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ABSTRACT

An overarching goal of neuroscience research is to understand how heterogeneous neuronal

ensembles cohere into networks of coordinated activity to support cognition. To investigate

how local activity harmonizes with global signals, we measured electroencephalography

(EEG) while single pulses of transcranial magnetic stimulation (TMS) perturbed occipital and

parietal cortices. We estimate the rapid network reconfigurations in dynamic network

communities within specific frequency bands of the EEG, and characterize two distinct

features of network reconfiguration, flexibility and allegiance, among spatially distributed

neural sources following TMS. Using distance from the stimulation site to infer local and

global effects, we find that alpha activity (8–12 Hz) reflects concurrent local and global

effects on network dynamics. Pairwise allegiance of brain regions to communities on average

increased near the stimulation site, whereas TMS-induced changes to flexibility were

generally invariant to distance and stimulation site. In contrast, communities within the beta

(13–20 Hz) band demonstrated a high level of spatial specificity, particularly within a cluster

comprising paracentral areas. Together, these results suggest that focal magnetic

neurostimulation to distinct cortical sites can help identify both local and global effects on

brain network dynamics, and highlight fundamental differences in the manifestation of

network reconfigurations within alpha and beta frequency bands.

AUTHOR SUMMARY

TMS may be used to probe the causal link between local regional activity and global brain

dynamics. Using simultaneous TMS-EEG and dynamic community detection, we introduce

what we call “resonating communities” or frequency band-specific clusters in the brain, as a

way to index local and global processing. These resonating communities within the alpha

and beta bands display both global (or integrating) behavior and local specificity, highlighting

fundamental differences in the manifestation of network reconfigurations.
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Network reconfigurations after TMS

INTRODUCTION

The brain is an intricate collection of heterogeneous areas (Alivisatos et al., 2012), and a cen-

tral goal of neuroscientific research is to understand how the coordination of these different
regions supports cognition (Azevedo et al., 2009; Bressler & Menon, 2010; Gollo, Roberts, &
Cocchi, 2017). One theoretical approach encapsulates the coordinated activity into a frame-
work of scales, and research has examined how local regional activity harmonizes with global

signals (Bressler & Kelso, 2001). Local activity refers to cortical or thalamocortical interactions

that reflect the transient coordination of inhibitory and excitatory neighboring neurons, con-

strained by basic neurophysiological factors such as refractory limitations and synaptic rising

(Fries, Nikolić, & Singer, 2007). However, research has shown that this local neural activity can

also be modulated by global activity in the brain (for review, see Buzsáki & Draguhn, 2004;

Buzsáki & Wang, 2012). Global activity arises from propagation delays in cortico-cortical
fibers and reflects the dynamic interactions and synchronization among distal networks. This

conceptual framework of local and global networks interacting in cognitive processes is critical
to the interpretation of neurophysiological signals. Yet, how this activity coheres to manifest

cognition is still an active area of study (Bressler & Kelso, 2001; Cocchi, Gollo, Zalesky, &

Breakspear, 2017).

EEG affords a natural way to study the scales of processing by examining oscillatory dynam-Electroencephalography (EEG):
A method to monitor electrical
activity emanating from the brain
but recorded from the scalp.

ics in different frequency bands (Buzsáki & Draguhn, 2004; Canolty & Knight, 2010). Changes
in power in high frequencies, such as beta and gamma, have been used to infer local dynam-

ics arising from the synchronization of populations of neurons (Brunel & Wang, 2003; Geisler,

Brunel, & Wang, 2005). Similarly, the emergent activity in slower EEG frequencies, ranging

across delta, theta, and alpha, has been interpreted as global activity arising from long-distance

coordination of synchronized neural firing in disparate brain regions (Brunel & Wang, 2003;

Geisler et al., 2005); however, there are known examples of cross-frequency interactions that

challenge a strict local/global interpretation on frequency dynamics (Canolty & Knight, 2010).

Together, results from EEG studies have indicated the importance of both local and global ac-

tivity, indexed by high- and low-frequency oscillations, for understanding variability in human

behavior (Buzsáki, 2006; Nunez & Srinivasan, 2006; Nunez, Wingeier, & Silberstein, 2001;

Volberg, Kliegl, Hanslmayr, & Greenlee, 2009). However, EEG provides only an inferential

framework to study interactions across scales of neural activity. Advancements in neurostim-

ulation paradigms may provide an avenue to directly study the causal role of local changes

in oscillatory dynamics on global dynamics (Bergmann, Karabanov, Hartwigsen, Thielscher,

& Siebner, 2016; Pascual-Leone, Walsh, & Rothwell, 2000), a long-known property of neu-

rostimulation (Ilmoniemi et al., 1997).

Transcranial magnetic stimulation (TMS) has been proposed as a method to actively probeTranscranial magnetic
stimulation (TMS):
A type of brain stimulation that
noninvasively introduces electrical
current into the brain to perturb
neural activity.

the dynamic interplay between local processing and consequent global interactions with more

distal regions of the brain (Massimini, Tononi, & Huber, 2009; Romei, Thut, Mok, Schyns, &

Driver, 2012). Traditionally, single-pulse TMS is a technique used to induce a short, con-

trolled burst of activity in a predetermined local brain region, directly causing a change in

the local dynamics (Pascual-Leone et al., 2000). Research has identified behavioral outcomes

resulting from local stimulation for patients in clinical settings and healthy individuals in ex-

perimental tasks. For example, local stimulation in patients can successfully determine stroke

recovery (for review, see Auriat, Neva, Peters, Ferris, & Boyd, 2015), mitigate severe affective

disorders (e.g., Berman et al., 2000), and preserve motor and language functions in presur-

gical mapping (Eldaief, Press, & Pascual-Leone, 2013). TMS has also been successfully em-

ployed to confirm the role of an individual brain region on task performance, ranging from

sensory attention (Herring, Thut, Jensen, & Bergmann, 2015; Romei, Murray, Cappe, & Thut,

2013; Taylor & Thut, 2012) to working memory performance (Brunoni & Vanderhasselt, 2014;
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Rose et al., 2016). Yet, extant experimental research has also demonstrated that the brain alter-

ations caused by TMS are not limited to local perturbations (Ilmoniemi et al., 1997;

Sale, Mattingley, Zalesky, & Cocchi, 2015). By pairing TMS with other concurrent imaging

modalities like EEG, it provides an innovative approach to study connectivity relationships

among disparate brain regions (Cocchi et al., 2015; Mancini et al., 2017; Siebner et al., 2009).

Multimodal studies have paired TMS with functional neuroimaging, such as fMRI (e.g.,

Bestmann et al., 2008; Bohning et al., 1999), EEG (e.g., Bortoletto, Veniero, Thut, & Miniussi,

2015; Garcia, Grossman, & Srinivasan, 2011), and PET (e.g., Paus, 1998), and measured

stimulation-induced responses in brain areas that are distal to the stimulation site, indicating

that stimulation can induce transient coordination between local and global activity (Bestmann

et al., 2008; Driver, Blankenburg, Bestmann, Vanduffel, & Ruff, 2009; Paus, 1998). Comple-

menting these findings, computational models of neurodynamics have demonstrated that re-

gional differences in structural connectivity may provide a mechanistic account for how local

network activity that is induced from a focal TMS pulse can propagate along cortico-cortical

fibers to influence global network synchronization (Gollo et al., 2017; Muldoon et al., 2016).

