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Background Timely influenza surveillance is important to monitor

influenza epidemics.

Objectives (i) To calculate the epidemic threshold for influenza-

like illness (ILI) and acute respiratory infections (ARI) in 19

countries, as well as the thresholds for different levels of intensity.

(ii) To evaluate the performance of these thresholds.

Methods The moving epidemic method (MEM) has been

developed to determine the baseline influenza activity and an

epidemic threshold. False alerts, detection lags and timeliness of

the detection of epidemics were calculated. The performance was

evaluated using a cross-validation procedure.

Results The overall sensitivity of the MEM threshold was 71Æ8%

and the specificity was 95Æ5%. The median of the timeliness was

1 week (range: 0–4Æ5).

Conclusions The method produced a robust and specific signal to

detect influenza epidemics. The good balance between the

sensitivity and specificity of the epidemic threshold to detect

seasonal epidemics and avoid false alerts has advantages for public

health purposes. This method may serve as standard to define the

start of the annual influenza epidemic in countries in Europe.
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Introduction

Influenza causes respiratory infections in humans, leads to

increased consultations in general practice and is an impor-

tant global cause of hospital admissions and mortality.1,2

While attack rates are highest among children, mortality

rates are typically highest in elderly populations and among

persons suffering from chronic and underlying condi-

tions.3,4 Influenza produces substantial direct healthcare

costs, and even greater indirect costs associated with the

loss of both labour and school days.5–7 Consequently, influ-

enza is an important burden on human health and a chal-

lenge for health services, making it a priority for

surveillance activities, which can help to better prioritise

the efforts in prevention and control.

Objectives of influenza surveillance include monitoring

annual epidemics and detecting and characterising circu-

lating viruses.8 Additionally, timely detection of the start

of the seasonal epidemic is needed to alert health ser-

vices and to mitigate morbidity, mortality and economic

costs. Lessons from the past human outbreak of an avian

influenza A(H5N1) virus infection in Hong Kong in

19979 and the recent experience of the influenza

A(H1N1)pdm09 pandemic declared by the WHO on

June 200910 have intensified the efforts of international

and national health authorities to further enhance sur-

veillance systems to provide a more standard and accu-

rate estimation of influenza dynamics at the local and

country level.

Although influenza can appear sporadically in popula-

tions, influenza epidemics usually occur seasonally in tem-

perate regions of the world, typically during autumn and

winter months, with a great variation in the epidemiologi-

cal characteristics. The onset, duration, intensity and geo-

graphical spread of influenza activity are unpredictable and

depend on multiple factors such as the characteristics of

virus strains, population susceptibility and climatic and

environmental factors.11

High-quality influenza surveillance can inform vaccine

decision-making and help policy-makers prioritise
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resources for persons most at risk of severe outcomes.

Timely detection of the onset of epidemics has the poten-

tial to inform empirical antiviral therapy for hospitalised

patients with suspected influenza,12 which can further

reduce the health and economic burden of influenza. Accu-

rately identifying the start of influenza epidemic requires

routine and timely data collection and a standard

procedure to analyse these data continuously.

A wide variety of statistical methods are available for

defining influenza epidemics, detecting influenza outbreaks,

and to assess the intensity of epidemics. In the last two

decades, Serfling-based models and dynamic linear models

requiring only recent data13–16 have been used for this pur-

pose. Most of these models are based on time series meth-

ods, and they often use subjective criteria, such as a

discretional virus isolations rate or manual removal of epi-

demic peaks, to establish a non-epidemic period.17–19 In

the United States, for instance, periods with <10% of speci-

mens testing positive for influenza are considered non-epi-

demics periods20 and have been used to establish national

and regional baselines. Cowling et al.21 estimated the sensi-

tivity, specificity and the timeliness of an influenza alert,

taking the period where the isolation rate was above a 20%

as epidemic. Regardless of the method used, some impor-

tant issues remain unresolved such as the evaluation of the

validity of a given method in the absence of a gold stan-

dard or how to handle the early warning signals from

statistical surveillance systems.22

Nowadays, influenza sentinel networks exist at regional

and national levels in most of Europe, optimising surveil-

lance through the integration of epidemiological and viro-

logical data with high sensitivity, specificity, accuracy and

timeliness.23 However, these systems, which are based on

the epidemiological surveillance of patients attending pri-

mary healthcare services, lack clear criteria to detect the

start of the influenza epidemic and to assess the intensity

and spread of influenza. Attempts at searching for a stan-

dard epidemic threshold have not satisfied all expecta-

tions24,25 or are difficult to apply worldwide, because of the

complexity of the mathematical modelling and the variety

of criteria to calculate the baseline or epidemic threshold.

