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Abstract. Guanosine (GUO) is neuroprotective when 
administered acutely for the treatment of cerebral ischemia. 
The aim of the present study was to investigate whether 
delayed administration of GUO improved long‑term 
functional recovery following stroke, as well as to explore 
the potential underlying mechanisms. GUO (8 mg/kg) or a 
vehicle was administered intraperitoneally for 7 consecutive 
days beginning 24 h prior to photothrombosis‑induced stroke 
in male C57/B6J mice. Behaviour tests were performed 
at days 1, 3, 7, 14 and 28 post‑stroke. Infarct volume 
was measured using Nissl staining at day 7 post‑stroke. 
Neurogenesis and angiogenesis were evaluated by 
co‑labelling bromodeoxyuridine (BrdU) with doublecortin 
(DCX), neuronal nuclei (NeuN) and von Willebrand 
factor, in immunohistochemical studies. Brain‑derived 
neurotrophic factor (BDNF) and vascular endothelial growth 
factor (VEGF) levels in the ipsilesional brain at day 28 
post‑stroke were detected by western blot analysis. Delayed 
administration of GUO did not reduce infarct volume or 
affect neurological function at day 7 post‑stroke; however, 
it did improve functional recovery from day 14 post‑stroke, 
when compared with the vehicle group. GUO significantly 
increased the number of BrdU+ and BrdU+/DCX+ cells 
in the subventricular zone and subgranular zone at all 
examined time points, the number of Brdu+/NeuN+ cells in 
the peri‑infarction region at days 14 and 28 post‑stroke and 
microvessel density in the peri‑infarction region at day 28 
post‑stroke compared with the vehicle group. In addition, 
the BDNF and VEGF levels in the ipsilesional brain were 
significantly elevated. Delayed administration of GUO at 

24 h post‑stroke enhanced neurogenesis and angiogenesis, 
and increased BDNF and VEGF levels, which likely 
contributes to long‑term functional recovery following 
stroke.

Introduction

Stroke is a major cause of death and disability worldwide, 
however treatment options remain limited (1,2). A small frac-
tion of patients benefit from administration of recombinant 
tissue‑type plasminogen activator; however, this has a short 
time window, as well as additional limitations (3) In a previous 
study, brain remodelling and plasticity, including neurogenesis 
and angiogenesis, has emerged as a novel promising therapeutic 
target for stroke (4). Persistent neurogenesis in the subven-
tricular zone (SVZ) of the lateral ventricle and the subgranular 
zone (SGZ) of the dentate gyrus may be stimulated by cerebral 
ischemia and other injuries as part of the endogenous repair 
response (5). Angiogenesis, the formation of new microvessels 
from the existing vasculature, improves tissue microperfusion 
in the peri‑infarction region following a stroke (6).

Guanosine (GUO), a guanine‑based purine, serves 
several important roles in the central nervous system (7,8). 
Endogenous GUO levels increase within 2 h of focal stroke 
and remain elevated for 7 days (9). An accumulating body 
of evidence indicates that exogenous administration of 
GUO prior to or immediately following experimental stroke 
confers acute neuroprotection following cerebral isch-
emia  (10‑14). However, any benefits to an ischemic stroke 
from delayed treatment of GUO remain unknown. Notably, 
GUO has been reported to promote neurite outgrowth from 
PC12 cell cultures  (15) and proliferation of neural stem 
cells (16). In addition, GUO has been indicated to promote 
myelination in a murine model of spinal cord injury (17) and 
induce synaptogenesis in the brain of healthy animals (18). 
These results suggest that GUO may serve as a restorative 
target.

Therefore, the present study involved investigation of 
whether delayed treatment with GUO (24 h following stroke) 
improves the long‑term functional outcome following a stroke, 
as well as exploring the possible mechanisms underlying GUO 
restorative effects.
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Materials and methods

