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Background: Oxidative stress induced by nutritional overload has been linked to

the pathogenesis of insulin resistance, which is associated with metabolic syndrome,

obesity, type 2 diabetes and diabetic vascular complications. Postprandial changes in

expression of oxidative stress pathway genes in obese vs. lean individuals, following

intake of different types of meals varying in macronutrient composition have not been

characterized to date. Here we aimed to test whether/how oxidative stress responses in

obese vs. lean individuals are modulated by meal composition.

Methods: High-carbohydrate (HC), high-fat (HF), or high-protein (HP) liquid mixed

meals were administered to study subjects (lean insulin-sensitive, n = 9 and obese

insulin-resistant, n = 9). Plasma levels of glucose and insulin, lipid profile, urinary

F2-isoprostanes (F2-IsoP), and expression levels of genes of oxidative stress pathways

were assessed in mononuclear cells (MNC) derived from fresh peripheral blood,

at baseline and up to 6-h postprandial states. Differences in these parameters

were compared between insulin-sensitive/resistant groups undergoing aforementioned

meal challenges.

Results: Obese individuals exhibited increased pro-oxidant (i.e., CYBB and CYBA)

and anti-oxidant (i.e., TXN RD1) gene expression in the postprandial state, compared

with lean subjects, regardless of meal type (P interaction for group × time < 0.05). By
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contrast, lean subjects had higher expression of NCF-4 gene (pro-oxidant) after HC meal

and SOD1 gene (anti-oxidant) after HC and HF meals (P interaction for group × meal <

0.05). There was an increase in postprandial level of urinary F2-IsoP in the obese (P <

0.05) but not lean group.

Conclusions: These findings may represent an adaptive oxidative response to mitigate

increased stress induced by acute nutritional excess. Further, the results suggest an

increased predisposition of obese subjects to oxidative stress. Chronic nutritional excess

resulting in increases in body weight and adiposity might lead to decompensation leading

to worsening insulin resistance and its sequel. Insights from this study could impact on

nutritional recommendations for obese subjects at high-risk of cardiovascular diseases.

Keywords: obesity, mononuclear cells, oxidative stress, gene expression, macronutrients

INTRODUCTION

Oxidative stress, resulting from an overproduction of oxidants
(free radicals or other reactive species) and/or reduced
antioxidant activity in cells and plasma, can contribute to

impaired insulin signaling (1–4). Oxidative stress occurs early in

the development of nutritional excess-induced insulin resistance
in healthy men (5, 6). Oxidation of excess nutrients increases

mitochondrial formation of reactive oxygen species (ROS) and

reactive nitrogen species (RNS) (7). The resultant oxidative stress
might induce deleterious changes in macromolecules such as

DNA, proteins, and lipids. In addition, a number of stress-
sensitive pathways including p38 mitogen-activated protein
kinase (p38 MAPK), c-Jun N-terminal kinase (JNK), or inhibitor
of NF-κB kinase (IκKβ) are activated (8). These pathways, in
turn, impede insulin signaling and glucose transport activity,
leading to insulin resistance which is associated with metabolic
syndrome, obesity, type 2 diabetes (T2D) and diabetic vascular
complications (9). Cumulative perturbations in the regulation of
oxidative responses to meal intake, may contribute to the higher
risk for atherogenesis and cardiovascular diseases among obese
individuals (10).

It is well-known that acute or chronic consumption of a diet
rich in (i.e., >50% of caloric composition of) carbohydrate, fat,
or protein can worsen the pro-inflammatory and pro-oxidant
state associated with obesity, albeit in separate studies (5, 11–15).
We have previously shown that the postprandial inflammatory,
metabolic and satiety/appetite hormonal responses associated
with obesity differ based on the macronutrient content of the
meal challenge (16–18). A meal high in carbohydrate, not fat
or protein, best elicited these differential responses. Here, we
investigated whether the same group of obese insulin resistant
individuals demonstrates distinct oxidative stress responses to
mixed meals enriched in either of three macronutrients, using
both direct (urinary F2-isoprostanes) and indirect [expression of
genes of oxidative stress pathways in circulating mononuclear
cells (MNC)] approaches. Furthermore, we explored if such
responses associated with obesity differ with that in lean healthy
individuals. Changes in oxidative gene expression profiles in
circulating MNC has been previously shown to correspond
with that in the adipose tissue in patients with metabolic
syndrome (12, 19).

