the lattice constant of the film:
a= 5.13Å (Sr3SnO). The value is very close to those reported for bulk crystals29:
a= 5.139Å (Sr3SnO).

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request. The source data underlying Figs. 4r and 6 are provided
as a Source Data file.
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