An automated method using simple data is needed to

define the onset of the seasonal epidemic and to assess the

intensity of influenza activity.

A model to detect seasonal epidemics, to monitor their

intensity and to compare their spatial spread has been used

in Spain since 2003 with reliable results in several European

countries.26,27 A modified version of this approach named

MEM (Moving Epidemic Method)’ is being implemented

by the World Health Organisation and the European Cen-

tres for Disease Prevention and Control to monitor influ-

enza circulation in the European countries. The main

purpose of the method is to define the baseline influenza

activity in historical data and to establish an epidemic

threshold above which the weekly rates are considered to

be in the epidemic period. In this study, we describe the

epidemic threshold, three thresholds for different levels of

intensity calculated by MEM, the modelled 2009–2010 sea-

son, and we evaluate the performance of the epidemic

threshold for detecting the start of the influenza epidemic

in 19 European countries.

Material and methods

Selected data
Weekly aggregate numbers of influenza-like illness (ILI)

and acute respiratory infections (ARI) for 19 European

countries or regions were included in the analysis. Romania

provided both ILI and ARI data independently. Most coun-

tries reported population-based rates. The data sets were

generally collected through sentinel surveillance net-

works,28,29 but four countries provided data from nation-

wide or a combination of notification systems. Castilla y

León, a large region in the upper centre of Spain, has also

been particularly included because data are provided by

one unique sentinel network with homogeneous and

standard methodological criteria since 1996.

Countries were selected according to the following

criteria:

1. ILI was registered independently from ARI.

2. Historical data were available for five or more surveil-

lance seasons.

3. Weekly rates were estimated at least for 33 weeks in

every season, from week 40 of 1 year to the week 20 of

the following year. For the 2009–2010, the season the

period was extended from the 30th week of 2009 to

the 20th week of 2010 because of the circulation of the

influenza A (H1N1)pdm09 virus.

4. The number of sites reporting data and the population

under surveillance remained stable over time.

Data quality control
Missing values in weekly rates at the beginning or at the

end of the surveillance period did not affect the method

and were excluded from calculations. Missing weekly data

during the surveillance period were imputed with a smooth

regression over the full season’s data using a small window

parameter.30

The Moving Epidemic Method
The purpose of the MEM is to model influenza epidemics

based upon historical data from a specific country or

region. The method has three main steps: First, the length,

start and the end of the annual epidemics are determined,

splitting the season in three periods: a pre-epidemic, an

epidemic and a post-epidemic period. Secondly, the

Epidemic thresholds by MEM
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baseline and the epidemic thresholds are calculated using

the pre-epidemic and post-epidemic values of historical

seasons. Finally, thresholds for different levels of intensity

are computed.

In the first step, for each season separately, the length of

the epidemic period is estimated as the minimum number

of consecutive weeks with the maximum accumulated rates

percentage (MAP).

The MAP curve draws the maximum cumulated rate for

a period of a given length r, expressed as percentage pr
j of

the total rate of the jth season.

For each season j ¼ 1; . . . ;N :

tr
j ¼ max

k¼1;:::;S�rþ1

Xkþr�1

i¼k

ti;j

( )
; 8r ¼ 1; . . . ; S; and

pr
j ¼ tr

j

.
tS
j
; and tS

j ¼
XS

i¼1

ti;j

Where ti,j is the ith rate of the jth season, N is the number

of seasons, and S is the number of surveillance weeks per

season.

Then the MAP curve is smoothed, p
^r

j ;using a smoothing

regression (pr
j over r), selecting automatically the window

parameter.30,31

The optimum number of weeks for each season is deter-

mined calculating the increment in the percentage from

one number of weeks to the next one.

Dr
j ¼ p

^rþ1

j � p
^r

j

It is represented as the slope of the MAP curve, a disper-

sion graph of Dr
j over r.

When this increment is lower than the predefined

criteria, the optimum is found.

rj� ¼ min
r¼1;:::;S�1

r : Dr
j <d

n o

Where r�j is the optimum duration of the jth season and d
an inner parameter that depends on the country, ranges

from 2% to 4% and maximises sensitivity and specificity.

Once the optimum duration of the epidemic is found,

the timing is determined by the value k* that maximises

the expression used to calculate the pr
j .

k� :
Xk�þr�j �1

i¼k�

ti;j ¼ max
k¼1;:::;S�r�

j
þ1

Xkþr�j �1

i¼k

ti;j

8<
:

9=
;

The epidemic starts on week k* and ends on week

k� þ r�j � 1.