MATERIALS AND METHODS

Study Approval and Subjects
Singapore’s National Healthcare Group Domain Specific Review
Board (DSRB Ref No: C/2013/00902) approved the study
protocol, and Singapore Good Clinical Practice guideline and
the principles of the 2013 Declaration of Helsinki were duly
followed in performing all study procedures. Written consent
was obtained from each subject before participation in this study.
The methods have been published before (16–18). Briefly, we
recruited 18 normoglycemic Chinese men (21–40 years; lean
insulin-sensitive, n = 9 and obese insulin-resistant, n = 9).
Exclusion criteria were history of smoking, thyroid disorder,
malignancy, recent hospitalization, or surgery, first degree
relative with T2D, dyslipidemia and its treatment, corticosteroids
usage over the past 3 months, alcohol consumtion (>3 units
a day), moderate-to-high intensity physical activity (>5 h a
week), or change in weight over the past 3 months (≥5%). The
modified-WHO definition for obesity in Asians was used to
define lean (18.5 ≤ BMI ≤ 23 kg/m2) and obese (BMI ≥ 27.5
kg/m2) subjects in this study. A Homeostatic Model Assessment-
Insulin Resistance (HOMA-IR) score of <1.2 was employed for
identification of insulin-sensitive lean subjects, and ≥ 2.5 for
insulin-resistant obese subjects (20, 21).

Experimental Design
The experimental design has been described previously (16–
18). Briefly, the screening visit included measurements of
height, weight and waist circumference, as well as determination
of plasma glucose, serum insulin, electrolytes, non-esterified
fatty acid (NEFA) concentrations, and lipid profile in fasting
blood. Isocaloric liquid mixed meals [high-carbohydrate (HC),
high-fat (HF), or high-protein (HP)] were administered to
eligible participants in random order with 7 days interval
in-between. HC, HF, and HP meals were composed of
56.4% carbohydrate, 56.5% fat [with equal proportions of
poly-unsaturated (PUFA), mono-unsaturated (MUFA), and
saturated fatty acids (SFA)], and 51.4% protein, respectively
(Table S1). Ensure Plus R© manufactured by Abbott Nutrition
and Beneprotein R© manufactured by Nestlé Nutrition were used
for preparation of test meals. Baseline and postmeal venous
blood samples were collected at 30min intervals up to 360min
for the measurement of glucose, insulin, triglyceride and NEFA
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concentrations. Fasting and postprandial (360min) midstream
urine samples were also collected for the measurement of urinary
F2-isoprostanes, a biomarker of oxidative stress -induced lipid
peroxidation (22, 23) to assess systemic oxidative stress.

Biochemical Analysis
Measurements of plasma glucose and triglyceride concentrations
(AU5800, Beckman Coulter Inc., California, USA), and serum
insulin (ADVIA Centaur, Siemens Healthcare Diagnostics,
Hamburg, Germany) were performed at a laboratory accredited
by the College of American Pathologists. Measurement of plasma
NEFA (Cobas R© 6000, Roche Diagnostics, Indianapolis, USA)
was performed at Mayo Medical Laboratories (Rochester, MN,
USA). Urinary free F2-isoprostanes were measured using a
method described previously (23, 24). Briefly, urine samples were
processed by anionic solid-phase extraction. Creatinine levels
were measured to standardize the dilution of urine (Cobas c111
Photometric Analyzer (Roche Diagnostic GmbH, Mannheim,
Germany). Samples were then derivatized and measured by gas
chromatography–mass spectrometry (GC/MS) set at negative
chemical ionization mode (5975C; Agilent Technologies), with
Triple-Axis Detector, connected to a gas chromatograph (7890A;
Agilent Technologies, Santa Clara, CA). Quantitation was
achieved by comparing the peak area of free F2-isoprostanes with
that of the relevant deuterated internal standard.