This idea is supported by neurostimulation research that shows a structure-function constraint

to the local stimulation and subsequent global (de)synchronization (Amico et al., 2017). While

both experimental and modeling work have suggested the importance of interacting networks,

few studies have employed the rich set of tools of network science to understand the propa-

gation of TMS stimulation throughout the brain (Bortoletto et al., 2015). Network science not

only provides a mathematical language to describe complex connectivity patterns resulting

from stimulation; previous research has also proposed a variety of summary metrics in which

to characterize local and global connectivity in the brain (for review, see Garcia, Ashourvan,

Muldoon, Vettel, & Bassett, 2018). In this study, we address this existing gap in the literature

and employ a method recently developed in network science to study the interactions of local

connectivity and global network dynamics following TMS stimulation.

We investigated network reconfigurations from resting-state EEG following single pulses of

transcranial magnetic stimulation using a method from network science that reveals modular

architecture in the brain (Bassett & Bullmore, 2006; Bullmore & Sporns, 2012; Ercsey-Ravasz

et al., 2013). Participants received single pulses of TMS to occipital or parietal cortex, and we

computed functional connectivity using EEG data for a 2-s epoch surrounding stimulation (−1

to 1). Our theoretical question focused on the comparison of stimulations to spatially disparate,

large lobes of the brain, investigating how stimulation influenced network dynamics follow-

ing stimulation as indexed by the modular architecture of the functional connectivity patterns.

Each module is composed of regions with synchronized activity that are thought to be dynam-

ically linked for the purpose of cohesive processing (Achard, Salvador, Whitcher, Suckling, &

Bullmore, 2006; Bassett & Bullmore, 2006; Sporns, Chialvo, Kaiser, & Hilgetag, 2004). To

index local and global activity, we investigate two frequency bands that probe brain dynamics

across these scales. We separately characterize the modular architecture of resting-state EEG

within the alpha band and within the beta band, from which we define resonating commu-

nities, or communities of brain regions restricted to each frequency band. This delineationResonating communities (or clusters):
Cluster of brain nodes representing a
network defined by band-specific
oscillatory activity (e.g., alpha
activity).

was inspired, in part, by the theoretical proposal by Rosanova et al. (2009) that posits that

brain regions have a primary natural frequency: Resting-state activity is dominated by alpha

in the occipital cortex, whereas parietal activity is dominated by beta activity. Consequently,

we hypothesized that network changes in these frequency bands would both differentiate the

location of the stimulation site (occipital vs. parietal), and reveal the spatial scale (local vs.

global) of the propagation of network perturbations arising from TMS.
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To characterize changes in functional network organization before and after stimulation, we

used two well-established metrics from network science: module allegiance and network flex-Module allegiance:
A metric derived from a series of
node labels (i.e., network affiliation)
that indicates how often nodes are
within the same network of other
nodes.

ibility. Allegiance estimates how often regions are functionally connected with other regions,

Network flexibility:
A metric derived from a series of
labels that reveals how often a node
changes its network affiliation across
time.

capturing stable subnetworks in the community structure across time points. Flexibility, in

contrast, reveals the extent to which a region frequently (and flexibly) changes its assignment

across communities between time points. Thus, allegiance is a construct that can capture co-

ordinated activity of each node with every other node in the brain, thereby increasing the reso-

lution of community assignments, whereas flexibility reveals the propensity of brain regions to

change affiliations overall. We argue that these complementary metrics are uniquely suited to

investigate the scale of processing effects of stimulation since allegiance captures the unique

shifts between each pair of regions and flexibility identifies whether a node tends to shift its

community affiliationover time.Our analyses extendprevious research that has found that network

flexibility successfully characterizes large-scale functional differences (e.g., Telesford et al., 2016),

for example in executive function (Braun et al., 2015) and mood (Betzel, Satterthwaite, Gold,

& Bassett, 2017). Allegiance, on the other hand, has been used to describe observed net-

work dynamics on a finer scale, estimating alignment with a predefined functional architecture

(Bassett et al., 2015) as well as identifying transitions among certain network configurations

(Ashourvan, Gu, Mattar, Vettel, & Bassett, 2017). Across the set of network science metrics

adapted for neuroscience application (for review, see Garcia et al., 2018), allegiance and flex-

ibility are the best suited to identify changes in scales of processing.

Using these measures, we report substantial differences between the alpha and beta band

communities. While activity in the alpha network revealed a dynamic interplay of local and

global connectivity, as hypothesized, communities within the beta band displayed a spatial

specificity across both metrics, suggesting a more local connectivity impact of stimulation. To-

gether, these results show how focal TMS to distinct cortical sites can help reveal both local

and global effects on dynamic network configurations, and demonstrate fundamental differ-

ences in the manifestation of network effects in alpha and beta frequency bands in different

areas of the brain.

RESULTS

Here we studied the brain dynamics following single pulses of TMS to occipital and parietal

cortex using recently developed approaches from network science. First, TMS was delivered

to two separate sites and we focused our analysis on two separate frequency bands. Next, be-

cause of the artifact-prone simultaneous technique of TMS-EEG (Rogasch & Fitzgerald, 2013),

we took several precautions and used strict criteria to reduce the measured artifact (see the

Materials and Methods section). We then reconstructed estimated neural sources on a volu-

metric brain mesh and then extracted time series for 68 brain regions (Figure 1). Using ep-

ochs surrounding the stimulation period, we computed functional connectivity between all

region pairs using the debiased weighted phase lag index (dwPLI) that has shown robustnessDebiased weighted phase lag
index (dwPLI):
A specific type of functional
connectivity, often used in EEG
analysis, that is specifically
designed to estimate the nodal
interrelationship with little artifact
interference.

to noise (Vinck, Oostenveld, van Wingerden, Battaglia, & Pennartz, 2011;Vindiola, Vettel,

Gordon, Franaszczuk, & McDowell, 2014). Our analysis focused on connectivity in the al-

pha and beta frequency bands since these bands have been suggested as resonant frequencies

within the stimulated regions, alpha in occipital and beta in parietal regions (Laufs et al., 2003;

Rosanova et al., 2009). We interpret our results within this context, and while our results con-

verge to a narrative of local/global dynamics across frequency bands, we also must consider

potential confound to these techniques (e.g., auditory responses, muscle contractions, and the

like; for review, see Rogasch & Fitzgerald, 2013).
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Figure 1. Whole-brain connectivity changes following stimulation. (A) Average dwPLI across the
brain between 5 Hz and 25 Hz. (B, C) Debiased weighted phase lag index (dwPLI) differences be-
tween the second after TMS (post-TMS) and the second before TMS (pre-TMS) intervals across trials
averaged for occipital stimulation within the alpha band (B) and beta band (C). (D, E) Results sim-
ilar to Panels B and C, but for parietal stimulation. Brain insets display the significant connections
(p < 0.05, FDR adjusted) across the brain, providing a topographical illustration of the connectiv-
ity matrices where red lines indicate increased connectivity following stimulation and blue lines
indicate decreased connectivity following stimulation.

Stimulation Effects on Whole-Brain Connectivity

We began by examining patterns of functional connectivity in a whole-brain analysis (see

Figure 1). We observed slightly higher connectivity across the brain within the alpha band

(8–12 Hz) both before (black dotted line in Figure 1A) and after stimulation to either site in

bilateral occipital cortex (red line) or bilateral parietal cortex (blue line) compared with other

frequency bands. This dominant response in whole-brain alpha synchrony likely reflects its

role as a diffuse, communicative signal with multiple functions (Başar, Başar-Eroğlu, Karakaş,

& Schürmann, 1999), serving as a global signal for sensory and information processing.