Weeks before the epidemic period are the pre-epidemic

period (1 to k*)1), and weeks after are the post-epidemic

period (k� þ r�j to S).

In the second step, the baseline and threshold using pre-

epidemic values of historical seasons are calculated. The

baseline is the arithmetic mean of all pre-epidemic rates of

all historical seasons (pooled together as a single sample).

The post-epidemic baseline is the mean of all post-

epidemic rates.

To calculate the threshold, only a set of pre-epidemic

values is considered. For each season, the highest n values

from the pre-epidemic period are taken, where

n = 30 ⁄ number of seasons.

8j! tð1Þ;j; tð2Þ;j; . . . ; tðnÞ;j

� �
Where t(i),j is the ith pre-epidemic highest rate.

With all these n · N values, a one-tailed point 95% con-

fidence interval is calculated.

0;�t þ z0:05 � Stð �

Where z0.05 is the 5% percentile of a standard normal dis-

tribution, and St the standard deviation of the sample, and
�t .is the arithmetic mean of the selected pre-epidemic

values.

�t ¼
Pn
i¼1

PN
j¼1

t ið Þ;j

,
n � N

The upper limit of the confidence interval is the

epidemic threshold.

t� ¼ �t þ z0:05 � St ;where

S2
t ¼

Pn
i¼1

PN
j¼1

ðt ið Þ;j ��t
�2

,
n � N � 1

Additionally, a post-epidemic threshold is calculated

using the same procedure.

Thresholds for different levels of intensity are calculated

using the n highest values of each epidemic period to build

a sample of n · N rates. With the sample, the geometric

mean and 50%, 90% and 95% one-sided confidence inter-

vals are calculated. These upper limits are the threshold for

the different levels of intensity of the epidemic.

An R language implementation of the algorithm is pub-

licly available through an R library called ‘mem’ that can

be downloaded for free at The Comprehensive R Archive

Network -CRAN- in http://www.r-project.org/.

Descriptive data analysis
For each country, we describe the thresholds (pre-epi-

demic and post-epidemic) based on the historical data

from the beginning of surveillance in the country up to

the end of the 2008–2009 season, as well as the thresh-

olds for different levels of intensity. We compared these

thresholds with the modelled periods of the 2009–2010

season (pre-epidemic, epidemic and post-epidemic). Rates

Vega et al.
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in the pre-epidemic period were expected to be lower

than the pre-epidemic threshold rate, while rates within

the epidemic period are expected to be higher. Finally,

rates in the post-epidemic period were expected to be

lower than the post-epidemic threshold rate. We calcu-

lated the number of false alerts, the detection lag and

timeliness of the 2009–2010 season.

The following definitions were used:

1. Alert week: The first week of the 2009–2010 season with

a rate above the pre-epidemic threshold.

2. False alert: A weekly rate from the modelled pre-epi-

demic period of the 2009–2010 season which is above

the pre-epidemic threshold.

3. Detection lag: The delay between the start of the epi-

demic period modelled by MEM for the 2009–2010 sea-

son and the alert week. The lag is zero if there is no

delay.

4. Timeliness: A positive value representing the number of

weeks between the alert week and the first week of the

epidemic period modelled by MEM for the 2009–2010

season, either the alert week precedes the epidemic

period or vice versa.

Cross-validation analysis
The accuracy of the method was evaluated using a cross-

validation procedure. For each country, each single season

was extracted from the historical records to be used as the

target season. MEM calculated the beginning and the end

of the epidemic period of the target season. On the basis of

the remaining seasons, excluding the target season, MEM

calculated the pre- and post-epidemic thresholds. This pro-

cedure was repeated as often as the numbers of seasons

available per country.

To assess the quality of the method, the rates of the

target season inside and outside of the epidemic period

determined by MEM were compared to the thresholds

calculated using all historical information but the target

season. To measure the performance of the threshold,

the following statistics and definitions were used:

1. Sensitivity: The number of epidemic weeks above the

pre-epidemic threshold (before the peak) and above

the post-epidemic threshold (after the peak) divided by

the number of epidemic weeks (epidemic length).

2. Specificity: The number of non-epidemic weeks below

the pre-epidemic threshold (before the peak) and below

the post-epidemic threshold (after the peak) divided by

the number of non-epidemic weeks.