Animals and experimental model of photothrombotic stroke. 
The experiments were approved by the Institutional Animal 
Care and Use Committee of Tongji Medical College, Huazhong 
University of Science and Technology (Wuhan, China), and were 
in accordance with the guidelines of the Institute of Laboratory 
Animal Resources (Washington, DC, USA). A total of 120 male 
C57BL/6J wild‑type mice (weight, 20‑25 g; age, 8‑10 weeks old) 
were purchased from the Tongji Medical College Experimental 
Animal Centre (Wuhan, China). Animals were housed in a 
temperature‑ and humidity‑controlled environment with a 12 h 
light/dark cycle and free access to food and H2O. Focal stroke 
was induced by photothrombosis (PT) as described previ-
ously (19). Mice were anesthetized using 10% chloral hydrate 
(Sigma‑Aldrich; Merck KGaA, Darmstadt, Germany) (35 mg/kg)  
intraperitoneally and placed in a stereotactic apparatus. A 
midline incision of the skin exposed the skull. A dose of 0.1 ml 
rose bengal solution (10 mg/ml in normal saline; Sigma‑Aldrich; 
Merck KGaA) was injected intraperitoneally 5 min prior to illu-
mination. For illumination, a cold light source (KL1500 LCD; 
Zeiss AG, Oberkochen, Germany) with a 4‑mm aperture was 
centred 2 mm lateral from the bregma. The brain was illumi-
nated through the intact skull for 15 min. All mice survived the 
procedure and exhibited behavioural deficits.

Drug administration. All animals subjected to PT‑induced 
stroke were randomly assigned to receive GUO or vehicle 
following stroke induction. Researchers were blinded to 
experimental groups. GUO (0.5  mg/ml in sterile saline; 
Sigma‑Aldrich; Merck KGaA) was administered intraperi-
toneally (i.p.; 8 mg/kg) beginning 24 h following the stroke 
and then daily for 7 days. The vehicle group received an equal 
volume of saline. Bromo‑deoxyuridine (BrdU; 10 mg/ml in 
sterile saline; Sigma‑Aldrich; Merck KGaA) was injected i.p. 
(100 mg/kg) beginning 24 h following the stroke and then 
twice daily until the animals were sacrificed.

Measurement of infarct volume. The animals were sacrificed 
7 days post‑stroke. Anesthetized mice were transcardially 
perfused with cold PBS followed by 4% paraformaldehyde. 
Brains were subsequently removed, fixed in fresh 4% form-
aldehyde solution at 4˚C overnight and immersed in 30% 
sucrose until they sank. Then the brains were frozen at ‑80˚C. 
The frozen brains were cut into 10‑µm coronal sections on 
a cryostat (CM3050S; Leica Microsystems GmbH, Wetzlar, 
Germany). For each brain, 15 sequential sections were taken 
at 100‑µm intervals and processed for Nissl staining. Sections 
were stained with 0.1% crystal violet solution for 10 min at 
room temperature. Infarct volumes were measured using an 
image analysis program (ImageJ version 1.46r; National 
Institutes of Health, Bethesda, MD, USA).

Behavioural testing. Behavioural tests were carried out prior 
to the PT procedure and 1, 7, 14 and 28 days following PT 
using the modified neurological severity scale (mNSS), grid 
walking test and cylinder test.

mNSS. mNSS is a composite of motor, sensory, balance and 
reflex tests. Neurological function is graded on a scale of 0 to 

18 (normal score, 0; maximal deficit score, 18). A total of 1 
score point is awarded for the inability to perform the test or 
for the lack of a tested reflex; therefore, a more severe injury 
has an increased score (20).

Grid walking test. Animals were placed on an elevated wire 
grid and video‑recorded when they walked. The number of 
contra‑ and ipsilateral faults for each limb and the total number 
of steps taken were counted, the ratio between foot faults and 
total steps was calculated (21).

Cylinder test. The animal was placed in a transparent cylinder 
and video‑recorded. Forelimb preference during vertical 
exploration of the cylinder was evaluated by recording the 
forelimb contacts. Animals were subjected to one trial on 
day 1 prior to PT. The asymmetry score for each animal was 
calculated by the formula previously described (22).