We next investigated changes in connectivity following stimulation by comparing changes

between pre- and post-TMS intervals. As shown in Figure 1A, we observed that the average

connectivity between all region pairs did not show much change within the alpha band after
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stimulation to either occipital or parietal sites (occipital: t(9) = −0.95, p = 0.36; parietal:

t(9) = 1.05, p = 0.32, all uncorrected), and this was mirrored in the beta band with minimal

connectivity differences for both stimulation locations (occipital: t(9) = −1.39, p = 0.20;

parietal: t(9) = 0.41, p = 0.69, all uncorrected). However, there was a marked difference

between occipital and parietal stimulation sites when examining the directionality and spa-

tial specificity of the change following stimulation (Figure 1B–E). We submitted the difference

in the average dwPLI estimate 1 s after the TMS pulse to that before the TMS pulse using

a one-sample t test and then adjusted for multiple comparisons via false discovery rate (q;

Benjamini & Yekutieli, 2001). By subtracting the post-TMS dwPLI estimate from the pre-TMS

baseline, we observed a dispersed global decrease in connectivity for occipital stimulation

(Figure 1B–C) for the regional pairs with the largest differences within the alpha and beta

bands. Significant connections show some regional specificity, where the beta band shows

decreases in connectivity between lateral central locations and medial frontal sites ( q < 0.05).

The alpha band shows a similar connectivity pattern with an additional increase in connectivity

between lateral regions toward the center of the brain. In contrast, we observed a marked in-

crease within central and parietal sites as well as a frontal decrease in connectivity for parietal

stimulation (q < 0.05; Figure 1D–E). The alpha band shows a significant pattern of connec-

tivity increases along in parietal regions (q < 0.05), but this pattern is less robust within the

beta band. Collectively, these whole-brain connectivity results show some frequency speci-

ficity for the stimulation sites, as might be predicted based on theories that suggest that stim-

ulation could be facilitated or decremented by the inherent resonant frequency of the tissue

(Rosanova et al., 2009) and a difference between stimulation sites as well. Since these con-

nectivity results show both site and frequency specificity and generality from stimulation, it is

possible that a portion of these results (the pattern that is similar across the stimulation sites and

oscillations of interest) is driven by confounding variables (for review, see Rogasch & Fitzgerald,

2013), despite the extreme caution taken in artifact reduction (see the Materials and Methods

section). Nevertheless, this observation could reflect the global influence of these regions on

whole-brain connectivity rather than their targeted effects on subnetworks. Consequently, we

next employed recent methods from network science to examine the effect of stimulation at a

finer scale than average connectivity across nodes.

Community Organization in Resting Networks

To examine stimulation effects in brain communities, we capitalized on a network science

approach that has been used previously to study modularity in brain networks. To estimate

dynamic community structure, we optimize a multilayer modularity quality function, Q,

using a Louvain-like greedy algorithm (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008;

Mucha, Richardson, Macon, Porter, & Onnela, 2010) to assign brain regions to communities,

where each layer is a separate time slice. With this optimization, we extract our experimental

communities by finding an optimal parameter scheme, which is composed of two parameters:

(a) a structural resolution γ parameter and (b) a temporal resolution ω parameter. These two

parameters determine the scale of the resulting graph, both structurally and temporally. As

described in Garcia et al. (2018), there are several heuristics we may use to determine the

optimal parameter for our dataset. We chose an unbiased “difference” heuristic because of

the unique properties of this stimulation dataset. With this method, we compare the estimated

Q from the pre-TMS interval to a Qnull derived from a shuffled null connectivity matrix where

we shuffle the pairwise dwPLI values, destroying the correlational structure observed in EEG

data for each subject and parameter pairing. Each Q was then subtracted for each parameter

pairing, comparing the observed model’s Q (from the unperturbed EEG connectivity patterns)

Network Neuroscience 616



Network reconfigurations after TMS

and the null model’s Qnull (shuffled connectivity patterns) for each subject; our analysis found

a clear peak in the resulting Q matrix, suggesting that the range used was appropriate for this

dataset.
This data-driven approach showed more local granularity in the network landscape follow-

ing stimulation. Importantly, we defined network communities without stimulation during a

period of rest. This allowed us to interrogate the dynamics of community reconfigurations

following TMS, given a natural baseline, unbiased by the stimulation itself. Importantly, how-

ever, we interpret our results both within the confines of this community organization (Figures 3

and 4) and outside of these confines (Figure 5). We defined network communities separately

for both the alpha and beta bands, and used the most robust arrangement across the 100 it-

erations of modularity maximization as the final community structure. The 100 iterations of

the pre-TMS interval were remarkably robust and consistent, showing 100% agreement across

iterations for the alpha band and 98% agreement across the iterations within the beta band.

We also observed noteworthy similarity (approximately 97% spatial similarity) between them

except for a small cluster of motor-related brain regions (Figure 2).

In the alpha band (Figure 2, left), five communities are illustrated: a bilateral occipital-

parietal network (Occ, blue); a right paracentral community (RPC, pink); a left temporal net-

work (LTem, yellow); a right temporal network (RTem, green); and a bilateral frontal network

(Fron, orange). This largest community (Occ) is a large cluster of regions in occipital and pari-

etal cortex, an organization that is perhaps unsurprising, given the commonly observed peak

of the alpha rhythm within occipital-parietal regions (Hari & Salmelin, 1997). Interestingly,

five similar communities were also found within the beta band (Figure 2, right), and the only

observed difference was in the right paracentral community (Desikan-Killiany atlas regions: R

precentral, R postcentral). In addition to the two nodes of the pre- and postcentral sulcus in the

alpha RPC community, the beta band RPC community also contained regions of the medial

paracentral lobule, putative sources of motor-related planning (Desikan-Killiany atlas regions:

Figure 2. Communities derived from the interregional allegiance matrix in the pre-TMS interval
for the alpha and beta bands. Inflated mesh visualizations of brain regions colored by community
organization. Orbs are plotted at the centroid of the regions of interest. Community organization
was found independently for the alpha band (left) and beta band (right) before stimulation with
TMS. Dotted lines surrounding nodes near medial portion of the brains indicate the only two nodes
unique to the different frequency bands.
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R paracentral, R posterior cingulate). This RPC community in beta nicely aligns with previous

literature that implicates the beta band in motor-related activity (?), providing support that the

detected network communities captured frequency-specific effects.

Community Allegiance Differentiates Beta Band Communities From the Alpha Band

We next sought to characterize how stimulation influenced dynamic network reconfigurations

from the natural baseline resting state. We employed a metric of allegiance that captures

how often two nodes are present within the same community before and after stimulation.