3. Positive predictive value (PPV): The number of epi-

demic weeks above the threshold divided by the number

of weeks above the threshold.

4. Negative predictive value (NPV): The number of non-

epidemic weeks below the threshold divided by the

number of weeks below the threshold.

5. Median timeliness: Median of the seasons’ timeliness

This process was undertaken for each data set provided by

the countries. Statistics were calculated as overall measures

of the performance of the MEM, and also separately with

regard to its application to ILI and ARI surveillance data.

Influenza-like illness and ARI mean statistics were com-

pared using the two-sample Student’s t-test, except for

timeliness, where the Wilcoxon rank sum test was used.

P-values and confidence intervals of the difference in

means between ARI and ILI were provided. The R language

was used for these calculations.

Results

The modelled 2009–2010 season
Data from 19 countries or regions, with a total of 20 data

sets (15 ILI and 5 ARI), were modelled. Most of the data

came from sentinel surveillance systems, based in the vol-

untary notification of consultations in primary care, and

expressed as cases per 100 000 population (Table 1). The

number of seasons used in each country varied from

five in Kyrgyzstan (ILI), Romania (ILI and ARI) and

Kazakhstan (ARI) to 15 in the Netherlands.

Pre-epidemic thresholds per 100 000 population ranged

from 25 (Ireland and Portugal) to 168 (Romania) for ILI

data and from 189 (Kazakhstan) to 762 (Romania) for ARI

data, showing the differences between the systems. Post-

epidemic thresholds were slightly different to pre-epidemics

thresholds, most of the countries with a variation in a

range of ±10%, with the exception of Castilla y León

(Spain), Hungary and Poland in which these differences

were much higher (Table 2).

The modelling results for the 2009–2010 epidemic, sum-

marised in Table 2, are also plotted by the countries. In

Castilla y León (Spain), where the method was primarily

developed, MEM identified an epidemic period of 12 weeks

and a pre-epidemic threshold of 71 cases per 100 000 pop-

ulation. The alert week (the first incidence rate above the

epidemic threshold) in week 38 was the first week of the

epidemic period detected by MEM. There was no detection

lag, and no false alerts were observed prior to that week.

However, 2 weekly rates of the epidemic period are located

below the post-epidemic threshold. The intensity of the

2009–2010 epidemic was moderated, peaking very

much below the 90% level of historical epidemic values

(Figure 1B).

In countries with similar sentinel surveillance systems,

such as Belgium, Spain and Switzerland, the model also pro-

duced similar results. No false alerts or detection lags were

observed, and the duration of the epidemics was 10, 10 and

9 weeks, respectively. Their observed intensity remained

below the 90% confidence interval. (Figure 1A,M,N).

Epidemic thresholds by MEM
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Slovenia, Poland and Kyrgyzstan showed also excellent

results in terms of timeliness, although in Kyrgyzstan, rates

were considerably higher in 2009–2010 than in previous his-

torical data (Figure 1G, I, L).

High pre-epidemic values for the pandemic season of

2009-2010 were observed in Ireland and Romania

(Figure 1E,K) and were detected by MEM as false alerts. In

the cases of Israel and Norway (Figure 1F,H), this high pre-

epidemic values correspond to the first of the two waves

observed in the season. In Greece and Portugal (Figure 1C,J),

isolated false alerts were also detected some weeks before the

epidemic period. No detection lags were observed among ILI

reporting countries in the 2009–2010 season.

Among the countries providing ARI data, Albania,

Kazakhstan, Romania, Russian Federation and Ukraine

(Figure 2), the MEM produced high epidemic thresholds

and reduced levels of intensity. The peaks of the 2009–2010

seasons exceeded the 95% confidence interval of the histor-

ical epidemic periods. The false alerts and timeliness results

appeared quite similar to the ILI countries. In Albania

(Figure 2A), epidemic was detected 2 weeks after the start

of the epidemic period, producing a detection lag accord-

ing to the model.

Cross-validation
Figures 3 and 4 display the historical time series of ILI and

ARI used in the cross-validation process, the epidemic peri-

ods modelled by MEM, and the alert week according to the

pre-epidemic threshold of each season. When the alert

week is located beyond the first week of the epidemic per-

iod modelled by MEM, there is a delay in the detection of

the seasonal epidemic. Additionally, if the alert week is

inside the pre-epidemic period modelled by MEM, there is

a false alert.