Gene Expression
Blood samples collected at 0, 120, and 360min, were layered
over Ficoll-paque Plus (GE Healthcare, Buckinghamshire, UK)
and centrifuged. Following red blood cell lysis (Sigma-Aldrich,
St. Louis, MO, USA), total RNA from MNC was isolated
using RNeasy Mini Kit (QIAGEN, Netherlands). For reverse
transcription of total RNA, high capacity cDNA Reverse-
Transcription Kit (Applied Biosystems,Waltham,MA, USA) was
used. ViiA 7 Real-Time PCR System (Applied Biosystems) was
used to perform gene expression assay. The PCR mix included
2 µL (10 ng) cDNA, 5 µL QuantiFast SYBR Green PCR Master
mix (QIAGEN, Netherlands), and 0.1 µL of 100 µmol/L gene-
specific primers (AIT Biotech, Singapore). Primers were designed
using Primer Express software v3.0.1 (Applied Biosystems). All
values were normalized to the expression of a housekeeping gene
(GAPDH), which did not differ among the different phenotypes,
time points and types of test meal. The panel of genes studied
included, Nuclear factor, erythroid 2-like 2 (NRF2), Glutathione
peroxidase (GPX3), Thioredoxin (TXN), Thioredoxin reductase
1 (TXNRD1), Superoxide dismutase (SOD- 1 and -2), Human
neutrophil cytochrome –A light chain and –B light chain (CYBA
and CYBB), Neutrophil cytosolic factor (NCF-1,-2, and -4), and
Spi-1 (PU.1). Three sets of samples (2 lean subjects, 1 obese
subject) were excluded from analysis due to poor quality of RNA.

Statistical Analysis
The primary outcome of the original study which was designed to
assess postprandial inflammatory responses, was fold changes in
expression of inflammatory genes (regulated by NF-κB) in MNC,
from baseline as an indicator of NF-κB activity. Power analysis
was based on the postmeal NF-κB expression, whereby a sample

size of 9 subjects per group per test meal was calculated to provide
at least 80% power at 5.0% significance level (25).

Statistical analyses were performed using SPSS version 23.0
(SPSS Inc., Chicago, IL, USA). A linear mixed model was
employed to analyse MNC gene expression between groups and
meals. Fold-change from baseline in gene expression MNC was
entered as the dependent variable, while time and meal were
entered as repeated factors. Change in the trajectories of gene
expression was further tested for interaction. Linear model with
fixed effects for meal and individual was used to test whether
postprandial changes in urinary F2-IsoP was significant in obese
and lean group. An independent sample t-test was used to test the
differences in fold-changes in MNC gene expression at a single
time point between groups. Postprandial changes in plasma
glucose and insulin concentrations over 6 h were calculated as
the incremental area under the curve (iAUC). Fold changes in
expression of genes were tested for a significant correlation with
glucose and insulin iAUC. A value of P < 0.05 was considered
statistically significant.

RESULTS

Subject Characteristics at Baseline
Obese subjects had higher age (obese: 28.6± 1.4year vs. lean: 23.2
± 0.2year; P = 0.002), body mass index (obese: 30.1 ± 0.72

kg/m
vs.

lean: 22.0 ± 0.22
kg/m

; Page adjusted < 0.001), waist circumference

(obese: 100.8± 0.1cm vs. lean: 79.9± 0.5cm; Page adjusted < 0.001),
HOMA-IR (obese: 4.3 ± 0.4 vs. lean: 0.8 ± 0.1; Page adjusted <

0.001), fasting serum insulin (obese: 21.0 ± 2.3mU/l vs. lean:
4.3 ± 0.5mU/l; Page adjusted < 0.001) and plasma triglyceride
concentrations (obese: 2.0 ± 0.2mmol/l vs. lean: 0.6 ± 0.1mmol/l;
Page adjusted = 0.007), and lower HDL-cholesterol concentration
(obese: 1.2 ± 0.1mmol/l vs. lean: 1.7 ± 0.1mmol/l; Page adjusted =

0.005) compared to lean subjects (Supplementary Data Sheet 1).
Fasting blood glucose, total and LDL cholesterol and NEFA were
not statistically different between groups (16–18).

Postprandial Changes in Glucose, Insulin,
Triglyceride and NEFA Responses
Overall, the postprandial insulin and triglycerides levels
increased to a higher level in the obese than lean subjects
while postprandial glucose responses were similar between
the two groups. These data have been reported previously in
detail (16–18).

Postprandial Changes in Expression of
NADPH-oxidase Genes
NADPH-oxidases constitute an enzyme complex at cell
membrane that produces superoxide, a substrate for subsequent
reactions to generate ROS. Mean postprandial fold changes for
gene expression of NADPH-oxidase subunits (CYBA and CYBB;
NCF-1,-2, and -4) were not significant between groups, meals
or single time points (Table 1, Supplementary Data Sheet 2).
However, CYBB and CYBA gene expression increased over 6 h in
obese than lean subjects, irrespective of meal type (P interaction
for group × time < 0.05) (Table 1, Figures 1A,B). Conversely,
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obese subjects had lower expression of NCF-4 gene compared to
lean subjects after the HC meal (P interaction for group × meal
< 0.05) (Table 1, Figure 1C).