Figure 3 (A, C) shows the average pairwise difference in allegiance before and after stimula-

tion within each of the five communities identified from the pre-TMS resting-state connectivity

(Allegpost − Allegpre). Within the alpha band (top row), we observe some specificity to the stim-

ulation site. In comparing allegiance for each pairing of the communities, allegiance change

is highest for the occipital-parietal community (Occ) and lowest for the frontal community

(Fron; paired t test, t(9) = 3.8, p = 0.004, uncorrected), and this was true for each of the

Figure 3. Community allegiance changes within alpha (top) and beta (bottom) band network as a
function of distance from the stimulation site. (A, C) Bar plot of the mean magnitude change (SEM
across subjects) from the pre-TMS interval in pairwise allegiance from the stimulation site, with
the bar labeled O for occipital stimulation and P for parietal stimulation. For paired t test between
communities, dotted lines connecting communities indicate uncorrected significance (p < 0.05),
while solid lines indicate significance corrected for multiple comparisons (Bonferroni, p < 0.05).
(B, D) Scatter visualization of the mean magnitude allegiance change from the pre-TMS interval
shown in Panels A and C, but now plotted as a function of distance from the stimulation site. Error
bars indicate SEM across subjects (allegiance) or nodes within the community (distance), and the
color of the marker indicates stimulation site (occipital in purple and parietal in blue). Asterisk (*)
indicates a significant difference from 0, indicating a change from the pre-TMS interval (p < 0.05,
uncorrected). Brain inset for the beta band shows the nodes of the RPC community that are most
affected by TMS regardless of stimulation site.
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subjects within our sample (see Supplemental Figure 6 in the Supporting Information to view

more about robustness of effects across subjects). The beta band (bottom row), however, shows

clear community specificity, where allegiance of the right paracentral (RPC) community is

significantly higher than the right temporal (RTem) and frontal (Fron) communities following

stimulation (paired t tests; RTem, t(9) = −2.6, p = 0.028; Fron, t(9) = −2.8, p = 0.020,

all uncorrected). To speak to robustness, the RPC showed the highest allegiance in 80% and

60% of subjects for occipital and parietal stimulation, respectively. Also, nearly each aver-

age change is significantly different from the pre-TMS resting-state estimate (labeled with * in

Figure 3A) with the exception of parietal stimulation effects in LTem and Fron.

We also examined whether the community allegiance depended on distance from the stim-

ulation site, which we operationalized as the Euclidean distance from the centroid of the com-

munity to the node closest to the stimulation site, estimated in meters from a reconstructed

3D mesh. The effects of stimulation within the alpha band revealed that the nodes closest to

the stimulation site are most susceptible to stimulation, and as Figure 3A shows, this effect is

reduced for the communities further from the stimulation site (see Supplemental Figure 7 in

the Supporting Information for a nonparametric correlational analysis with distance and the

graph metrics).

In contrast, the RPC community in the beta band was impacted more strongly by stim-

ulation with high specificity (Figure 3D, pink RPC nodes) by comparison to the other com-

munities. Thus, for the beta band, stimulation didn’t follow a simple rule based on distance

from the stimulation site as observed in alpha; instead, the stimulation effect was strongest in

the RPC community, suggestive of preferred resonant frequencies within the region targeted

(Rosanova et al., 2009). This observation aligns with the natural frequencies account

of stimulation based on the strong role that beta band serves in motor-related activity

(Pfurtscheller et al., 1996b), and the prevalence of motor regions within the RPC commu-

nity. These results also indicate the importance of considering pairwise regional activity within

a community, so we next examined a network measure of flexibility to investigate regional

dynamics.

Flexibility Differences Indicate Whole-Brain Effects Within the Alpha Band

As a complement to allegiance, which measures the temporal consistency of community struc-

ture at the interregional level, we investigated flexibility, a metric that describes how often each

node changes the community to which it is allied. This analysis captures whether stimulation

drives certain brain regions to cohere with different communities in a manner that is different

from their community participation prior to stimulation (i.e., network reconfigurations).

Figure 4 shows the differences in flexibility, averaged across nodes within a community,

before and after stimulation (Flexpost − Flexpre). First, we compared flexibility in these com-

munities to 0, or no difference between Flexpost and Flexpre. We see that all communities have

a significant change in flexibility in both the alpha and the beta communities, suggesting a ro-

bust change in flexibility after stimulation reflecting the causal role of TMS pulses on dynamic

network reconfigurations. Also, overall, we see a large difference in effect size for the different

frequency bands, with alpha communities showing more flexibility overall.

We next compared each community pair to understand the specificity of these effects.

Within the alpha band (top row), we observed minimal difference between communities or

stimulation sites; rather, TMS is associated with a statistically equivalent change in flexibility

across communities. For the beta band (bottom row), a single community stands out. The RPC

community is again the most flexible following TMS. For occipital stimulation, flexibility of the

right paracentral (RPC) community is significantly higher than the occipital-parietal (Occ) and
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Figure 4. Community flexibility changes within alpha (top) and beta (bottom) band network as
a function of distance from the stimulation site. (A, C) Bar plot of the mean magnitude change
(SEM across subjects) from the pre-TMS interval in flexibility as a function of the distance from
the stimulation site, with the bar labeled O for occipital stimulation and P for parietal stimulation.
For paired t test between communities, dotted lines connecting communities indicate uncorrected
significance (p < 0.05), while solid lines indicate significance corrected for multiple comparisons
(Bonferroni, p < 0.05). (B, D) Scatterplot of the mean change in flexibility from the pre-TMS interval
shown in Panels A and C, but now plotted as a function of distance from the stimulation site. Error
bars indicate SEM across subjects (flexibility) or nodes within the community (distance), and the
color of the marker indicates stimulation site (occipital in purple and parietal in blue). Asterisk (*)
indicates a significant difference from 0, indicating a change from the pre-TMS interval (p < 0.05,
uncorrected). Brain inset shows the nodes of the RPC community that are most affected by TMS
regardless of stimulation site.

trending for right temporal (RTem) communities (paired t tests; Occ, t(9) = −3.0, p = 0.016,

uncorrected; RTem, t(9) = −2.2, p = 0.057, uncorrected). This difference is even stronger for

parietal stimulation, where flexibility for RPC tends to be higher than that observed in the left

temporal (LTem), right temporal (RTem), frontal (Fron), and significant (Bonferroni corrected)

when compared with occipital-parietal (Occ) communities (paired t tests; LTem, t(9) = −3.1,

p = 0.013; RTem, t(9) = −2.6, p = 0.030; Fron, t(9) = −3.1, p = 0.014; Occ, t(9) = −4.0,

p = 0.003, all uncorrected). These results are reminiscent of the pairwise allegiance difference

showing an increase within a single community (Figure 5C).

We next examined whether flexibility depended on distance from the stimulation site. Al-

pha communities showed minimal dependence between distance and flexibility (Figure 4B),

but there was no significant difference across any of the communities (Figure 4A). In contrast,

when we considered flexibility within the beta band, we observed that the RPC community
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Figure 5. Individual node allegiance (A, B) and flexibility (C, D) changes within the beta band
network. (A, B) Individual nodes module allegiance difference (Allegpost − Allegpre) plotted as a
function of distance from the stimulation site for occipital (A) and parietal (B) stimulation sites. Color
of node describes the community affiliation, and error bars indicate the standard error of the mean.
Brain insets display the 85th percentile of module allegiance across all nodes, with nodes scaled
by the relative magnitude of this allegiance change. The absolute magnitude of this percentile is
also indicated by a horizontal dotted line in each plot. (C, D) Individual nodes flexibility difference
(Flexpost − Flexpre) plotted as a function of distance from the stimulation site for occipital (A) and
parietal (B) stimulation sites. Color of nodes, error bars, and brain inset display the same properties
as above, but in this panel with flexibility rather than allegiance.

displayed the strongest effect of stimulation (Figure 4D). Combined, these flexibility results

demonstrate consistency with the allegiance results, suggesting an effect of resonant frequency

in the RPC community for the beta band. However, the communities have variable num-

bers of nodes, and a few nodes could substantially influence the means shown in Figures 4

and 5, so our final analysis examined individual node dynamics to determine whether the

smaller size of the RPC community could be the primary driver of beta band effects.