The overall sensitivity of the MEM thresholds across all

countries providing data was 71Æ8% (Table 3). The sensitiv-

ity for countries reporting ILI was slightly higher (75Æ7%)

than for countries reporting ARI (60Æ1%), and this differ-

ence is borderline significant (P = 0Æ06). The MEM pro-

vided over 90% sensitivity in detecting the epidemic period

in Belgium and Switzerland. Sensitivity was lowest in Ire-

land and Norway (ILI data), and in Albania, Romania and

Ukraine (ARI data).

The specificity of the alert signal was 95Æ5%. The speci-

ficity was similar for both types of data (96Æ0% versus

94Æ1%), and no significant differences were found

(P = 0Æ20). Specificity of the MEM was above 90% in all

Table 1. Characteristics of data sets by country

Region Seasons Numerator System Nature Denominator Units Average

Influenza-like illness data

Belgium 10 ILI Sentinel Voluntary Population* ·100 000 –

Castilla y Leon (Spain) 14 ILI Sentinel Voluntary Population ·100 000 40 000

Greece 6 ILI Sentinel Voluntary Consultations ·10 000 6000–20 000**

Hungary 7 ILI Sentinel Compulsory Population ·100 000 2000 000

Ireland 10 ILI Sentinel Voluntary Population ·100 000 263 235

Israel 12 ILI Sentinel Voluntary Population ·100 000 1 900 000

Kyrgyzstan 5 ILI Nationwide Compulsory Population ·100 000 5 383 27

Norway 6 ILI Sentinel Compulsory Population ·100 000 600 000–700 000

Poland 9 ILI Sentinel Voluntary Population ·100 000 1 50 000

Portugal 12 ILI Sentinel Voluntary Population ·100 000 56 000

Romania 5 ILI Sentinel Compulsory Population ·100 000 600 000

Slovenia 10 ILI Sentinel Voluntary Population ·100 000 75 000

Spain 14 ILI Sentinel Voluntary Population ·100 000 813 371

Switzerland 9 ILI Sentinel Voluntary Population* ·100 000 –

The Netherlands 15 ILI Sentinel Voluntary Population ·100 000 116 000

Acute respiratory infection data

Albania 7 ARI Nationwide Compulsory Population ·100 000 3 161 337

Kazakhstan 5 ARI Sentinel ⁄ Nationwide Compulsory Population ·100 000 16 776 539

Romania 5 ARI Sentinel Compulsory Population ·100 000 600 000

Russian Federation 6 ARI Nationwide Compulsory Population ·100 000 44 267 62

Ukraine 7 ARI Clustering*** Compulsory Population ·100 000 98 892 550

*Population is estimated from the number of consultations per week. GPs have not a fixed patient list.
**Average number of consultations per week.
***Compulsory system within a sample of cities of the country.
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countries, with the exception of Kazakhstan (89Æ6%),

with the highest values (over 98%) obtained for Belgium,

Castilla y León, Slovenia, Spain and the Netherlands.

The positive predictive value (PPV) of observed rates

above the epidemic thresholds was significantly higher

(P < 0Æ05) for ILI data than for ARI data (92Æ4% versus

88Æ2%). No difference was observed for the negative predic-

tive value (NPV) (90Æ4% versus 83Æ3%) (P = 0Æ17). The

PPV and NPV of the MEM exceeded 80% in all countries

with the exception of Albania. Particularly high PPV and

NPV (both above 90%) were observed in Belgium, Slove-

nia, Switzerland, Castilla y León, the Netherlands, Spain,

Greece and Russian Federation. These were countries that

also presented high sensitivity (over 75%) or specificity

(over 95%) values.

The median timeliness of epidemics detection was

1 week. The timeliness ranged from 0 (Belgium, Castilla y

León, Portugal and Switzerland) to 4Æ5 (Norway), and

again, the lowest values appeared in countries where other

statistics of performance appeared strongest. This lag was

observed to be a week longer in the countries reporting

ARI than in countries reporting ILI but this difference was

not statistically significant (P = 0Æ13).

Discussion

The main purpose of the MEM is to calculate an epidemic

threshold based on simple and reliable epidemiological

data. The epidemic threshold is an ILI or ARI rate above

which we define the start of the seasonal epidemic. The

model was primarily developed to model influenza epidem-

ics but, in order to ascertain its practical usefulness to cal-

culate the threshold in ‘real world’ settings, we have

applied the MEM to 20 data sets from 19 countries in the

WHO European region with a diversity of surveillance sys-

tems and data types. While MEM performance varied con-

siderably in different scenarios, the method generally

produced a robust and specific signal to detect influenza

epidemics and assessed the impact of seasonal respiratory

infections in countries where only ARI data were available.