Immunohistochemistry. Frozen sections were incubated with 
a blocking buffer (1X PBS/5% normal goat serum/0.3% Triton 
X‑100, Goodbio, Wuhan, China) for 1 h at room temperature. 
The sections were subsequently incubated at 4˚C overnight 
with the following primary antibodies: mouse monoclonal 
anti‑BrdU (catalogue no.  sc‑32323, dilution, 1:100, Santa 
Cruz Biotechnology, Inc., Dallas, TX, USA), rabbit polyclonal 
anti‑BrdU (catalogue no. ab19944, dilution, 1:500, Abcam, 
Cambridge, MA, USA), goat polyclonal anti‑doublecortin 
(DCX; catalogue no.  sc‑8066, dilution, 1:200; Santa Cruz 
Biotechnology, Inc.), mouse monoclonal neuronal nuclei 
(NeuN; Catalogue no.  MAB377, dilution, 1:500; EMD 
Millipore, Billerica, MA, USA) and von Willebrand factor 
(vWF; catalogue no. ab7356, dilution, 1:1,000; EMD Millipore). 
Following washing with PBS, the sections were incubated 
for 1 h at room temperature with two secondary antibodies: 
Alexa Fluor 488 (catalogue no. CA11001s, dilution, 1:200; 
Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA, 
USA) and Alexa Fluor 594 (catalogue no. CA11012s, dilution, 
1:200; Invitrogen; Thermo Fisher Scientific, Inc.). Incubation 
was conducted in the dark and then washed with PBS three 
times. For BrdU immunofluorescence, brain sections were 
pre‑treated with 2 M HCl at 37˚C for 30 min and then washed 
with PBS six times at room temperature before being incu-
bated with blocking solution. The images were captured using 
a fluorescence microscope (BX51; Olympus Corporation, 
Tokyo, Japan).

Western blot. Mice were anesthetized and decapitated at 14 days 
post‑stroke. The ipsilateral peri‑infarct cortices and cognate 
regions from the contralateral hemisphere were sampled. 
The total protein of each tissue was extracted according to 
the instructions of the protein reagent kit (Goodbio, Wuhan, 
China). Protein concentration of each sample was determined 
using the bicinchoninic acid assay (Sigma‑Aldrich; EMD 
Millipore). Protein samples (20 µg per lane) were subsequently 
separated by 10% SDS‑PAGE and transferred to polyvinylidene 
difluoride membranes. Two primary antibodies were incu-
bated with the membranes overnight at 4˚C: anti‑brain‑derived 
neurotrophic factor (BDNF; catalogue no. AB1779, dilution, 
1:200; EMD Millipore), anti‑vascular endothelial growth 
factor (VEGF; catalogue no. sc‑152, dilution, 1:200; Santa 



MOLECULAR MEDICINE REPORTS  15:  3999-4004,  2017 4001

Cruz Biotechnology, Inc.) and β‑actin (catalogue no. 4970, 
dilution, 1:1,000; Cell Signalling Technology, Danvers, MA, 
USA). Subsequently, membranes were incubated with goat 
anti‑rabbit horseradish peroxidase‑conjugated IgG secondary 
antibody (catalogue no. AB501, dilution, 1:1,000; Novoprotein, 
Shanghai, China) for 2 h at room temperature. was used as a 
loading control for all experiments. Densitometry analysis was 
performed using the Image J software with normalization to 
β‑actin.

Statistical analysis. All data are represented as mean ± stan-
dard error of mean and were analysed using SPSS software 
(version 21.0; IBM SPSS, Armonk, NY, USA). The treatment 
effects on the behaviour score at different time points were 
analysed using repeated measures one‑way analysis of variance, 
followed by Tukey‑Kramer post hoc tests. When comparing 
two groups, statistical analysis of data was performed using 
Student's t‑test. P<0.05 was considered to indicate a statisti-
cally significant difference.

Results

Delayed administration of GUO does not reduce infarct 
volume but improved the post‑stroke long‑term functional 
outcome. There was no statistical difference in infarct volume 
on day 7 post‑stroke between the two groups (1.220±0.110 vs. 

1.125±0.120 mm3, n=8 for each group, P>0.05; Fig. 1). In addi-
tion, no difference was detected on days 1 and 7 post‑stroke, 
in mNSS score, foot fault or forelimb asymmetry between 
the vehicle group and GUO group (Fig. 2A‑C). However, a 
significant reduction in the mNSS score and foot fault was 
observed on days 14 and 28 post‑stroke following GUO treat-
ment (P<0.05; Fig. 2A and B). Similarly, treatment with GUO 
significantly improved the function of the impaired forelimb 
on day 14, and the effect was maintained up to 28  days 
post‑stroke. The results indicated that delayed administration 
of GUO was able to promote long‑term functional recovery 
following ischemic stroke (Fig. 2C).

Delayed administration of GUO enhances neurogenesis in 
the ischemic brain. GUO significantly increased the number 
of BrdU+ cells in the ipsilateral SVZ and SGZ when compared 
with the vehicle group (P<0.05; Fig. 3A‑C). These data indi-
cated that administration of GUO enhances cell proliferation 
following stroke.