Individual Node Clusters Suggest a Reconfiguration of the Beta Band Network After TMS

Since all of the previous analyses examined only the overall community differences, our final

analysis examined the individual node allegiance to the stimulation site and flexibility changes

after stimulation. This analysis examines the spatial specificity of the TMS modification of the
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graph metrics that may be masked by averaging across many nodes within the affiliated com-

munity. Figure 5 displays individual node magnitude allegiance (top row) and flexibility (bot-

tom row) differences in the five communities of the beta band network following stimulation

to occipital (left) and parietal (right) cortex. Overall, there is a change in allegiance within a

narrow range of distances from the stimulation site when considering both occipital (Figure 5A)

and parietal stimulation (Figure 5B). Although regions in the right paracentral community (RPC,

pink) show substantial change in allegiance, several nodes from other communities also have

a similar response profile. To examine the spatial topology of these effects, the brain insets

illustrate nodes corresponding to the top 15% of allegiance changes (nodes on or above the

threshold line in Figure 5A–B). The most influenced nodes surround the sensorimotor regions

of the brain, including the RPC community and nearby regions around the central sulcus, the

rolandic sites of the brain.

In contrast, the individual node flexibility changes are more diffuse (Figure 5, bottom row).

The nodes corresponding to the top 15% of flexibility changes are plotted above the threshold

line, and these effects span a larger range of distances than the allegiance changes. However,

the spatial topology is quite similar. Changes in flexibility after stimulation are strongest in a

cluster of nodes surrounding the central sulcus. Collectively, these results reveal that the nodes

in the RPC community were not uniquely influenced; instead, the network dynamics of the

RPC as well as the surrounding bilateral sensorimotor regions showed the largest flexibility

and allegiance changes within the beta band communities. Together these results suggest a

rapid reconfiguration of the resting beta community organization following TMS stimulation,

rather than enhancement of a single community.

DISCUSSION

We investigated network reconfiguration in resting-state EEG following single pulses of tran-

scranial magnetic stimulation (TMS) using a method from network science that allows for a

quantitative description of the brain’s modular architecture (Bassett & Bullmore, 2006;

Bullmore & Sporns, 2012; Ercsey-Ravasz et al., 2013). Our analysis focused on connectivity

differences between the 1 s before stimulation and the 1 s after stimulation. More specifically,

we examined network differences in the alpha and beta frequency bands since these bands

have been suggested as resonant frequencies within the stimulated regions: alpha in occipital

and beta in parietal regions (Laufs et al., 2003; Rosanova et al., 2009).

Our results first examined whole-brain effects of stimulation, and we observed differen-

tial effects on connectivity according to stimulation site, although more subtle differentiation

was seen between the alpha and beta frequency bands as very similar data-driven network

structures were derived from each band. We employed a network theoretical approach to

identify communities from the resting-state EEG data, and importantly, we observed several

differences in the structure of functional connectivity in each frequency band following TMS.

Within the alpha band, stimulation produced local effects, but interestingly, also produced

more global effects as evidenced by modification of network flexibility across all occipital,

parietal, paracentral, and frontal communities when TMS was applied to either occipital or

parietal cortex. In stark contrast, beta band activity showed high specificity of TMS-induced

effects on allegiance and flexibility within a rather focal paracentral network near sensorimotor

cortex, regardless of stimulation site. These novel results using network science approaches

with TMS-EEG revealed an interesting interplay between local and global activity across fre-

quency bands that might underlie how network reconfigurations give rise to coordinated brain

activity.
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Global Effects Within the Alpha Band Manifest in Similar Flexibility Across Communities

We have shown that TMS to resonating communities constrained within the alpha band has

a similar impact on the overall flexibility of each community. This finding implies a global

impact of stimulation, regardless of stimulation site, to the alpha band networks. Since the first

observations of the alpha band by Berger (1929), alpha band activity (8–12 Hz), also known

as the Berger rhythm, has been a brain rhythm of frequent study because of its dominance in

resting EEG, and it is often the only visually observable pattern to the naked eye in the EEG

trace. Since its first observation, several hypotheses have been proposed ascribing a functional

role to its presence in EEG. The first theory was proposed by Adrian and Matthews (1934),

who found that the power within the alpha band increases when subjects are awake with eyes

closed. They interpreted this as alpha band activity reflecting a brain state of inactivity, prim-

ing the brain for incoming information. This theory has been expanded and revised to more

clearly represent “cortical idling” (Pfurtscheller, Stancák, & Neuper, 2006a). Recently, how-

ever, this theory has been somewhat abandoned because of the difficulty of reconciling it with

behavioral experiments that indicate a functional role for power within this band. For example,

alpha band activity is also associated with working memory load (Jensen, Gelfand, Kounios,

& Lisman, 2002; Klimesch, 1996; Tuladhar et al., 2007). Thus, beyond this “spontaneous”

alpha rhythm, researchers have discovered other forms of alpha, so-called functional alpha

(Başar, 2012), which is observed during many cognitive and motor processes. These theories

have been further broadened, suggesting that alpha activity may even be an access controller

to a knowledge system (Klimesch, 2012). Collectively, however, alpha activity consistently

represents a diffuse, communicative signal with multiple functions, an arguably global signal

in terms of its impact on sensory information.

Research using TMS to investigate the functional connectivity within the alpha band, how-

ever, provides a more limited view of alpha activity. For example, Rosanova et al. (2009)

showed that enhancement of the alpha band is primarily restricted to occipital cortex, regard-

less of stimulation site. These researchers noted that occipital cortex might even resonate at

the alpha frequency. Our results expand the theory proposed by Rosanova and colleagues by

showing that the brain may be parsed into separate resonating communities within the alpha

band and that each cluster is overall equally modified by TMS, as indicated by the similar

flexibility metrics across the resonating communities. Interestingly, however, nodal allegiance

to the stimulation site reveals a rather direct and localized impact within the occipital and

parietal cortex: specifically, the cluster that is the most spatially proximal to the stimulation

site and previously associated with alpha band activity (i.e., the bilateral occipital-parietal net-

work, Occ). Together, these results suggest a process whereby alpha connectivity can provide

both the specific visual effects shown in early studies while also serving many functional roles

across disparate brain regions.

Local Effects of Beta Band Manifest in the Specificity of Network Changes Within the Paracentral

Community

Two pieces of evidence in the current study converge to show that the paracentral network

plays a highly specific role in dynamic network reconfiguration within the beta band, and our

results support and extend the natural frequency theory of the brain following single pulses

of TMS (Rosanova et al., 2009). First, the network communities defined on resting-state ac-

tivity are identical between alpha and beta bands, except for the right paracentral network

(RPC). The beta band RPC consists of nodes within the paracentral lobule and two nodes

within the pre- and postcentral gyri that play a predominant role in sensorimotor processing,

consistent with previous research that has identified motor-related activity in the beta band
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(Pfurtscheller et al., 1996b). Second, following a single TMS pulse to either stimulation site,

we observe that the paracentral region uniquely displays both the highest flexibility and alle-

giance changes from the baseline state in the beta band, but not the alpha band. Together,

these findings suggest a unique specificity that would support the natural frequency theory of

TMS and are aligned with other network metrics suggesting beta band influence after parietal

stimulation (Amico et al., 2017). In fact, our results provide intuition at a level of granularity

that has not been previously explored, by capitalizing on recently developed methods from

network science (Bassett & Sporns, 2017) to investigate perturbations of brain networks fol-

lowing single pulses of TMS.

The granularity of this effect was further enhanced by inspection of the nodal allegiance and

flexibility across the brain. The RPC community was clearly involved and appeared to be an

isolated community with increased nodal allegiance (among its nodes) and global flexibility

in the beta band communities. However, when we inspected the single nodes contributing

to this effect, we found that this effect was not constrained by the boundaries of the beta

band RPC network as we defined from baseline activity. Instead, the effects spread to nodes

outside this RPC community and consisted of a cluster of nodes surrounding the central sulcus.