Unlike other methods,16,20,24 the MEM does not include

virological data. Influenza detection rates vary across the

European Region depending on methods and practices in

different countries (some of which have limited laboratory

capacity) and may be less standardised than epidemiologi-

cal measures for routine detection of the beginning of the

influenza season. Influenza viruses circulate in a population

Table 2. Pre-epidemic and post-epidemic thresholds based on historical data until 2008-2009, and comparison with the observed 2009–2010

season

Region

Pre-threshold

(n ⁄ 100 000)

Post-threshold

(n ⁄ 100 000)

Length of

epidemic

2009–2010

(weeks)

False alerts

2009–2010 (n)

Detection lag

2009–2010 (weeks)

Timeliness

2009–2010

Influenza-like illness data

Belgium 143 145 10 0 0 0

Castilla y Leon 71 98 12 0 0 0

Greece 149 152 10 4 0 5

Hungar y 150 92 12 0 0 0

Ireland 25 23 12 8 0 8

Israel 42 47 9 11 0 12

Kyrgyzstan 73 65 6 0 0 0

Norway 55 56 7 13 0 13

Poland 113 69 8 0 0 0

Portugal 25 24 10 1 0 6

Romania 168 125 12 2 0 4

Slovenia 27 32 7 0 0 0

Spain 79 72 10 0 0 0

Switzerland 69 73 9 0 0 0

The Netherlands 63 56 10 0 0 0

Acute respiratory infection data

Albania 457 402 18 0 2 2

Kazakhstan 189 168 9 0 0 0

Romania 762 774 8 3 0 4

Russian Federation 618 630 7 1 0 1

Ukraine 573 537 4 4 0 6

Epidemic thresholds by MEM
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Figure 1. Epidemic threshold, levels of intensity and modelled influenza-like illness season 2009–2010 by country.
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at very low levels even outside of the influenza season and

sporadic isolations may also have a little epidemic signifi-

cance. As some countries within the European Region may

not have influenza sentinel surveillance systems, viruses

reported from out-of-season outbreaks investigations could

also reduce the specificity of the method to detect the

actual start of a season. Moreover, low-intensity epidemics

in rural areas with limited laboratory capacity could delay

the first detection of influenza for weeks in some countries.

This suggests that a model using only simple epidemiologi-

cal data might be a more practical choice for a standard

within a region. Nevertheless, historical ILI and ARI data

should be carefully checked to eliminate the data errors or

aberrant information causing peaks in the pre-epidemic

and post-epidemic periods. Notwithstanding, if influenza

weekly epidemiological data are accompanied by timely

virological data, virus circulation should be taken into

account to make appropriate public health decisions.

Hashimoto et al.32 have explored the detection of epi-

demics in their early stage and defined periods of no activ-

ity and pre-epidemic periods, but the threshold and limits

were not modelled based on the duration and intensity of

historic influenza epidemics, and the alert status varied sig-

nificantly depending of the arbitrary thresholds used.33

Cowling et al.21 suggested that the influenza surveillance

systems should incorporate a simple and reliable model

with maximum sensitivity and specificity, and a minimum

lag in detecting epidemics. While no system can optimise

each of these attributes, influenza surveillance through

well-run sentinel networks has proven its utility and valid-

ity, and strongly enhanced the value of predictive models.

The routine collection of a limited amount of high-quality

data in sentinel systems improves the sensitivity and speci-

ficity in comparison with compulsory and other non-sam-

ple systems.34

The MEM epidemic threshold has a sensitivity of 75Æ7%

for ILI data and a very high specificity (overall more than

95% for ILI and ARI data). The epidemic threshold esti-

mated by the MEM is conservative. Specificity is a more

important attribute for the detection of an influenza epi-

demic than sensitivity, because the announcement of the

start of influenza epidemic can generate media interest and

triggers influenza prevention and control measures such as

antiviral use, enhancements of vaccination campaigns or

the implementation of non-pharmaceutical interventions.

When the epidemic alert signal is excessively specific, the

detection lag increases and reduces timeliness, as observed

in Albania. The NPV increases in the pre-epidemic period,

when incidence is lower. Conversely, the positive predictive

value of MEM was observed to be highest during the epi-

demic period. The MEM seeks to achieve a balance

between these values, as shown in Belgium and Slovenia

(where values >95% were observed in both attributes),

because it is this transition point from the pre-epidemic to

the epidemic period where values are more relevant. Time-

liness is higher in ARI data than ILI data, but this differ-

ence is not statistically significant, probably due to the

sample size.