Postprandial Changes in Gene Expression
of Antioxidant Redox-Related Proteins
TXN is a small redox protein and TXNRD1 is the enzyme
that reduces TXN from the oxidized to the reduced, active
form for neutralization of ROS. Mean postprandial fold
changes for expression of the aforementioned genes were not
significant between groups, meals or single time points (Table 1,
Figures 1D,E, Supplementary Data Sheet 2). Of note, TXNRD1
gene showed higher increase over 6 h in obese compared to lean
subjects irrespective of meal type (P interaction for group× time
< 0.05) (Table 1, Figure 1E). This may represent an adaptive
response to counter the upregulation of NADPH-oxidases in the
obese individuals, and thus achieve redox homeostasis.

Postprandial Changes in Antioxidant
Enzyme Genes
We also examined gene expression of antioxidant enzymes
(SOD1, SOD2, and GPX3), which showed modest increases in
both groups following all test meals (P for time effect < 0.05)
(Table 1, Supplementary Data Sheet 2). Mean postprandial fold
changes for expression of the aforementioned genes were not
significant between groups, meals or single time points. Of
relevance, obese subjects had lower increase in SOD1 after HC
and HF meals compared to lean subjects (P interaction for group
×meal < 0.05) (Table 1, Figure 1F).

Postprandial Changes in Antioxidant
Response Regulatory Genes
Mean postprnadial fold changes for expression in NRF2 was not
significant between groups, meals or single time points (Table 1,
Supplementary Data Sheet 2). The NRF2 transcription factor is
an antioxidant response regulatory transcription factor, and an
increase in its expression in nucleus indicates oxidative damage
at the cellular level. In the cytosol, it is bound to Keap1 and
remains in an inactivated state. Upon cellular encounter with
stress, the Keap1-NRF2 complex undergoes disruption andNRF2
is transferred to the nucleus.

Postprandial Changes in Urinary Free
F2-Isoprostanes (F2-IsoPs)
Urinary creatinine (Cr) levels, measured to standardize the
dilution of urine, did not differ between the different dietary
interventions. Independent of diet, postprandial urinary F2-
IsoP/Cr significantly increased in obese (P < 0.05), but not lean
individuals (Supplementary Data Sheet 3). The paired sample
t-test also revealed that in lean subjects, postprandial change
in urinary F2-IsoP/Cr from baseline to 6 h, differs between HC
and HF meal (P = 0.055) (Figure 2). F2-IsoPs are prostaglandin
(PG) F2-like compounds. These are produced as a result of
free radical catalyzed peroxidation of arachidonic acid and
are currently considered the gold standard among markers of
systemic oxidative damage.

Correlation Analysis
We analyzed the relationship between postprandial fold changes
in MNC gene expression (at 120 and 360min) vs. iAUC of serum
insulin and plasma glucose (Table S2). Insulin iAUC correlated
with increased fold changes in expression of CYBB (r: 0.42; P =

0.07), CYBA (r: 0.51; P= 0.03), and TXN (r: 0.41; P= 0.08) genes
in the obese MNC at 120min following meal ingestion. Glucose
iAUC correlated with increased fold changes in expression of
NCF1 (r: 0.52; P = 0.07), NCF4 (r: 0.52; P = 0.07) and SOD1(r:
0.49; P = 0.09) genes at 120min, and NCF2 (r: 0.52; P =

0.07), NCF4 (r: 0.54; P = 0.06), SOD1 (r: 0.57; P = 0.04), and
SOD2 (r: 0.55; P = 0.05) genes at 360min in lean MNC after
meal ingestion.

DISCUSSION

In this study, we compared expression of genes of oxidative stress
pathways in MNC following intake of HC, HF, and HPmeals in a
metabolically distinct cohort of lean insulin-sensitive and obese
insulin-resistant individuals (with hypertriglyceridemia). We
found that the individual’s underlying metabolic phenotype has
a differential impact on oxidative gene expression in circulating
MNCs. This was evident based on differences in the direction and
magnitude of changes seen in the postprandial oxidative gene
expression profiles in MNC as well as systemic oxidative stress
marker F2-IsoP in urine, over the postprandial period between
the two groups.