This granularity of the beta band network effects after TMS aligns well with the well-known

involvement of rolandic sites in sensorimotor processes and discharges of beta band activity

(Baker, 2007).

Clinical Implications

TMS has been used successfully in clinical settings for treating movement disorders

(Pascual-Leone et al., 1994) and mitigating severe affective disorders (Berman et al., 2000);

however, some studies that have investigated the efficacy and efficiency of TMS treatment for

depression (for review, Loo & Mitchell, 2005) suggest that most treatment regimens are sub-

optimal, often stimulating for a duration of two weeks and having only a minor benefit. Here

we have shown a complex interplay between local and global neural processing, but more

generally, our results speak to the specificity of TMS, where particular resonating communities

of brain regions (e.g., beta band activity emanating from sensorimotor regions) or diffuse sets of

resonating communities (e.g., all regions in alpha band) may be modified by TMS regardless of

stimulation site. In other words, we show that stimulating a focal region can have distal effects

on many other brain regions. Future studies expanding on how individual variability in brain

connectivity impacts how TMS propagates through cortex may eventually reveal the specific

networks or brain regions that may predict successful treatment. We believe the methods and

initial results within this work hold promise in future studies to help determine stimulation

protocols for a variety of clinical settings and surrounding several cognitive domains.

Our results first examined whole-brain effects of stimulation, and we observed differential

effects on connectivity in both alpha and beta activity, although no stark differentiation was

seen between stimulation to occipital or parietal sites, globally. Next, we employed a network

theoretical approach to identify communities from the resting-state EEG data, and we observed

several differences in the structure of functional connectivity in both frequency bands after

TMS. Within the alpha band, stimulation produced local effects, but interestingly, stimulation

also produced more global effects, altering network flexibility across all communities when

applied to either occipital or parietal cortex.

Despite these general effects, our coarse-level results are merely the first step, as much

more must be completed to determine the robustness of much of these network dynamics that

may include any gender differences (70% of this sample were male), individual susceptibility

to stimulation, or state-based stimulation specificity (Thut et al., 2011), of which our current
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study does not tackle. We further expand on other methodological considerations that may

guide future studies within this domain in the following.

Methodological Considerations

Our use of community detection to understand functional connectivity in the brain and the

effects of TMS on specific brain networks focuses on two stimulation sites and two common fre-

quency bands. We use a phase-based undirected connectivity measurement and inspect graph

metric changes at a single snapshot of the available parameters within the dynamic modularity

framework we applied. This initial implementation of a graph theoretical approach on human

neurostimulation effects may be expanded in the future to investigate the directed commu-

nication between these resonating communities (e.g., Reimann et al., 2017), cross-frequency

communication (Canolty & Knight, 2010), and increased resolution across frequencies of the

brain. The methodological choices within this work also focused on merely one spatiotempo-

ral scale, which may not completely account for the spectral sensitivity across the regions of

the brain, and the results target a wakeful resting state in individuals, and it may not extend to

the active or sleeping brain (Hasson, Nusbaum, & Small, 2009; Massimini et al., 2005). Future

research may extend this work to take into account the spectral macroarchitecture of evoked

and induced oscillations in the brain.

Our experimental design did not employ neuronavigation or a control stimulation site;

instead, our participants completed four experimental sessions across four different days to

maximize the variability in the prestimulation period to identify stimulation effects robust to

state differences (boredom, fatigue, mind wandering, etc.). However, an interesting avenue

for future work would be to examine network changes that may be more closely tied to func-

tionally localized regions, where neuronavigation would serve a critical role in equating more

precise stimulation locations between individuals. Similarly, our analysis did not require a

control site since our investigation examined changes between baseline activity and activ-

ity following stimulation. The debate on how to “control” for neurostimulation techniques

has recently received increased attention. Research using simultaneous TMS-EEG studies

often have non-stimulation-related evoked activity (i.e., the auditory “click”; Conde et al.,

2019); however, there is also a debate on how the researchers implemented their controls

(Belardinelli et al., 2019). This debate is essential for studies that directly examine the neural

activity following stimulation; however, our design attempted to overcome the challenge of

non-stimulation-related evoked activity by comparing conditions where these nuisance sig-

nals are nearly equated. Thus, our investigation examined changes between baseline activity

and activity following stimulation and presents an alternative to this debate within the context

of two stimulation sites. The analytic logic we employed in our analysis follows the classic

comparison logic between conditions in traditional neuroimaging analysis: Conditions are

designed to only manipulate the factor of interest, so looking at their difference eliminates all

of the concomitant neural processing that occurs but is tangential to condition comparison of

interest. Here, the analysis statistically examined differences from a baseline period but also

qualitatively between occipital and parietal stimulation, so each served as the other’s control

for nuisance signals that are concurrent but tangential to the stimulation effects. A similar logic

could apply to the experimental design decision to not include an explicit control for the au-

ditory click sound from the TMS pulse. Although participants wore ear plugs to mitigate the

sensory response in auditory cortex, the focus on relative differences between stimulation sites

should help eliminate the effect of the auditory response on the results since it is expected

that the sensory effect is equivalent across the conditions. Our results, for the connectivity

measurement, clearly differentiate the stimulation sites; in contrast, it should be noted that the
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network metrics rarely differentiate stimulation sites. The auditory click could still contribute

to the observed network effects, but given the stimulation site specificity of the connectivity

matrices, it is likely to be a small contributor. However, future research could examine any of

these inferences/assumptions in greater detail. In particular, investigations may use more re-

gions and intensities to augment our understanding about differences in ongoing activity with

more functionally determined stimulation protocols.

Conclusion

Using a recently developed network-based methodology applied to EEG, we have investi-

gated the reconfigurations of naturally resonating communities of brain regions. While the

alpha network reveals the dynamic interplay of local and global activity, communities within

the beta band revealed a remarkable specificity, displaying more local connectivity changes.

Particularly important next steps include linking these observations with emerging theories

of the impact of stimulation on distributed networks in the form of network control theory

(Gu et al., 2015), which has begun to offer insights into the brain’s preference for certain low-

energy states (Betzel et al., 2017), the role that brain topology plays on the energy required for

brain state transitions (Kim et al., in press; Tang & Bassett, in press), and the predicted impact

of stimulation on distal areas (Gu et al., in press; Muldoon et al., 2016). Efforts to ground TMS

studies like the one we report here in a mechanistic theory could have lasting consequences in

studies linking behavioral changes to neural oscillations or neurostimulation (Medaglia et al.,

in press), but may also impact future protocols for clinical purposes, providing a means to

reconfigure resonating clusters in the brain.

MATERIALS AND METHODS

Participants

Ten individuals (seven men, three women, aged 20–33, M = 23.8, SD = 4.8) participated in

the TMS-EEG experiment. All gave informed, written consent as approved by the University of

California, Irvine, Institutional Review Board.

TMS-EEG Data Collection

Data collection occurred in the TMS-EEG Laboratory in the Human Neuroscience Lab at the

University of California, Irvine. The subjects were seated in a comfortable chair approximately

60 cm from the monitor, equipped with earplugs to attenuate the sound of the coil discharge,

and their heads were fixed in a chin rest to minimize movement while they continuously

fixated on the center of the monitor screen. No overt motor responses were required during

the 30-min experimental session.