Case definitions with a lower relative specificity for influ-

enza, such as ARI, will reduce the specificity of the model
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Figure 2. Epidemic threshold, levels of intensity and modelled acute respiratory infection season 2009–2010 by country.
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Figure 3. Time series of influenza-like illness by country, the epidemic periods modelled by MEM, and the alert week according with the pre-

epidemic threshold of each season.
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Figure 4. Time series of acute respiratory infection by country and the epidemic periods modelled by MEM, and the alert week according with the

pre-epidemic threshold of each season.

Table 3 Indicators of the model performance to detect the beginning of an epidemic period

Region Sensitivity (%) Specificity (%) PPV (%)* NPV (%)** Median timeliness

All data 71Æ8 95Æ5 91Æ3 88Æ6 1

Influenza-like Illness data 75Æ7 96Æ0 92Æ4 90Æ4 1

Belgium 94Æ6 98Æ7 97Æ3 97Æ3 0

Castilla y Leon 77Æ3 98Æ4 96Æ4 91Æ5 0

Greece 85Æ5 93Æ6 90Æ6 95Æ2 0Æ5
Hungary 76Æ8 93Æ5 92Æ9 88Æ7 1

Ireland 55Æ4 96Æ1 93Æ9 83Æ8 2

Israel 72Æ6 96Æ4 93Æ9 88Æ1 1

Kyrgyzstan 80Æ0 92Æ0 81Æ5 88Æ1 1

Norway 59Æ6 91Æ4 88Æ4 81Æ7 4Æ5
Poland 68Æ4 94Æ2 88Æ9 90Æ3 1Æ5
Portugal 69Æ7 97Æ7 93Æ5 85Æ3 0

Romania 74Æ1 95Æ1 87Æ5 91Æ6 2

Slovenia 83Æ1 98Æ8 95Æ1 95Æ8 0Æ5
Spain 77Æ5 98Æ3 95Æ9 90Æ5 1

Switzerland 92Æ3 97Æ1 93Æ1 97Æ3 0

The Netherlands 68Æ2 98Æ6 96Æ7 90Æ8 2

Acute Respiratory Infection data 60Æ1 94Æ1 88Æ2 83Æ3 2

Albania 50Æ0 94Æ8 90Æ0 69Æ3 4

Kazakhstan 72Æ5 89Æ6 83Æ8 80Æ2 1

Romania 51Æ3 95Æ0 89Æ4 86Æ5 2

Russian Federation 76Æ6 95Æ6 90Æ2 95Æ0 1

Ukraine 50Æ2 95Æ7 87Æ7 85.3 2

*Positive predictive value.
**Negative predictive value.
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to detect an influenza season. This occurs because increas-

ing circulation of other respiratory pathogens, such as

respiratory syncytial virus, is more likely to produce

increasing ARI than ILI consultations. Other factors influ-

encing outpatient consultation rates, such as public anxiety,

highly sensitised clinicians35 or the circulation of a novel

influenza virus as was observed during the 2009–2010 pan-

demic in several European countries,36 can also produce

aberrant epidemiological data and false-positives results.

This may also results in patterns with bimodal waves as

observed in some countries such as Ukraine in 2009–2010

or pre-epidemic peaks as observed in Portugal and Greece.

In these situations, complementary virological data are nec-

essary to confirm the start of the epidemic period. The

MEM model presents a limitation when there are two or

more epidemics waves in the same season, as observed in

the 2009–2010 pandemic season in Israel and Norway,

which needs to be taken into account when evaluating the

model.

The validity of the model for detecting the start of the

ARI epidemics should be explored using a larger data set.

A disease model deriving a baseline and threshold from

pre-epidemic disease-free periods seems less appropriate

for ARI data, where the case definition covers a greater

number of pathogens, some of which may circulate

widely prior to the epidemic period.37,38 As the baselines

are intended to register ‘background noise’ when there is

no epidemic at all, there may be some problems with

ARI, as this background noise caused by summer-time

respiratory viruses including parainfluenza, rhinovirus,

coronavirus and adenovirus may sometimes exceed the

epidemic signal. ARI data from Albania and Romania did

not present a typical epidemic wave but an increase in

consultation rates with several peaks, while the Russian

Federation showed high post-epidemic rates. Despite the

differences between ILI and ARI, the only statistic that

we observed to be significantly different between ILI and

ARI systems is positive predictive value. ARI thresholds

calculated by MEM could also be useful to detect an

excess of disease. This heterogeneity of European data

provides a basis for discussion about the appropriateness

of the MEM for routine use in sentinel respiratory

disease surveillance.