The overall trend toward higher expression of the pro-oxidant
genes involved in the oxidative pathway in both obese and
lean groups may indirectly reflect a physiological increase in
ROS generation in the postprandial state. However, we found
that the expression of anti-oxidant group of genes were also
elevated suggesting an adaptive response to mitigate the higher
postprandial oxidative stress among the study participants. Our
findings are in concordance with that by Camargo et al. who
reported an increase in the postprandial expression of both pro-
and anti-oxidant genes in the MNC of individuals with metabolic
syndrome in response to a 12-week HF diet (12). Likewise, in
another study, Patel et al. showed that a single HF-HC meal
challenge induced oxidative and inflammatory stress responses
greater both in magnitude and duration, as evident by increases
in the expression of NCF-1 (a major ROS-generating enzyme),
intracellular NF-κB binding activity and plasma concentrations
of MMP-9, in the MNCs in obese compared to lean individuals
(11). Of note, in the current study, there were consistent trends
toward greater duration and magnitude of oxidative responses
in obese individuals (with hypertriglyceridemia) following HC
and HP meals compared to HF meal, suggesting an increased
predisposition of these subjects to oxidative stress.

In the current study, expressions of CYBB and CYBA
(catalytic parts of NADPH oxidase) genes increased over 6-h
following meal consumption in obese compared to lean patients,
while changes in expression of NCF-4 (cytosolic activator of
NADPH oxidase) gene were the contrary. The opposite direction
of postprandial changes in NCF-4 expression following intake
of HC and HF vs. HP meal, led to a significant group x
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FIGURE 1 | Fold changes from baseline in expression of (A) CYBB, (B) CYBA, (C) NCF-4, (D) TXN, (E) TXNRD1, and (F) SOD-1 genes in MNC between lean

insulin-sensitive (Blue,•) and obese insulin-resistant (Red,�) individuals, following consumption of isoenergetic liquid mixed meals. Values are mean ± SEM. Single

time point comparisons between two groups, by using unpaired t-test, are indicated with (*) when significant (P < 0.05).
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FIGURE 2 | Postprandial change in urine F2-IsoPs concentration corrected for urine creatinine concentration (F2-IsoP/Cr ratio) from baseline to 6 h after high

carbohydrate (HC), high-fat (HF), and high-protein (HP) meal ingestion in lean and obese individuals. Values are mean ± SEM and analyzed by using two-tailed t-tests

between lean vs. obese subject after HC (−0.08 ± 0.23 vs. 0.18 ± 0.15, P = 0.35), HF (0.40 ± 0.09 vs. 0.18 ± 0.11, P = 0.14), and HP (0.10 ± 0.21 vs. 0.29 ±

0.25, P = 0.56) meals, and indicated with (*) when significant (P < 0.05). Independent of diet, postprandial urinary F2-IsoP/Cr significantly increased in obese, but not

lean individuals.

meal interaction. The trend toward lower NCF-4 expression in
obese group may be explained as a protective negative feedback
phenomenon exerted by existing exaggerated oxidative stress
associated with obesity. It is known that enhanced production of
reactive oxygen or nitrogen species due to augmented NADPH
oxidase activity and ER stress in adipose tissue characterizes
obesity (26, 27). Further, antioxidant defenses are lower in obese
compared to that in lean individuals (28, 29).

NRF2 is a nuclear transcription factor and its activation can be
characterized by protein expression assay, i.e., western blotting
using nuclear component of freshly isolated cells, i.e., MNC in
this case. Since fresh MNC were not available at the time of this
oxidative stress response study for protein isolation, the protein
expression levels of NRF2 could not be assessed. An upregulation
in its expression at gene level could not be observed alongside
the increases in expression of several anti-oxidant genes in
the current study, as would have been expected. However, the
transcription level data can only suggest whether the protein is
present and approximately its expected level and needs to be
validated by western blot assay.

F2-isoprostanes, are accurate indicators of systemic oxidative
stress in vivo (23), and showed trends similar to those
observed for MNC gene expression. We observed an increase in
postprandial urinary F2-IsoP/Cr in the obese group (P < 0.05),
independent of meal type. These results may suggest an increased
predisposition of obese subjects (with hypertriglyceridemia) to
oxidative stress. Camargo et al. found positive correlations
between plasma levels of oxidative stress markers such as protein
carbonyl, H2O2, etc. and expression of genes of oxidative pathway
in obese-derived MNC, 2-h after meal intake (12). Although
the marker of systemic oxidative stress assessed in the current
study is different from those in the aforementioned study, the
postprandial changes we observed in the obese, are similar to
theirs. Interestingly, significant postprandial increases in urinary
F2-IsoP level could be observed in lean individuals following HF
meal and the changes were near-significantly higher than that
following HC meal. This could be attributed to the fact that the
obese subjects are “adapted” to a diet high in fat, and so do not

experience the same systemic oxidative stress response to a diet
high in fat as the lean group. Conversely, the lean group may be
adapted to a more carbohydrate/protein rich diet.