Stimulation was applied with a MagStim Model 200 Monophasic Stimulator P/N 3010-00

equipped with a figure-of-eight coil at 55% stimulator intensity (E-field 297 V/m). We estab-

lished this intensity in a previous study that had a similar protocol (Garcia et al., 2011) by

systematically modulating the intensity threshold since motor thresholds are inappropriate for

occipital stimulation (Stewart, Walsh, & Rothwell, 2001). We found that only 37% of partici-

pants saw a phosphene at approximately 70%. Thus, we set the stimulation intensity for this

study to be at 55% of stimulation (20% less than the phosphene induction threshold). We tar-

geted four regions that included symmetric areas in occipital and parietal cortices (Figure 6),

and the location for these regions was estimated by electrodes O1/O2 and P1/P2 of the 10-20

international scheme for EEG. This method reliably targets a similar area across participants

within 2 cm of sulcal/gyral landmarks (Herwig, Satrapi, & Schönfeldt-Lecuona, 2003), the
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Figure 6. Experimental design and analysis. (A) Participants received stimulation in symmetric
regions in occipital (O1, O2) and parietal (P1, P2) cortex. (B) High-density EEG recorded from
128 channels was submitted to a cLORETA source analysis, and current source density (CSD) was
estimated for each vertex of a high-resolutionmesh. (C) CSDwas then averaged within a parcellation
of cortex following the Desikan-Killiany atlas parcellation to estimate regional brain activity. (D)
The cortex was inflated for visualization. (E) Each centroid of the region is plotted as a small orb.
Stimulation locations marked in each visualization with a shaded region or a dotted line.

resolution of high-density EEG used in this study. For occipital stimulation, the coil was ori-

ented parallel to the coronal view (i.e., paddle pointed up), and for parietal stimulation, the coil

was oriented approximately tangential to the curvature of the scalp at the electrode target lo-

cations (i.e., paddle pointed back and down). For each region, participants completed a block

of approximately 100 single pulses of stimulation that were no closer than 4 s apart (jittered up

to 6 s apart), following standard safety procedures (Rossi, Hallett, Rossini, & Pascual-Leone,

2009). Within a session, the 10 blocks were semi-randomly selected among the four stimulation
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sites (O1, O2, P1, P2), ensuring that multiple blocks of each stimulation type occurred in each

session. Participants complete four sessions (one subject participated in five) on separate days,

providing an aggregate of approximately 4,000 total stimulation trials for each subject; how-

ever, one subject completed an additional session and another subject terminated one session

because of fatigue.

Throughout the session, 128 channels of EEG were recorded using a TMS-compatible EEG

system from Advanced Neuro Technology (ANT, The Netherlands). The Waveguard cap sys-

tem consisted of small Ag/AgCl electrode elements, specially designed to yield high-quality

and stable recordings with simultaneous TMS. EEG data were sampled at 1024 Hz for this

experiment and impedances were targeted to be kept below 10 kΩ.

EEG Analysis

Segmentation of epochs. The EEG data were preprocessed following an established pipeline

(Garcia et al., 2011) for each of the four sessions for each of the 10 participants. First, raw EEG

were submitted to a principal component analysis (PCA) to identify the peak amplitude events

that correspond to the stimulation event and to eliminate any timing discrepancy between the

intended and actual timing of the stimulation pulse in the EEG data. After the timing of each

pulse was recovered, the decomposition was discarded and was not used in any subsequent

analysis (i.e., no components were removed). Using the maxima from the largest component

of each dataset as the onset of stimulation, the collected datasets were segmented into approx-

imately 40,000 epochs that were 6 s in duration, including 3 s (3,072 samples) before and after

the TMS pulse. After this segmentation procedure, the four samples before the pulse and 16

(15.6 ms) after the pulse were removed from the epochs to remove artifacts from the amplifier.

These samples were later replaced with a forward autoregressive moving average prediction of

the contaminated data from the intervals directly preceding the TMS pulse and a mild Savitzky-

Golay smoothing filter over the interval surrounding the pulse to remove any quick shifts in

amplitude due to the artifact editing procedure. Finally, each trial was normalized by the stan-

dard deviation of the 512 samples prior to the stimulation so that each subject contributed

similarly to grand mean TMS-evoked potentials (TEPs); however, this did not have an impact

on the overall shape of the TEP (see Supporting Information Figures). Because of the known

multiple sources of artifacts in work using simultaneous TMS-EEG (Rogasch & Fitzgerald, 2013)

beyond the amplifier artifacts within the 20 samples (19.5 ms), aggressive means were used to

ensure artifact was eliminated from our estimates. Automated artifact editing based on ampli-

tude thresholds was used. The thresholding procedure used a percentile rank of epochs within

the data. Ranks were calculated based on the maximum fluctuation found in the raw EEG re-

sponse on each trial for each electrode. In turn, trials were discarded if the maximum response

in 15% of electrodes was greater than the 95th percentile compared with all other trials. This

eliminated approximately 30% of trials likely contaminated with artifacts from the TMS pulse

or blink artifacts, leaving the following trial total for analysis in the participants: 3,129, 1,768,

3,535, 4,021, 2,269, 2,308, 2,931, 2,032, 2,840, and 3,088. After this preliminary prepro-

cessing, we largely followed the PREP approach, an artifact-removal procedure that has been

shown to be robust to artifacts within high-artifact environments (Bigdely-Shamlo, Mullen,

Kothe, Su, & Robbins, 2015). The following steps were completed: (a) line noise removal via a

frequency-domain (multitaper) regression technique to remove 60 Hz and harmonics present

in the signal; (b) a robust average reference with a Huber mean; (c) artifact subspace recon-

struction to remove residual artifacts with the standard deviation cutoff parameter set to 15;

and (d) band-pass filtering using a Butterworth filter with 2-dB attenuation at 2 and 50 Hz. TEPs

may be seen in Supplemental Figures 2, 4, and 5 in the Supporting Information, displaying how

the preprocessing pipeline has successfully removed these data.
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Distributed source reconstruction. From the preprocessed EEG data, we estimated currentDistributed source reconstruction:
The method by which we may
estimate neural activity from specific
locations in the brain but measured
from the scalp.

source density (CSD) over a 5,003-vertex cortical mesh. A boundary element method (BEM)

forward model was derived from the Colin 27 anatomy (Holmes et al., 1998) and transformed

into MNI305 space (Evans et al., 1993) using standard electrode positions fit to the Colin 27

head surface in Brainstorm (Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011). The BEM solution

was computed using OpenMEEG (Gramfort, Papadopoulo, Olivi, & Clerc, 2010; Kybic et al.,

2005), and the cLORETA approach was used for inverse modeling as described in detail in

Mullen et al. (2015) and implemented in the BCILAB (Kothe & Makeig, 2013) and Source In-

formation Flow (Mullen, 2014) toolboxes. Then CSD was averaged into one time course from

each of the 68 regions of the Desikan-Killiany atlas (Desikan et al., 2006) and downsampled to

128 Hz for use in the connectivity analysis. As a final step after parcellation, the surface mesh

of the Colin 27 brain (with DK atlas parcellated regions) was imported into Matlab and dis-

tance was estimated between regions closest to the stimulation site (bilateral lateral occipital

and superior parietal) and every other region in the DK atlas using pdist.m in Matlab. For com-

munity “distance,” the average distance from the stimulation site was estimated, corresponding

to centroid distance of the community.

Functional Connectivity Analysis

To estimate functional connectivity of brain networks before and after stimulation, an undi-

rected measure, known as the debiased weighted phase lag index (dwPLI), was computed

between each pair of the 68 estimated brain regions from the atlas. DwPLI is robust against

the influence of volume conduction, uncorrelated noise, and intersubject variations in sample

size (Vinck et al., 2011; Vindiola et al., 2014), and it has previously been proposed to be an

appropriate pairing with a source localization analysis to minimize the influence of these nui-

sance variables (Hillebrand, Barnes, Bosboom, Berendse, & Stam, 2012; van Diessen et al.,

2015).