In addition, GUO significantly increased the number 
of BrdU+ cells co‑labelled with DCX, a marker of neural 
progenitor cells, in the ipsilateral SVZ and SGZ compared 
with the vehicle group (P<0.05; Fig. 3D and E) at all time 
points following stroke induction, suggesting that delayed 
administration of GUO promotes proliferation of neural 
progenitor cells in the SVZ and SGZ following stroke.

Figure 1. Delayed administration of guanosine does not reduce the infarct volume at day 7 following PT‑induced stroke. (A) Representative Nissl stained 
sections from vehicle‑ and guanosine‑treated mice following 7 days of stroke. (B) Quantification of the infarct volume of vehicle and guanosine group. Data 
are presented as the mean ± standard error of the mean, n=4 per group. P>0.05 vs. PT + vehicle. PT, photothrombosis.

Figure 2. Delayed administration of guanosine improves long‑term functional recovery following PT‑induced stroke. No significant difference was detected on 
days 1 and 7 post‑stroke in (A) mNSS score, (B) foot fault or (C) forelimb asymmetry between the vehicle group and guanosine group. However, a significant 
improvement in the mNSS score, foot fault and forelimb asymmetry was observed on days 14 and 28 post‑stroke following guanosine treatment. Data are 
presented as the mean ± standard error of the mean, n=8 per group. *P<0.05 vs. Control. PT, photothrombosis; mNSS, modified neurological severity scale.
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To further investigate whether the proliferative neural 
progenitor cells is able to differentiate into functional neurons, 
double immunostaining was performed with NeuN (a marker 
of mature neurons) and BrdU. GUO significantly increased 
the number of BrdU+/NeuN+ cells in the peri‑infarction cortex 
following stroke, when compared with the vehicle group 
(P<0.05; Fig.  4A and B). These data indicated that GUO 
enhances the differentiation of new neural progenitor cells into 
mature neurons within the peri‑infarction region following 
stroke.

Delayed administration of GUO enhances angiogenesis in 
the ischemic brain. To examine whether GUO influences 
the formation of new blood vessels in the ischemic brain, 
all blood vessels in the peri‑infarction cortex were counted 
using vWF immunostaining. vWF is a vascular endothelial 
cell marker. GUO significantly increased vascular density in 
the peri‑infarction cortex compared with the vehicle group 
(P<0.05; Fig. 4C and D). Furthermore, these results presented 
a significant increase in the percentage of BrdU+/vWF+ cells 
in mice treated with GUO, when compared with the vehicle 
group (P<0.05; Fig.  4E). These data suggested that GUO 
enhances angiogenesis following stroke.

Delayed administration of GUO promotes the expression 
of neurotrophic factors. Western blot analysis demonstrated 
that GUO significantly increased the expression of VEGF and 
BDNF in the ischemic brain at day 14 post‑stroke compared to 
the vehicle (P<0.05; Fig. 5).

Discussion

The primary result of the present study was that delayed admin-
istration of GUO improved long‑term functional outcome 

following a PT‑induced stroke; however, did not reduce 
infarct volume. In addition, GUO enhanced post‑ischemic 
neurogenesis and angiogenesis, which likely contributed to 
the restorative effects of GUO. Furthermore, GUO increased 
the expression of two key neurotrophins, BDNF and VEGF, 
suggesting that neurotrophic effects may contribute to the 
enhancing effects of GUO on post‑ischemic neurogenesis and 
angiogenesis.

Treatment with GUO prior to or immediately following 
experimental cerebral ischemia confers acute neuroprotection 
in multiple in vitro and in vivo stroke models (10‑14). The 
mechanisms responsible for the neuroprotective effects may 
be associated with the anti‑oxidative stress, anti‑excitatory 
toxicity and anti‑apoptosis activities of GUO (9,10,13,23). 
In the present study, delayed administration of GUO was 
investigated, to identify whether it improved long‑term func-
tional outcome following a stroke. The results indicated that 
GUO administered 24 h following PT accelerated long‑term 
recovery. In particular, delayed GUO treatment only improved 
neurological functions from 14  days following the stroke 
and did not improve functions during the acute phase, which 
suggested that delayed GUO treatment may promote functional 
recovery through restorative rather than acute neuroprotective 
mechanisms.

In addition, the infarct volume at 7 days following stroke 
was not reduced. This result is consistent with previous studies 
in which infarct volume was only reduced by GUO when it was 
administered within a tight administration schedule (11,12). 
These results suggest that delayed treatment with GUO did 
not exert an acute neuroprotective effect on cerebral ischemia, 
resulting in an unchanged infarct size.