The mathematical approach underlying MEM also invites

discussion of the duration of the epidemic period and its

relationship with the calculated threshold. The shorter the

duration, the higher is the epidemic threshold. In this

work, the duration is determined by the slope change fol-

lowing the first step of the MEM procedure. The d parame-

ter depends on the shape and intensity of the historical

influenza seasons, and it is recommended to lead particu-

larised country analysis to find the d value which maximises

the sensitivity and specificity.

The significance of the post-epidemic thresholds is still a

point for discussion. ARI data show more differences

between pre- and post-epidemic baselines than ILI data,

probably because we are looking at different diseases, while

in influenza, true variations could occur. The large varia-

tion by country does suggest, however, methodological

reasons, which will require further analysis.

Although a common approach is necessary for standard

comparisons of the timing and intensity of influenza sea-

sons across countries, the epidemic threshold and intensity

levels may be modified depending on national objectives.

For instance, the 50%, 90% and 95% CIs used to calculate

levels of intensity and to compare the epidemics through

different countries are discretional and could be changed.

In this work, we chose the parameters which, based on

the authors experience, would give the most reliable results.

However, these parameters may be adjusted by countries:

more ⁄ less pre-epidemic points, median and bootstrap con-

fidence intervals, arithmetic or geometric means, etc. The

variations in these parameters do not question the underly-

ing structure of the model and allow the method to be

adapted by different surveillance systems.

We selected countries with five or more years of histori-

cal data to be included in this study, but it is still open

how many historical seasons should be included in building

the model, even when long time series are available.

Changes in case reporting, demographics, case definitions

and secular trends (which are declining in several coun-

tries)39 could affect how well the model fits the tested data.

Typically, influenza mortality models make use of at least

the five preceding seasons.13,40,41 More than ten seasons

may further increase accuracy but make a model suscepti-

ble to biases from secular trends.

The MEM is an open method and offers a flexible proce-

dure for calculating a threshold for outpatient consulta-

tions. The main achievement of MEM is an algorithm

splitting one wave season in three periods using pre-epi-

demic information to calculate a threshold. The high sensi-

tivity and specificity of the threshold in detecting the

beginning of the epidemics in most countries, despite their

diverse surveillance system and data quality, support its use

for public health purposes such as early warning, health

services policy or mass media and public information.

MEM can be applied to historical ARI data, but the validity

indicators show a somewhat poorer performance than for

its application to ILI data.

One common method of analysis and interpretation of

ILI data should be established in Europe. MEM could be a

good option because of its intuitive concept, simple data

requirements and flexibility in comparison with other

sophisticated mathematical models. But other steps towards

harmonisation should also be taken. These analyses sug-

gest an added benefit from the establishment of an ILI
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definition with highly sensitive inclusion criteria.42 Com-

bined with highly specific threshold derived indicators,

Europe would obtain an even more reliable and compre-

hensive perspective on influenza surveillance. Moreover,

comparing ILI weekly data with levels of intensity calcu-

lated by MEM with a standard algorithm would allow

international assessment of clinical influenza activity among

European countries.

Acknowledgements

The authors would like to thank all investigators, the secre-

taries and the staff from the WHO Regional Office for Eur-

ope, the European Centre for Diseases Prevention and

Control and country representatives who coordinated the

participation, contributed in providing and checking coun-

try and network data, as well as reviewing and commenting

local results:

WHO Regional Office for Europe: Caroline S. Brown

European Centre for Diseases Prevention and Control:

Daniel Faensen, Phillip Zucs, Silvia Sarbu, Flaviu Plata,

Tommi Asikainen and Johan Giesecke.

Country representatives by alphabetical country name:

Albania. Institute of Public Health (Tirana): As. Prof. Silva

Bino, Dr.Dritan Ulqinaku, Dr.Artan Simaku, Dr. Iris Hatibi

and Dr.Alma Robo. Belgium. Scientific Institute of Pub-

lic Health (Brussels): Dr. Francoise Wuillaume and

Dr. Viviane Van Casteren. Castilla y León. Consejerı́a de

Sanidad. (Valladolid, Spain): Dr. Carolina Rodriguez Gay

and Milagros Gil Costa. Greece. Hellenic Centre for

Disease Control and Prevention (Athens): Theodore Lytras.

Hungary. National Center for Epidemiology, Department

of Communicable Diseases Epidemiology (Budapest):
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