The connectivity estimates were calculated using Matlab and FieldTrip (Oostenveld, Fries,

Maris, & Schoffelen, 2010). First, a multitaper spectral estimation was applied to the CSD

measurements, and then dwPLI was computed between all source pairs to estimate the func-

tional connectivity pattern of signals in the frequency range between 2 Hz and 25 Hz (step

= 0.5 Hz) in a 5-s window centered on the stimulation pulse (−2.5 s to 2.5 s). The dwPLI

connectivity estimates were calculated across trials, representing the trial-by-trial consistency

between regional CSD. Next the matrix of dwPLI estimates was reduced to the 51 time win-

dows corresponding to windows centered 38 ms apart, from 1 s before the TMS pulse to 1 s

after the TMS pulse. Since this estimate was done using a Hanning windowing method, the

windows are not independent and represent some smearing in time.

Dynamic Community Detection

In addition to looking at whole-brain connectivity patterns, we employed a community de-

Dynamic community detection:
A process that distills complex
connectivity matrices into a series of
cluster labels related to how nodes
coalesce into a network and change
across time.

tection algorithm (Bassett & Bullmore, 2006; Bullmore & Sporns, 2012; Ercsey-Ravasz et al.,

2013) to examine whether regions formed modular networks, and whether the regional com-

position of these networks changed before and after stimulation across the 51 time windows

in our 2-s epoch. The algorithm optimizes a multilayer modularity quality function, Q, us-

ing a Louvain-like greedy algorithm (Blondel et al., 2008; Mucha et al., 2010) to assign brain

regions to communities. The community assignments are dependent on two parameters: (a) a

structural resolution γ parameter and (b) a temporal resolution ω parameter. These two pa-

rameters determine the scale of the resulting graph, both structurally and temporally, and here,
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we sweep this parameter space to find the scale of the data that is most unlike that expected

in an appropriate random network null model. As described in Garcia et al. (2018), there are

several heuristics we may use to determine the optimal parameter for our dataset. We chose

an unbiased “difference” heuristic because of the unique properties of this stimulation dataset,

which we explain below.

Following our previous work on fMRI data (Bassett et al., 2013), the values for both pa-

rameters were determined by comparing the mean value of Q in the experimental data to the

mean value of Q in a shuffled null model of the data; we tested a very wide range of values

for each parameter since this algorithm has not yet been applied to EEG data, which have in-

herently different temporal and spatial scales of functional connectivity (Nunez & Srinivasan,

2006). Our analysis examined parameters for γ = 0.8 to γ = 1.6 and ω = 0.5 to ω = 35. The

null model of the data was created by randomly shuffling the pairwise dwPLI values, destroy-

ing the correlational structure observed in EEG data for each subject and parameter pairing.

Each Q was then subtracted for each parameter pairing, comparing the observed model’s Q

(from the unperturbed EEG connectivity patterns) and the null model’s Qnull (shuffled con-

nectivity patterns) for each subject. Our analysis found a clear peak in the resulting Q matrix,

suggesting that the range used was appropriate for this dataset. In fact, the largest difference

was found for γ = 1.025 and ω = 9, and these parameters were used in the reported analy-

ses, which suggests that the temporal parameter (ω) is the parameter that captures the unique

properties of the EEG signal. Since the community detection algorithm is nondeterministic

(Good, de Montjoye, & Clauset, 2010), 100 iterations of the hard partitions were estimated

with modularity maximization for each subject and stimulation condition (O1, O2, P1, P2),

yielding 100 sets of community labels for the 68 nodes for each of the four stimulation condi-

tions for each of the 10 subjects.

Community metrics. Within each of the 51 time windows of our 2-s stimulation epoch,

we examined the relationship among the brain regions within a community to characterize

the dynamic reconfiguration of spatially distributed neural sources before and after stimula-

tion. Our analysis investigated two community metrics, flexibility (Bassett et al., 2011) and

allegiance (Bassett et al., 2015). Figure 7 is a visual depiction of the steps needed to estimate

these community metrics.

The flexibility of each node corresponds to the number of instances in which a node changes

community affiliation, g, normalized by the total possible number of changes that could occur

across the layers L (Bassett et al., 2011), which represents each time slice within this dynamic

community detection algorithm. In other words, the flexibility of a single node i, ξi, may be

estimated with the following:

ξi =
gi

L − 1
, (1)

where L is the total number of temporal windows.

Allegiance estimates how much regions communicate with subnetworks in the community

structure and demonstrate the same pattern of connectivity across time points. We define

allegiance matrix P, where edge weight Pij denotes the number of times a pair of nodes moves

to the same community together divided by L − 1 possible changes.

Thus, allegiance increases the resolution of community and captures coordinated activity

of each node with every other node in the brain, whereas flexibility examines whether a brain

region changes affiliations overall.

Each of these measures was calculated twice, once for the 25 windows of partitions before

TMS (pre-TMS) and once for the 25 windows following TMS (post-TMS), ignoring the cen-

ter window where stimulation occurred. Our analysis focused on the absolute difference in
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Figure 7. Overview of analysis method and natural brain architecture. (A) DwPLI was estimated
across trials in 40-ms windows across the 2-s epoch, including 1 s before and 1 s after the TMS
onset (P: posterior, A: anterior nodes). (B) Dynamic network communities from a sample subject
derived from the dwPLI estimate for each window. Each color marks a different community label.
(C, left) From Panel B, community metrics were calculated that represent how often a node changes
over time (flexibility) or how often each node pair is in the same community over time (allegiance).
The cartoon networks show five hypothetical nodes that change communities over time (three time
windows shown). Connections are marked as black lines and metrics are given in the final column,
showing a range of flexibility and allegiance values. These metrics are used in subsequent analyses.
(C, right) Summary allegiance matrix for a sample subject for the period before TMS onset, indicating
the natural architecture of connectivity within the alpha band.

allegiance and flexibility between pre-TMS and post-TMS communities, emphasizing whether

stimulation influences local or global brain dynamics more strongly.

Finally, results were averaged across left and right stimulation sites since we were inter-

ested in the general magnitude of changes from functionally similar regions. In support of

this data reduction primarily driven by our broad interest in coarse parietal/occipital stimula-

tion differences, follow-on analyses did not show any differences in consistency of network

changes between left and right stimulation, using a temporal consensus method inspired by

Doron, Bassett, & Gazzaniga (2012) in Supplemental Figure 8 (see the Supporting Information).

Statistical Analyses

To find the substantial changes in metrics across the pre-TMS and post-TMS intervals, tradi-

tional linear statistics were used, where the pre-TMS and post-TMS intervals were treated as

conditions and paired-sample t tests were applied to node or communities or a one-sample
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t test of differences (for the dwPLI comparison) from 0, as indicated in the text. In cases where

multiple comparisons were carried out (e.g., Figures 1 and 3), a Bonferroni correction or false

discovery rate was used to determine significance. For the Bonferroni correction, each band-

specific metric was treated as a separate set of tests (10 comparisons within a set, Community

1 vs. Community 2, Community 1 vs. Community 3, etc.), so the corrected alpha value was

set to 0.005. For the false discovery rate, p values were adjusted within each dwPLI matrix

(Figure 1), and as reported q < 0.05 was used. Where appropriate, both the corrected and

uncorrected significant comparisons are shown (see Figures 3 and 4).
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