GUO has been indicated to induce neurogenesis in SVZ 
in a mouse Parkinsonism model (24) and synaptogenesis in 
the healthy rat brain (18). However, whether GUO increases 

Figure 3. Delayed administration of guanosine promotes neural progenitor cells proliferation in the SVZ and SGZ. (A) Immunostaining of (red) BrdU and 
(green) DCX in the SVZ and SGZ of vehicle‑ and guanosine‑treated mice at day 7 post‑stroke. Quantification of BrdU+ cells in the (B) SVZ and (C) SGZ, and 
BrdU+/DCX+ cells in the (D) SVZ and (E) SGZ, at each time point for each group. Data are presented as the mean ± standard error of the mean, n=6 per group. 
*P<0.05 vs. Vehicle. Scale, 100 µm. SVZ, subventricular zone; SGZ, subgranular zone; BrdU, bromodeoxyuridine; DCX, doublecortin.
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neurogenesis or angiogenesis post‑stroke has never been 
studied, to the best of the authors' knowledge. GUO significantly 
increased the number of BrdU+ cells in the SVZ and the SGZ, 
indicating that GUO promotes cell proliferation following stroke. 
As the number of BrdU+/DCX+ cells increased in the SVZ in 
GUO‑treated mice, GUO enhanced proliferation of endogenous 
neural progenitor cells. At 14 and 28 days post‑stroke, treat-
ment with GUO significantly increased the number of BrdU+/
NeuN+ cells in the peri‑infarct region, when compared with 

the vehicle‑treated group, suggesting that GUO promoted cell 
proliferation and the differentiation of new neural progenitor 
cells into mature neurons within the peri‑infarction region. 
GUO was demonstrated to increase the microvessel density 
and Brdu+/vwF+ cells in the peri‑infarct region, when compared 
with the vehicle group, indicating angiogenesis post‑stroke was 
enhanced and may contribute to neurological recovery.

Growth and neurotrophic factors have been demonstrated 
to promote neurogenesis and angiogenesis and improve 

Figure 4. Delayed administration of guanosine increases the number of BrdU+/NeuN+ cells and microvessel density within the peri‑infarction region 
following stroke. (A) Immunostaining of (red) BrdU and (green) NeuN in the peri‑infarct region of vehicle‑ and guanosine‑treated mice at day 14 post‑stroke. 
(B) Quantification of BrdU+/NeuN+ cells in the peri‑infarct region for each group. (C) Immunostaining of (red) vWF and (green) BrdU in the peri‑infarct region 
of vehicle‑ and guanosine‑treated mice at day 14 post‑stroke. (D) microvessel density and (E) percentage of BrdU+/vWF+ cells relative to total vWF+ cells in 
the peri‑infarct region for each group. Data are presented as the mean ± standard error of the mean, n=6 per group. *P<0.05 vs. Vehicle. Scale, 100 µm. BrdU, 
bromodeoxyuridine; NeuN, neuronal nuclei; vWF, von Willebrand factor.

Figure 5. Delayed administration of guanosine increases the expression of VEGF and BDNF following stroke. (A) Representative western blots present levels 
of VEGF and BDNF in the ischemic brain 28 days following stroke. (B) Quantification (mean optical density, normalized to β‑actin) of western blots. Data 
are presented as the mean ± standard error of the mean, n=6 per group. *P<0.05 vs. Control. VEGF, vascular endothelial growth factor; BDNF, brain‑derived 
neurotrophic factor.
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neurological function following cerebral ischemia (25,26). 
Previous in vitro studies have repeatedly demonstrated the 
neurotrophic effects of GUO (27). The present results further 
suggested that GUO significantly increased BDNF and VEGF 
levels in ipsilateral brain post‑stroke. BDNF and VEGF are 
two important neurotrophic factors that have multiple effects 
on neurogenesis and angiogenesis, for example, they stimulate 
adult neurogenesis and promote migration of new neurons in 
the SVZ and dentate gyrus (28,29). In addition, the expression 
of VEGF is associated with an increase in vascular density in 
the ischemic penumbra (30). Elevated BDNF and VEGF levels 
may contribute to the enhanced neurogenesis and angiogenesis 
by GUO. However, the causative link between them has not 
been investigated, therefore further studies are warranted.

In conclusion, delayed administration of GUO enhances 
neurogenesis and angiogenesis post‑ischemic stroke and 
increases the expression of BDNF and VEGF. This contributes 
to improved long‑term functional recovery.
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