It is well known that MUFA rich diet exerts an anti-
inflammatory, antioxidant effect (30–32). Despite an equal
proportion of MUFA, PUFA, and SFA in the HF meal in
this study, we only observed a modest/minimal effect (on
postprandial gene expression as well as urinary F2-isoprostanes)
exerted by HF meal. The total caloric content as well as SFA
proportion was much higher in previous studies as compared
to that in our study (11, 32, 33). The deficiency/lack of relative
and absolute amount of SFA in the HF meal could have
contributed to the more modest changes observed in our study,
both in postprandial MNC gene expression and systemic F2-Isop
responses (34).

We observed positive correlations between the postprandial
serum insulin response with expression of pro- and antioxidant
genes in the obese insulin resistant individuals (with
hypertriglyceridemia). The obese subjects had significant
postprandial hyperinsulinemia compared to the lean
group despite similar glycemic response, indicative that
they require more insulin to maintain the same glucose
tolerance owing to peripheral tissue insulin resistance.
Our findings are in agreement with that of Patel et al who
demonstrated significantly higher insulin levels, alongside
higher expression of oxidative stress markers in the MNCs
of obese individuals in the postprandial state (11). These
results support the emerging notion that oxidative stress is
among the key events leading to insulin resistance, which
is pivotal in the pathogenesis and progression of T2D
(9, 35, 36). An increase in the mitochondrial ROS generation
from a nutrient-rich environment induces cellular stress
pathways resulting in insulin resistance by interrupting
insulin receptor signal transduction. We propose that
it represents a check-and-balance response in the obese
individuals such that the expression of anti-oxidant genes
increased in tandem to the pro-oxidant genes regardless of the
macronutrient content.
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Strengths of our study include the fact that we compared
two distinct metabolic phenotypes, i.e., lean insulin-sensitive and
obese insulin-resistant individuals (with hypertriglyceridemia)
and that within each group, the individuals were homogeneous.
In addition, we compared three test meals of different
macronutrient composition in the same group of subjects. The
caloric contents of these test meals were well representative of
normal dietary intake. By contrast, previous studies examined
only a single phenotype in isolation (either metabolic syndrome
or non-obese individuals), following intake of one type
of meal (mostly HF, not representative of normal dietary
intake) (5, 6, 12–15). To our understanding, postprandial
changes in expression of oxidative stress pathway genes have
not been assessed previously, following intake of different
types of isocaloric mixed- meals enriched in either of all
three major macronutrients (carbohydrate, fat, or protein),
in a cohort both obese insulin-resistant and lean insulin-
sensitive individuals. Interestingly, our previous work on the
same cohort has shown differential postprandial inflammatory,
metabolic as well as satiety/appetite hormonal response (16–
18).

However, these findings, researched using a gene expression
approach, could be further validated with protein expression
studies. We acknowledge postprandial changes in gene
expression in MNC are indeed among indirect measures
of oxidative stress, while that in urinary isoprostane level
are among direct measures. Since fresh MNC were not
available for further analysis, protein expression levels and
additional assays to measure intracellular oxidative stress such as
reduced/oxidized glutathione level, could not be assessed. These
direct measures of oxidative stress have since been incorporated
in our subsequent/ongoing studies in other metabolic risk
phenotypes such as individuals with heredity of type 2 diabetes,
prediabetes, etc.

Further, we would like to highlight that our study subjects of
interest are otherwise healthy, normoglycemic individuals, who
are capable of adaptive/compensatory response in postprandial
state to achieve homeostasis. Perhaps this may be why we
have seen significant changes in expression of some, but not
all genes. The direction and magnitude of changes in the
measured parameters trended to be different between the two
groups, despite being otherwise healthy and normoglycemic.
Thus profiling of postprandial gene expression levels could be

a potential early marker for monitoring progression/worsening
of metabolic disorders long before conventional clinical markers
demonstrate appreciable changes.

To conclude, acute nutritional intake may lead to oxidative

stress followed by an adaptive, compensatory response in order to
mitigate postprandial stress. However, chronic nutritional excess

resulting in weight gain and increased adiposity may lead to

decompensation and in turn, worsen insulin resistance and its
sequelae. Our findings support an increased predisposition of
obese subjects (with hypertriglyceridemia) to oxidative stress,
particularly in response to a meal rich in carbohydrate or protein.
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